история счета и систем счисления

История счета и систем счисления

С древнейших времён перед людьми стояла проблема обозначения (кодирования) числовой информации.

Маленькие дети показывают свой возраст на пальцах. Лётчик сбил самолёт, ему за это рисуют звёздочку, Робинзон Крузо считал дни зарубками.

Числом обозначали некоторые реальные объекты, свойства которых были одинаковы. Когда мы что-то считаем или пересчитываем, мы как бы обезличиваем предметы, т.е. подразумеваем, что их свойства одинаковы. Но самым главным свойством числа является наличие объекта, т.е. единица и его отсутствие, т.е. ноль.

Это алфавит чисел, набор символов, с помощью которых мы кодируем числа. Цифры – числовой алфавит.

Цифры и числа – это разные вещи! Рассмотрим два числа 5 2 и 2 5. Цифры одни и те же – 5 и 2.

А чем эти числа отличаются?

Давайте подумаем, что же это такое системы счисления?

Понятие системы счисления

Для записи информации о количестве объектов использу ются числа. Числа записываются с использованием особых знаковых систем, которые называются системами счисления. Алфавит систем счисления состоит из символов, которые называются цифрами. Например, в десятичной системе счисления числа записываются с помощью десяти всем хорошо известных цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Система счисления — это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.

Все системы счисления делятся на две большие группы: позиционные и непозиционные системы счисления. В позиционных системах счисления значение цифры зависит от ее положения в числе, а в непозиционных — не зависит.

Непозиционные системы счисления

Непозиционной системой счисления называется такая система счисления, у которой количественный эквивалент («вес») цифры не зависит от ее местоположения в записи числа.

К непозиционным системам относятся: римская система счисления, алфавитные системы счисления и другие.

Сначала люди просто различали ОДИН предмет перед ними или нет. Если предмет был не один, то говорили «МНОГО».

Первыми понятиями математики были » меньше «, » больше «, » столько же «.

Счет появился тогда, когда человеку потребовалось сообщать своим соплеменникам о количестве найденных им предметов.

И, т ак как многие народы в древности не общались друг другом, то у разных народов возникли разные системы счисления и представления чисел и цифр.

Имена числительные во многих языках указывают, что у первобытного человека орудием счета были преимущественно пальцы.

Пальцы оказались прекрасной вычислительной машиной. С их помощью можно было считать до 5, а если взять две руки, то и до 10. В древние времена люди ходили босиком. Поэтому они могли пользоваться для счета пальцами как рук, так и ног. До сих пор существуют в Полинезии племена, использую щие с 20-ую систему счисления.

Однако известны народы, у которых единицами счёта были не пальцы, а их суставы.

Довольно широкое распространение имела двенадцатеричная система счисления. Происхождение её связано со счетом на пальцах. Считали большим пальцем руки фаланги остальных четырёх пальцев: всего их 12.

Элементы двенадцатеричной системы счисления сохранились в Англии в системе мер (1 фут = 12 дюймам) и в денежной системе (1 шиллинг = 12 пенсам). Нередко и мы сталкиваемся в быту с двенадцатеричной системой счисления: чайные и столовые сервизы на 12 персон, комплект носовых платков — 12 штук.

Числа в английском языке от одного до двенадцати имеют свое название, последующие числа являются составными:

Источник

Счет у первобытных людей

Запоминать большие числа было трудно, и поэтому кроме паль­цев рук и ног «задействовались» другие «приспособления». Напри­мер, перуанцы использовали для этого разноцветные шнурки с завя­занными на них узлами. Веревочные счеты с узелками были в ходу в России, а также во многих странах Европы. До сих пор иногда завязывают узелки на носовых платках на память.

На более высокой стадии развития люди при счете стали применять разные предметы: использовали камешки, зерна, веревку с бирками. Это были первые счетные приборы, которые, в конце концов, приве­ли к образованию разных систем счисления и к созданию современ­ных быстродействующих электронных вычислительных машин.

3. Цифры у разных народов

Мысль выражать все числа знаками

настолько проста, что именно из-за

этой простоты сложно осознать,

сколь она удивительна.

Пьер Симон Лаплас (1749-1827), франц. астроном, математик, физик.

3.1. Появление цифр

Сначала считали на пальцах. Когда пальцы на одной руке кончались, переходили на другую, а если на двух руках не хватало, переходили на ноги. Поэтому, если в те времена кто-то хвалился, что у него «две руки и одна нога кур», это означало, что у него пятнадцать кур, а если это называлось «весь человек», то есть две руки и две ноги.

Перуанские инки вели счет животных и урожая, завязывая узелки на ремешках или шнурках разной длины и цвета. Эти узелки назывались кипу. У некоторых богатеев скапливалось по несколько метров этой веревочной «счетной книги», попробуй, вспомни через год, что означают 4 узелочка на шнурочке! Поэтому того, кто завязывал узелки, называли вспоминателем.

история счета и систем счисления

Первыми придумали запись чисел древние шумеры. Они пользовались всего двумя цифрами. Вертикальная чёрточка обозначала одну единицу, а угол из двух лежачих чёрточек – десять. Эти чёрточки у них получались в виде клиньев, потому что они писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали. Вот так выглядели эти дощечки.

история счета и систем счисления

Так, например, в древней египетской нумерации, зародившейся более 5000 лет назад, существовали особые знаки (иероглифы) для записи чисел 1, 10, 100, 1000, …

история счета и систем счисления

Для того чтобы изобразить, например, целое число 23145, достаточно записать в ряд два иероглифа, изображающие десять тысяч, затем три иероглифа для тысячи, один – для ста, четыре – для десяти и пять иероглифов для единицы

история счета и систем счисления

Этого одного примера достаточно, чтобы научиться записывать числа так, как их изображали древние египтяне. Это система очень проста и примитивна.

В начале нашей эры индейцы племени майя, которые жили на полуострове Юкатан в Центральной Америке, пользовались другой системой счисления – двадцатеричной. Они обозначали 1 точкой, а 5 – горизонтальной чертой, например, запись ‗‗‗‗‗‗ означала 14. системе счисления майя был и знак для нуля. По своей форме он напоминал полузакрытый глаз.

В Древней Греции сначала числа 5, 10, 100, 1000, 10000 обозначали буквами Г, Н, Х, М, а число 1 – черточкой /. Из этих знаков составляли обозначения    Г (35) и т.д. Позднее числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000 стали обозначать буквами греческого алфавита, к которому пришлось добавить еще три устаревшие буквы. Чтобы отличить цифры от букв, над буквами ставили черточку.

Древние индийцы изобрели для каждой цифры свой знак. Вот как они выглядели.

история счета и систем счисления

история счета и систем счисления

Они похожи на многие наши цифры. Слово «цифра» тоже досталось нам от арабов по наследству. Арабы нуль, или «пусто», называли «сифра». С тех пор и появилось слово «цифра». Правда, сейчас цифрами называются все десять значков для записи чисел, которыми мы пользуемся: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

история счета и систем счисления

Постепенное превращение первоначальных цифр в наши современные цифры.

3.2. Римская нумерация

3.3. Цифры русского народа

Арабские числа в России стали применять, в основном, с XVIII века. До того наши предки использовали славянскую нумерацию. Над бук­вами ставились титлы (черточки), и тогда буквы обозначали числа.

Первые девять чисел записывались так:

история счета и систем счисления

Сотни миллионов назывались «колодами».

«история счета и систем счисленияКолода» имела специальное обозначение: над буквой и под бук­вой ставили квадратные скобки. Например, число 108 записывалось в виде

Числа от 11 до 19 обозначались так:

история счета и систем счисления

Остальные числа записывались буквами слева направо, напри­мер, числа 5044 или 1135 имели соответственно обозначение

история счета и систем счисления

При записи чисел больших, чем тысячи, в практической деятельно­сти (счете, торговле и т.д.) часто вместо кружков ставили знаки «; Л» перед буквами, обозначавшими десятки и сотни тысяч, например, запись

история счета и систем счисления

означает соответственно 500044 и 540004.

Сколько километров проходит человек за свою жизнь, сколько товаров производится и приходит в негодность ежечасно в пределах города, страны? Сколь­ко времени заняло бы выполнение самым быстрым расчетчиком миллиона вычислительных операций, которые современная вычис­лительная машина выполняет за. секунду? Во сколько раз скорость пассажирского реактивного самолета превосходит скорость трени­рованного спортсмена-пешехода? Ответы на эти и тысячи подобных вопросов выражаются числами, занимающими зачастую по числу своих десятичных разрядов целую строку и даже больше.

Для сокращения записи больших чисел давно используется сис­тема величин, в которой каждая из последующих в тысячу раз боль­ше предыдущей:

1000 секстиллионов- 1 септиллион

1000 нониллионов- 1 дециллион

Таким образом, 1 дециллион запишется в десятичной системе единицей с 3 х 11=33 нулями:

1 000 000 000 000 000 000 000 000 000 000 000.

Как писал Самуил Яковлевич Маршак: «Напрасно думают, что ноль играет маленькую роль».

При записи больших чисел часто используют степень числа 10.

Заметьте, что число нулей степени 10 всегда равно ее показателю:

10 1 = 10, 10 2 = 100, 10 3 = 1000 и т.д.

И еще одно: математики во всем мире давно приняли, что любое число в нулевой степени равно единице 0 = 1).

Числа-символы

0 – абсолют, 1 – его проявление. Все это заключено в Солнце.

2 – двойственность и эмоциональность с ней связанная – свойства Луны.

3 – прошлое, настоящее и будущее время – Сатурн.

4 – четыре стороны света, пространство – Юпитер.

5 – любовь и человек – Венера.

6 – соединение двух треугольников – корень активности, отношений, а также преданность – свойства Марса.

7 – полнота знаний, деталей, особенностей, подвижность – это качества Меркурия.

8 – бесконечность, лунные узлы как точки затмений, во время которых временное соотносится с Вечным.

Источник

История систем счисления

История записи чисел и систем счисления ведется с появления счета у людей. Люди изображали количество различных предметов с помощью засечек или черточек. Их наносили на поверхности, служившие в то время «бумагой»: глиняные дощечки, древесную кору или камни. Первые сведения о таких записях археологи относят к периоду палеолита, то есть к 10-11 тысячелетию до нашей эры.

Такой способ записи получил название единичной системы счисления. Все числа обозначались строкой черточек (или любых других знаков, например, точек): чем больше знаков в строке – тем больше число. Эта система счета была не удобна, ведь, при больших числах, было легко ошибиться в количестве палочек. Каждый раз их приходилось пересчитывать.

Для упрощения подсчета предметы стали объединять в небольшие группы по 3, 5 и 10 единиц. При этом каждой группе соответствовал свой знак-обозначение на письме. Поскольку самым удобным счетом всегда был счет на пальцах, то первыми свое обозначение получили объединения предметов из 10 и 5 единиц. Именно это положило начало удобной системе счисления.

Система, которой пользовались древние греки, называлась аттической. Первые четыре числа записывались черточками. Для числа пять существовал свой знак – «пи», как и для числа десять – первая буква слова «дека». Сотня, тысяча и десять тысяч на письме обозначались как H, X, M.

На смену этой системе в третьем веке до нашей эры пришла ионийская система. Числа от одного до девяти в ней обозначались буквами греческого алфавита: с первой по девятую. Буквами с десятую по восемнадцатую обозначались десятки – от десяти до девяноста. И последними девятью записывались сотни – от ста до девятисот.

С помощью алфавита также записывали числа восточные и южные славяне. Часть из них пользовалась славянским алфавитом, наделяя каждую букву числовым значением. Другая – только теми буквами, которые встречаются в греческом алфавите. Отличать буквы от цифр позволял специальный значок, который ставился над числом – «титло». Такая нумерация применялась в России до XVIII века.

Начало правления Петра I принесло в страну арабскую нумерацию, которой пользуются и сегодня. Однако в богослужебных книгах до сих пор используют славянскую систему записи.

Каждый из нас хотя бы немного знаком с «римской системой», которой обозначаются века, юбилейные даты, названия конференций, строфы стихов и главы книг. Именно ей пользовались когда-то Древние римляне. Исследователи считают, что она была заимствована жителями Рима у этрусков. Все целые числа в этой системе до 5000 записывают с помощью цифр I, V, X. Если впереди стоит большая цифра, а за ней – меньшая, они складываются. Если наоборот – меньшая перед большей – вычитаются. Одна и та же цифра ставится подряд не более, чем три раза. Любое арифметическое действие в такой записи чисел становится сложной задачей. Однако до XIII века в Италии и до XVI века в странах Западной Европы пользовались именно ей.

Первую поместную или позиционную нумерацию «создали» в Вавилоне в 4000 годах до нашей эры. Ее суть в том, что одна цифра может обозначать разные числа, в зависимости от места, где стоит. Яркий пример – современная десятичная система. В зависимости от позиции в числе цифра может обозначать и десяток, и единицу, и сотню.

Вавилонская система была шестидесятеричной, поскольку за основу изначально взяли не 10, а 60. Все числа меньше записывались двумя знаками – десятков и единиц. Сами числа записывались на глиняных табличках треугольными палочками, поэтому имели вид клина. Знаки повторяли в зависимости от числа.

Шестидесятеричная система не распространилась дальше Древнего Вавилона, но шестидесятеричные дроби использовались в странах Средней Азии, Западной Европы, Среднего Востока и Северной Африки. До появления десятичных дробей они играли важную роль в астрономии и других науках. Сегодня об этой системе нам напоминает деление минуты на 60 секунд, а часа – на 60 минут, угла на 360 градусов.

Все системы счисления условно можно разделить на позиционные и непозиционные. Те знаки, которые мы в них используем для записи чисел, называют цифрами.

Положение цифры в записанном числе в непозиционных системах не влияют на величину, которая ей обозначается. Это, к примеру, системы, использующие буквы для записи цифр – славянская и римская.

Положение цифры в позиционных системах определяет значение величины, которая ей записана. При этом позиция – место, которое занимает эта цифра в числе. А количество цифр, которые используются для записи, называются основанием системы. Примерами такой системы – вавилонская шестидесятеричная и современная десятичная.

Позиционные системы используют небольшое число знаков, что позволяет просто записывать большие числа. Именно поэтому она более распространена сегодня в мире. Кроме того, она обеспечивает удобство и простоту при выполнении арифметических действий над числами.

Самое большое распространение в наше время получила индо-арабская десятичная система. В ней впервые появился ноль при записи чисел. Такое название она носит, поскольку использует десять цифр.

Легче всего понять различия между позиционной системой и непозиционной системой, сравнив два числа, записанные в одной и другой. В первой сравниваются цифры, стоящие в одном и том же месте, слева на право. Чем больше число, тем больше сама величина. Например, число 245 будет больше числа 123, потому что 2 в этой позиции больше 1. Для непозиционной системы такой закон не действует. Если мы будем сравнивать римские IX и VI, то первое будет больше второго, хотя I в одинаковой позиции меньше V.

Двоичная система счисления с основанием 2 представляет положительную позиционную систему счисления с целыми числами. Она позволяет записать все числовые значения с помощью двух знаков. Чаще всего используют цифры 0 и 1.

Основанием для восьмеричной положительной позиционной системы служит 8. Любое число в ней можно записать с помощью цифр от 0 до 7. Эту систему используют цифровые и компьютерные устройства. Именно она использовалась на заре компьютерной эры, однако сейчас уступила место более продвинутой – шестнадцатеричной.

Самая узнаваемая в мире, десятичная система представляет собой позиционную систему с основанием 10. Для обозначения чисел использует арабские цифры от 0 до 9.

Одна из самых популярных систем древности – двенадцатеричная – до сих пор используется в некоторых областях науки. Она же является основной у некоторых народов Тибета и Нигерии, но напоминает о себе и в других культурах. Например, в нашем языке сохранилось слово «дюжина», а в английском языке «dozen», которые отсылают нас к числу двенадцать. Основанием ее является 12. В качестве знаков используются буквы A и B и цифры 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.

Шестнадцатеричная система счисления – представляет позиционную положительную систему с основанием в 16 знаков. В качестве ее цифр используют буквы латинского алфавита A, B, C, D, E, F для обозначения чисел от десяти до пятнадцати и цифры 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.

Шестнадцатеричная система счисления используется в современных компьютерных программах, для кодировки шрифтов. Шестнадцатеричным числом во многих современных компьютерных графических программ кодируют цвета. Также шестнадцатеричным кодом шифруют цвет web-дизайнеры. Например, код #00ff00 обозначает зеленый цвет. Две буквы f в середине этого кода соответствуют числу 256 в десятичной системе счисления.

При работе с компьютерами чаще всего используются двоичная, восьмеричная и шестнадцатеричная системы счисления. И человек, и компьютер отлично справляются при работе в этих системах. Но отдельные случаи заставляют обратиться к менее популярным системам счисления. Такими системами являются семеричная, троичная и система счисления с основанием 32. Все арифметические действия в них не отличаются от привычных.

Защита от спама: одна тысяча шестьсот девяносто два (число): *

Источник

История счета и систем счисления

Непозиционные системы древности

В древние времена, когда люди начали считать, появилась потребность в записи чисел. Первоначально количество предметов отображали равным количеством каких-нибудь значков: насечек, черточек, точек.

Изучение археологами «записок» времен палеолита на кости, камне, дереве показало, что люди стремились группировать отметки по 3, 5, 7, 10 штук. Такая группировка облегчала счет. Люди учились считать не только единицами, но и тройками, пятерками и пр. Поскольку первым вычислительным инструментом у человека были пальцы, поэтому и счет чаще всего вели группами по 5 или по 10 предметов.

В дальнейшем свое название получили десяток десятков (сотня), десяток сотен (тысяча) и т. д. Такие узловые числа для удобства записи стали обозначать особыми значками — цифрами. Если при подсчете предметов их оказывалось 2 сотни, 5 десятков и еще 4 предмета, то при записи этой величины дважды повторяли знак сотни, пять раз — знак десятков и четыре раза знак единицы.

В таких системах счисления от положения знака в записи числа не зависит величина, которую он обозначает; поэтому они называются непозиционными системами счисления.

Непозиционными системами пользовались древние египтяне, греки, римляне и некоторые другие народы древности.

история счета и систем счисления

До нас дошла римская система записи чисел (римские цифры), которая в некоторых случаях применяется в нумерации (века, тома в собрании сочинений, главы книги). В римской системе в качестве цифр используются латинские буквы:

1 5 10 50 100 500 1000

история счета и систем счисления

На Руси вплоть до XVIII века использовалась непозиционная система славянских цифр. Буквы кириллицы (славянского алфавита) имели цифровое значение, если над ними ставился специальный знак

Непозиционные системы счисления были более или менее пригодны для выполнения сложения и вычитания, но совсем не удобны при умножении и делении.

Впервые идея позиционной системы счисления возникла в Древнем Вавилоне.

В позиционных системах счисления количественное значение, обозначаемое цифрой в записи числа, зависит от позиции цифры в числе.

Основание позиционной системы счисления равно количеству используемых в системе цифр.

Система счисления, применяемая в современной математике, является позиционной десятичной системой. Ее основание равно десяти, так как запись любых чисел производится с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Хотя десятичную систему принято называть арабской, но зародилась она в Индии в V веке. В Европе об этой системе узнали в XII веке из арабских научных трактатов, которые были переведены на латынь. Этим и объясняется название «арабские цифры». Однако широкое распространение в науке и в обиходе десятичная позиционная система получила только в XVI веке. Эта система позволяет легко выполнять любые арифметические вычисления. Записывать сколь угодно большие числа. Распространение арабской системы дало мощный толчок развитию математики

С позиционной десятичной системой счисления вы знакомы с раннего детства, только, возможно, не знали, что она так называется.

За основание позиционной системы счисления можно принять любое натуральное число, большее 1. Упомянутая выше вавилонская система имела основание 60. Следы этой системы сохранились до наших дней в порядке счета единиц времени (1 час = 60 минут, 1 минута = 60 секунд).

Для записи чисел в позиционной системе с основанием n нужно иметь алфавит из n цифр. Обычно для этого при n 10 к десяти арабским цифрам добавляют буквы.

Вот примеры алфавитов нескольких систем:

история счета и систем счисления
ОснованиеСистемаАлфавит
n=2Двоичная0 1
n=3Троичная0 1 2
n=8Восьмеричная0 1 2 3 4 5 6 7
n=16Шестнадцатиричная0 1 2 3 4 5 6 7 8 9 A B C D E F

Основание системы, к которой относится число, обычно обозначается подстрочным индексом к этому числу:

А как строится ряд натуральных чисел в разных позиционных системах счисления? Происходит это по тому же принципу, что и в десятичной системе. Сначала идут однозначные числа, потом двузначные, затем трехзначные ит. д. Самое большое однозначное число в десятичной системе — 9. Затем следуют двузначные числа — 10, 11,12, … Самое большое двузначное число — 99, далее идут 100, 101, 102 и т. д. до 999, затем 1000 и т. д.

Видно, что здесь число цифр «нарастает» быстрее, чем в десятичной системе. Быстрее всего число цифр растет в двоичной системе счисления. В следующей таблице сопоставляются начала натуральных рядов десятичных и двоичных чисел:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *