Как доказать что прямые параллельны

Как доказать что прямые параллельны

Параллельность прямых

Как доказать что прямые параллельны

10 класс, ЕГЭ/ОГЭ

Определение параллельности прямых

Начнем с главного — определимся, какие прямые параллельны согласно евклидовой геометрии. Мы недаром упомянули Евклида, ведь именно в его трудах, написанных за 300 лет до н. э., до нас дошли первые упоминания о параллельности.

Параллельными называются прямые в одной плоскости, не имеющие точек пересечения, даже если их продолжать бесконечно долго. Обозначаются они следующим образом: a II b.

Казалось бы, здесь все просто, но со времен Евклида над определением параллельных прямых и признаками параллельности прямых бились лучшие умы. Особый интерес вызывал 5-й постулат древнегреческого математика: через точку, которая не относится к прямой, в той же плоскости можно провести только одну прямую, параллельную первой. В XIX веке российский математик Н. Лобачевский смог опровергнуть постулат и указать на условия, при которых возможно провести как минимум 2 параллельные прямые через одну точку.

Впрочем, поскольку школьная программа ограничена евклидовой геометрией, вышеуказанное утверждение мы принимаем как аксиому.

На плоскости через любую точку, не принадлежащую некой прямой, можно провести единственную прямую, которая была бы ей параллельна.

Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Свойства и признаки параллельных прямых

Есть ряд признаков, по которым можно определить, что одна прямая параллельна другой. К счастью, свойства и признаки параллельности прямых тесно связаны, поэтому не придется запоминать много информации.

Начнем со свойств. Для этого проведем третью прямую, пересекающую параллельные прямые — она будет называться секущей. В результате у нас образуется 8 углов.

Если секущая проходит через две параллельные прямые, то:

∠4 + ∠5 = 180°; ∠3 + ∠6 = 180°.

∠1 = ∠5, ∠3 = ∠7, ∠4 = ∠8, ∠2 = ∠6.

Как доказать что прямые параллельны

Если секущая образует перпендикуляр с одной из параллельных прямых, то она будет перпендикулярна и другой.

Как доказать что прямые параллельны

Вышеуказанные свойства являются одновременно признаками, по которым мы можем сделать вывод о параллельности прямых. Причем достаточно установить и доказать лишь один признак — остальные будут к нему прилагаться.

А сейчас посмотрим, как все это помогает решать задачи и практиковаться в определении параллельности двух прямых.

Задача 1

Прямые MN и KP пересекают две другие прямые, образуя несколько углов. Известно, что ∠1 = 73°; ∠3 = 92°; ∠2 = 73°. Требуется найти величину ∠4.

Решение

В данном случае ∠3 и ∠MPK являются вертикальными, следовательно ∠MPK = ∠3 = 92°.

Поскольку ∠1 и ∠2 являются соответственными, их равенство говорит о том, что MN II KP.

Согласно другому свойству параллельных прямых ∠4 + ∠MPK = 180°.

Как доказать что прямые параллельны

Задача 2

Две параллельные прямые а и b удалены друг от друга на расстояние 27 см. Секущая к этим прямым образует с одной из них угол в 150°. Требуется найти величину отрезка секущей, расположенного между а и b.

Решение

Поскольку а II b, значит ∠MKD + ∠KDN = 180°.

Теперь рассмотрим треугольник KDM. Мы знаем, что отрезок DM представляет собой расстояние между прямыми а и b, а значит, DM ┴ b и наш треугольник является прямоугольным.

Поскольку катет, противолежащий углу в 30°, равен ½ гипотенузы, DM = 1/2DK.

Источник

Геометрия. 7 класс

Конспект урока

Признаки параллельности прямых

Перечень рассматриваемых вопросов:

Две прямые на плоскости называются параллельными, если они не пересекаются.

Признаки параллельности двух прямых:

1. Если при пересечении двух прямых секущей, накрест лежащие углы равны, то прямые параллельны.

2. Если при пересечении двух прямых секущей, соответственные углы равны, то прямые параллельны.

3. Если при пересечении двух прямых секущей, сумма односторонних углов равна 180°, то прямые параллельны.

Теоретический материал для самостоятельного изучения.

Вы уже знаете, что при пересечении двух прямых секущей образуются углы:

Прямая c называется секущей по отношению к прямым a и b, если она пересекает их в двух точках.

Рассмотрим и докажем признаки параллельности прямых.

Если при пересечении двух прямых секущей, накрест лежащие углы равны, то прямые параллельны.

Дано: прямые a и b, секущая AB, ∠ 1 = ∠ 2 накрест лежащие.

Как доказать что прямые параллельны

В этом случае две прямые, перпендикулярные к третьей не пересекаются, т. е. параллельны.

Как доказать что прямые параллельны

2 случай: ∠ 1= ∠ 2 ≠ 90°

Как доказать что прямые параллельны

1) Из середины O отрезка AB проведём перпендикуляр OH к прямой а. На прямой b от точки B отложим отрезок BH1, равный отрезку AH и проведем отрезок OH1.

2) AO = OB т. к. O середина AB; AH = BH1 по построению; ∠1 = ∠2 по условию. Тогда ΔOHA = ΔOH1B по первому признаку равенства треугольников.

Далее следует из равенства треугольников: ∠3 = ∠4 и ∠5 = ∠6.

3) Из равенства углов ∠3 и ∠4 следует, что точка H1 лежит на продолжении луча OH. Это значит, что точки H1, O, H лежат на одной прямой.

4) Из равенства ∠5 и ∠6 следует, что ∠6 = 90°. Это значит, что прямые a и b перпендикулярны к третьей НН1, а значит, по теореме о двух прямых, перпендикулярных к третьей, не пересекаются, т. е. параллельны.

Если при пересечении двух прямых секущей, соответственные углы равны, то прямые параллельны.

Как доказать что прямые параллельны

Дано: прямые a и b, секущая AB, ∠1 = ∠2 соответственные.

∠1 = ∠2 – по условию и ∠2 = ∠3 – по свойству вертикальных углов.

Значит, ∠1 = ∠3, это накрест лежащие углы, следовательно, a║b по теореме 1.

Если при пересечении двух прямых секущей, сумма односторонних углов равна 180°, то прямые параллельны.

Как доказать что прямые параллельны

Прямые a и b, секущая AB, ∠1 + ∠2 = 180° ‑ односторонние.

∠3 +∠2 = 180°– по свойству смежных углов, откуда ∠3 = 180° – ∠2.

∠1 + ∠2 = 180 ° по условию, откуда ∠1 = 180° – ∠2.

Тогда ∠1 = ∠3, это накрест лежащие углы, следовательно, a║b по теореме 1.

Разбор заданий тренировочного модуля.

Дано: ∠1= 60°, ∠2 = 120°.

Как доказать что прямые параллельны

Ответ: прямые a и b параллельны по 1 признаку параллельности прямых.

Дано: ΔABC – равнобедренный, ∠А = 60°. CD – биссектриса ∠BCK.

Докажите: AB ║ CD.

Как доказать что прямые параллельны

Ответ: AB║CD по 2 признаку параллельности прямых.

Источник

Параллельные прямые, признаки и условия параллельности прямых

В этой статье мы расскажем о параллельных прямых, дадим определения, обозначим признаки и условия параллельности. Для наглядности теоретического материала будем использовать иллюстрации и решение типовых примеров.

Параллельные прямые: основные сведения

Параллельные прямые на плоскости – две прямые на плоскости, не имеющие общих точек.

Как доказать что прямые параллельны

Параллельные прямые в трехмерном пространстве – две прямые в трехмерном пространстве, лежащие в одной плоскости и не имеющие общих точек.

Как доказать что прямые параллельны

Необходимо обратить внимание, что для определения параллельных прямых в пространстве крайне важно уточнение «лежащие в одной плоскости»: две прямые в трехмерном пространстве, не имеющие общих точек и не лежащие в одной плоскости, являются не параллельными, а скрещивающимися.

Сформулируем утверждение, играющее важную роль в изучаемой теме.

Через точку, не принадлежащую заданной прямой проходит единственная прямая, параллельная заданной. Это утверждение невозможно доказать на базе известных аксиом планиметрии.

В случае, когда речь идет о пространстве, верна теорема:

Через любую точку пространства, не принадлежащую заданной прямой, будет проходить единственная прямая, параллельная заданной.

Параллельность прямых: признаки и условия параллельности

Признак параллельности есть достаточное условие, при выполнении которого гарантирована параллельность прямых. Иначе говоря, выполнения этого условия достаточно, чтобы подтвердить факт параллельности.

В том числе, имеют место необходимые и достаточные условия параллельности прямых на плоскости и в пространстве. Поясним: необходимое – значит то условие, выполнение которого необходимо для параллельности прямых; если оно не выполнено – прямые не являются параллельными.

Резюмируя, необходимое и достаточное условие параллельности прямых – такое условие, соблюдение которого необходимо и достаточно, чтобы прямые были параллельны между собой. С одной стороны, это признак параллельности, с другой – свойство, присущее параллельным прямым.

Перед тем, как дать точную формулировку необходимого и достаточного условия, напомним еще несколько дополнительных понятий.

Секущая прямая – прямая, пересекающая каждую из двух заданных несовпадающих прямых.

Пересекая две прямые, секущая образует восемь неразвернутых углов. Чтобы сформулировать необходимое и достаточное условие, будем использовать такие типы углов, как накрест лежащие, соответственные и односторонние. Продемонстрируем их на иллюстрации:

Как доказать что прямые параллельны

Если две прямые на плоскости пересекаются секущей, то для параллельности заданных прямых необходимо и достаточно, чтобы накрест лежащие углы были равными, либо были равными соответственные углы, либо сумма односторонних углов была равна 180 градусам.

Проиллюстрируем графически необходимое и достаточное условие параллельности прямых на плоскости:

Как доказать что прямые параллельны

В общем, эти условия применимы и для трехмерного пространства при том, что две прямые и секущая принадлежат одной плоскости.

Укажем еще несколько теорем, часто используемых при доказательстве факта параллельности прямых.

На плоскости две прямые, параллельные третьей, параллельны между собой. Этот признак доказывается на основе аксиомы параллельности, указанной выше.

В трехмерном пространстве две прямые, параллельные третьей, параллельны между собой.

Доказательство признака изучается в программе геометрии 10 класса.

Дадим иллюстрацию указанных теорем:

Как доказать что прямые параллельны

Укажем еще одну пару теорем, являющихся доказательством параллельности прямых.

На плоскости две прямые, перпендикулярные третьей, параллельны между собой.

Сформулируем аналогичное для трехмерного пространства.

В трехмерном пространстве две прямые, перпендикулярные третьей, параллельны между собой.

Как доказать что прямые параллельны

Все указанные выше теоремы, признаки и условия позволяют удобно доказать параллельность прямых методами геометрии. Т.е., чтобы привести доказательство параллельности прямых, можно показать, что равны соответственные углы, или продемонстрировать факт, что две заданные прямые перпендикулярны третьей и т.д. Но отметим, что зачастую для доказательства параллельности прямых на плоскости или в трехмерном пространстве удобнее использовать метод координат.

Параллельность прямых в прямоугольной системе координат

В заданной прямоугольной системе координат прямая определяется уравнением прямой на плоскости одного из возможных видов. Так и прямой линии, заданной в прямоугольной системе координат в трехмерном пространстве, соответствуют некоторые уравнения прямой в пространстве.

Запишем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от типа уравнения, описывающего заданные прямые.

Начнем с условия параллельности прямых на плоскости. Оно базируется на определениях направляющего вектора прямой и нормального вектора прямой на плоскости.

Чтобы на плоскости две несовпадающие прямые были параллельны, необходимо и достаточно, чтобы направляющие векторы заданных прямых были коллинеарными, или были коллинеарными нормальные векторы заданных прямых, или направляющий вектор одной прямой был перпендикулярен нормальному вектору другой прямой.

A 1 = t · A 2 B 1 = t · B 2

Таким образом, если параллельные прямые на плоскости в прямоугольной системе координат задаются уравнениями с угловыми коэффициентами, то угловые коэффициенты заданных прямых будут равны. И верно обратное утверждение: если несовпадающие прямые на плоскости в прямоугольной системе координат определяются уравнениями прямой с одинаковыми угловыми коэффициентами, то эти заданные прямые параллельны.

a x = t · b x a y = t · b y

Решение

Запишем уравнение прямой в отрезках в виде общего уравнения:

Таким образом, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, а значит заданные прямые не параллельны.

Ответ: заданные прямые не параллельны.

Решение

Мы видим, что уравнения прямых y = 2 x + 1 и y = 2 x + 4 не являются одинаковыми (если бы было иначе, прямые были бы совпадающими) и угловые коэффициенты прямых равны, а значит заданные прямые являются параллельными.

Следующим шагом определим выполнение условия параллельности заданных прямых.

Таким образом, векторы перпендикулярны: это демонстрирует нам выполнение необходимого и достаточного условия параллельности исходных прямых. Т.е. заданные прямые параллельны.

Ответ: данные прямые параллельны.

Для доказательства параллельности прямых в прямоугольной системе координат трехмерного пространства используется следующее необходимое и достаточное условие.

Чтобы две несовпадающие прямые в трехмерном пространстве были параллельны, необходимо и достаточно, чтобы направляюще векторы этих прямых были коллинеарными.

a → = t · b → ⇔ a x = t · b x a y = t · b y a z = t · b z

Решение

Следовательно, необходимое и достаточное условие параллельности прямых в пространстве выполнено.

Ответ: параллельность заданных прямых доказана.

Источник

Содержание:

Параллельные прямые:

Ранее мы уже дали определение параллельных прямых.

Напомним, что две прямые на плоскости называются параллельными, если они не пересекаются.

Например, если две прямые a и b плоскости перпендикулярны прямой c этой плоскости, то они не пересекаются, т. е. параллельны (рис. 85, а). Этот факт нами был доказан как следствие из теоремы о существовании и единственности перпендикуляра, проведенного из точки к данной прямой.

Два отрезка называются параллельными, если они лежат на параллельных прямых.

Отрезок называется параллельным прямой, если он лежит на прямой, параллельной данной прямой.

Например, на рисунке 85, B изображены параллельные отрезки АВ и СD (параллельность отрезков АВ и СD обозначается следующим образом: АВ Как доказать что прямые параллельны). Отрезки ЕF и АВ не параллельны (это обозначается так: ЕF Как доказать что прямые параллельны

Как доказать что прямые параллельны

Аналогично определяется параллельность двух лучей, отрезка и прямой, луча и прямой, а также отрезка и луча. Например, на рисунке 85, в изображены отрезок PQ, параллельный прямой l, и отрезок ТК, параллельный лучу СD.

Определения параллельных прямых

На рисунке 10 прямые Как доказать что прямые параллельныимеют общую точку М. Точка А принадлежит прямой Как доказать что прямые параллельны, но не принадлежит прямой Как доказать что прямые параллельны. Говорят, что прямые Как доказать что прямые параллельныпересекаются в точке М.
Как доказать что прямые параллельны

Это можно записать так: Как доказать что прямые параллельны— знак принадлежности точки прямой, «Как доказать что прямые параллельны» — знак пересечения геометрических фигур.

На плоскости две прямые могут либо пересекаться, либо не пересекаться. Прямые на плоскости, которые не пересекаются, называются параллельными. Если прямые Как доказать что прямые параллельныпараллельны (рис. 11, с. 11), то пишут Как доказать что прямые параллельны

Как доказать что прямые параллельны

Две прямые, которые при пересечении образуют прямой угол, называются перпендикулярными прямыми. Если прямые Как доказать что прямые параллельныперпендикулярны (рис. 12), то пишут Как доказать что прямые параллельны

ВАЖНО!

Совпадающие прямые будем считать одной прямой. Поэтому, если сказано «даны две прямые», это означает, что даны две различные несовпадающие прямые. Это касается также точек, лучей, отрезков и других фигур.

Есть два способа практического сравнения длин отрезков, а также величин углов: 1) наложение; 2) сравнение результатов измерения. Оба способа являются приближенными. В геометрии отрезки и углы могут быть равны, если это дано по условию либо следует из условия на основании логических рассуждений.

Признаки параллельности двух прямых

Прямая c называется секущей по отношению к прямым a и b, если она пересекает каждую из них в различных точках.

При пересечении прямых а и b секущей с образуется восемь углов, которые на рисунке 86, а обозначены цифрами. Некоторые пары этих углов имеют специальное название:

Как доказать что прямые параллельны

Рассмотрим признаки параллельности двух прямых.

Теорема 1 (признак параллельности прямых по равенству внутренних накрест лежащих углов). Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.

Например, пусть прямая l проходит через точку F, принадлежащую стороне АС треугольника АВС, так, что Как доказать что прямые параллельны1 равен углу ВАС. Тогда сторона АВ параллельна прямой l, так как по теореме 1 данного параграфа прямые АВ и l параллельны (рис. 86, в).

Теорема 2 (признак параллельности прямых по равенству соответственных углов). Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

1) Пусть при пересечении прямых а и b секущей с соответственные углы равны, например Как доказать что прямые параллельны1 = Как доказать что прямые параллельны2. Докажем, что прямые a и b параллельны (рис. 87, а).

Как доказать что прямые параллельны
2) Заметим, что Как доказать что прямые параллельны2 = Как доказать что прямые параллельны3 как вертикальные углы.

3) Из равенств Как доказать что прямые параллельны1 = Как доказать что прямые параллельны2 и Как доказать что прямые параллельны2 = Как доказать что прямые параллельны3 следует, что Как доказать что прямые параллельны1 = Как доказать что прямые параллельны3. А поскольку углы 1 и 3 являются внутренними накрест лежащими углами, образованными при пересечении прямых a и b секущей с, то в силу теоремы 1 получаем, что аКак доказать что прямые параллельныb.

Например, пусть прямая l пересекает стороны AB и АС треугольника ABC в точках О и F соответственно и Как доказать что прямые параллельныAOF = Как доказать что прямые параллельныABC. Тогда сторона ВС параллельна прямой l, так как по теореме 2 прямые l и ВС параллельны (рис. 87, б).

Теорема 3 (признак параллельности прямых по сумме градусных мер внутренних односторонних углов). Если, при пересечении двух прямых секущей сумма градусных мер внутренних односторонних углов равна 180°, то прямые параллельны.

Аксиома параллельных прямых

Как уже отмечалось, при доказательстве теорем опираются на уже доказанные теоремы и некоторые исходные утверждения, которые называются аксиомами. Познакомимся еще с одной аксиомой, имеющей важное значение для дальнейшего построения геометрии.

Пусть в плоскости дана прямая а и не лежащая на ней произвольная точка О. Можно доказать, что через точку О в этой плоскости проходит прямая, параллельная прямой а. Действительно, проведем через точку О прямую с, перпендикулярную прямой a, затем прямую b, перпендикулярную прямой с. Так как прямые а и b перпендикулярны прямой с, то они не пересекаются, т. е. параллельны (рис. 92). Следовательно, через точку O Как доказать что прямые параллельныa проходит прямая b, параллельная прямой а. Возникает вопрос: сколько можно провести через точку О прямых, параллельных прямой а? Ответ на него не является очевидным. Оказывается, что утверждение о единственности прямой, проходящей через данную точку и параллельной прямой, не может быть доказано на основании остальных аксиом Евклида и само является аксиомой.

Как доказать что прямые параллельны

Большой вклад в решение этого вопроса внес русский математик Н. И. Лобачевский (1792—1856).

Таким образом, в качестве одной из аксиом принимается аксиома параллельных прямых, которая формулируется следующим образом.

Аксиома параллельных прямых. Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Непосредственно из аксиомы параллельны х прямых в качестве следствий получаем следующие теоремы.

Теорема 1. Если две прямые параллельны третьей прямой, то они параллельны.

Пусть прямые а и b параллельны прямой с. Докажем, что аКак доказать что прямые параллельныb (рис. 93, а). Проведем доказательство этой теоремы методом от противного. Предположим, что верно утверждение, противоположное утверждению теоремы, т. е. допустим, что прямые а и b не параллельны, а, значит, пересекаются в некоторой точке О. Тогда через точку О проходят две прямые а и b, параллельные прямой с, что противоречит аксиоме параллельных прямых. Таким образом, наше предположение неверно, а, следовательно, прямые а и b параллельны.

Как доказать что прямые параллельны

Например, пусть прямые а и b пересекают сторону треугольника FDС так, что Как доказать что прямые параллельны1 = Как доказать что прямые параллельныF и Как доказать что прямые параллельны2 = Как доказать что прямые параллельныF (рис. 93, б). Тогда прямые а и b параллельны прямой FD, а, следовательно, аКак доказать что прямые параллельныb.

Теорема 2. Пусть три прямые лежат в плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и другую прямую.

Пусть прямые а и b параллельны, а прямая с пересекает прямую а в точке О (рис. 94, а). Докажем, что прямая с пересекает прямую b. Проведем доказательство методом от противного. Допустим, что прямая с не пересекает прямую b. Тогда через точку О проходят две прямые а и с, не пересекающие прямую b, т. е. параллельные ей (рис. 94, б). Но это противоречит аксиоме параллельных прямых. Следовательно, наше предположение неверно и прямая с пересекает прямую b.

Как доказать что прямые параллельны

Обратные теоремы

В формулировке любой теоремы можно выделить две ее части: условие и заключение. Условие теоремы — это то, что дано, а заключение — то, что требуется доказать. Например, рассмотрим признак параллельности прямых: если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны. В этой теореме условием является первая часть утверждения: при пересечении двух прямых секущей внутренние накрест лежащие углы равны (это дано), а заключением — вторая часть: прямые параллельны (это требуется доказать).

Теоремой, обратной данной, называется такая теорема, в которой условием является заключение данной теоремы, а заключением — условие данной теоремы.

Теперь докажем теоремы, обратные признакам параллельности прямых.

Теорема 3 (о равенстве внутренних накрест лежащих углов). Если две параллельные прямые пересечены секущей, то внутренние накрест лежащие углы равны.

1) Пусть параллельные прямые а и b пересечены секущей (рис. 95, а). Докажем, что внутренние накрест лежащие углы, например 1 и 2, равны.

Как доказать что прямые параллельны

2) Доказательство теоремы проведем методом от противного. Допустим, что углы 1 и 2 не равны. Отложим угол QАВ, равный углу 2, так, чтобы угол QАВ и Как доказать что прямые параллельны2 были внутренними накрест лежащими при пересечении прямых AQ и b секущей АВ.

3) По построению накрест лежащие углы QАВ и Как доказать что прямые параллельны2 равны, поэтому по признаку параллельности прямых следует, что AQ Как доказать что прямые параллельныb. Таким образом, получаем, что через точку А проходят две прямые AQ и а, параллельные прямой b, а это противоречит аксиоме параллельных прямых. Следовательно, наше предположение неверно, а, значит, Как доказать что прямые параллельны1 = Как доказать что прямые параллельны2.

Например, пусть прямая l параллельна стороне ВС треугольника АВС (рис. 95, б). Тогда Как доказать что прямые параллельны3 = Как доказать что прямые параллельныB как внутренние накрест лежащие углы, образованные при пересечении параллельных прямых l и ВС секущей АВ.

Теорема 4 (о равенстве соответственных углов). Если две параллельные прямые пересечены секущей, то соответственные углы равны.

Как доказать что прямые параллельны

Например, пусть прямая l параллельна биссектрисе AF треугольника ABC (рис. 96, б), тогда Как доказать что прямые параллельны4 = Как доказать что прямые параллельныBAF. Действительно, Как доказать что прямые параллельны4 и Как доказать что прямые параллельныFAC равны как соответственные углы, a Как доказать что прямые параллельныFAC = Как доказать что прямые параллельныBAF, так как AF — биссектриса.

Теорема 5 (о свойстве внутренних односторонних углов). Если две параллельные прямые пересечены секущей, то сумма градусных мер внутренних односторонних углов равна 180°.

1) Пусть параллельные прямые а и b пересечены секущей с. Докажем, например, что Как доказать что прямые параллельны1 + Как доказать что прямые параллельны2 = 180° (рис. 97, а).

Как доказать что прямые параллельны

2) Так как прямые а и b параллельны, то по теореме 4 справедливо равенство Как доказать что прямые параллельны1 = Как доказать что прямые параллельны3.

3) Углы 2 и 3 смежные, следовательно, Как доказать что прямые параллельны2 + Как доказать что прямые параллельны3= 180°.

4) Из равенств Как доказать что прямые параллельны= Как доказать что прямые параллельны3 и Как доказать что прямые параллельны2 + Как доказать что прямые параллельны3 = 180° следует, что Как доказать что прямые параллельны1 + Как доказать что прямые параллельны2 = 180°.

Например, пусть отрезок FT параллелен стороне АВ треугольника ABC (рис. 97, б). Тогда Как доказать что прямые параллельныBAF + Как доказать что прямые параллельныTFA = 180°.

Заметим, если доказана какая-либо теорема, то отсюда еще не следует, что обратная теорема верна. Например, известно, что вертикальные углы равны, но если углы равны, то отсюда не вытекает, что они являются вертикальными.

Пример №1

Докажите, что если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой прямой.

1) Пусть прямые а и b параллельны и сКак доказать что прямые параллельныа (рис. 98).

2) Так как прямая с пересекает прямую а, то она пересекает и прямую b.

3) При пересечении параллельных прямых а и b секущей с образуются равные внутренние накрест лежащие углы 1 и 2.

Как доказать что прямые параллельны

Так как Как доказать что прямые параллельны1 = 90°, то и Как доказать что прямые параллельны2 = Как доказать что прямые параллельны1 = 90°, а, значит, сКак доказать что прямые параллельныb.

Что и требовалось доказать.

Параллельность прямых на плоскости

Параллельность прямых — одно из основных понятий геометрии. Параллельность часто встречается в жизни. Посмотрев вокруг, можно убедиться, что мы живем в мире параллельных линий. Это края парты, столбы вдоль дороги, полоски «зебры» на пешеходном переходе.

Две прямые, перпендикулярные третьей

Определение. Две прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.

Лучи и отрезки называются параллельными, если они лежат на параллельных прямых. Если прямые Как доказать что прямые параллельныи Как доказать что прямые параллельныпараллельны, то есть Как доказать что прямые параллельныКак доказать что прямые параллельны Как доказать что прямые параллельны(рис. 160), то параллельны отрезки АВ и МК, отрезок МК и прямая Как доказать что прямые параллельны, лучи АВ и КМ.

Как доказать что прямые параллельны

Вы уже знаете теорему о параллельных прямых на плоскости: «Две прямые, перпендикулярные третьей, параллельны между собой». Другими словами, если Как доказать что прямые параллельныКак доказать что прямые параллельныКак доказать что прямые параллельны, Как доказать что прямые параллельныКак доказать что прямые параллельныКак доказать что прямые параллельны, то Как доказать что прямые параллельныКак доказать что прямые параллельны Как доказать что прямые параллельны(рис. 161).

Как доказать что прямые параллельны

Данная теорема позволяет решить две важные практические задачи.

Первая задача заключается в проведении нескольких параллельных прямых.

Пусть дана прямая Как доказать что прямые параллельны(рис. 162). При помощи чертежного треугольника строят прямую Как доказать что прямые параллельны, перпендикулярную прямой Как доказать что прямые параллельны. Затем сдвигают треугольник вдоль прямой Как доказать что прямые параллельныи строят другую перпендикулярную прямую Как доказать что прямые параллельны, затем — третью прямую Как доказать что прямые параллельныи т. д. Поскольку прямые Как доказать что прямые параллельны, Как доказать что прямые параллельны, Как доказать что прямые параллельныперпендикулярны одной прямой Как доказать что прямые параллельны, то из указанной теоремы следует, что Как доказать что прямые параллельны|| Как доказать что прямые параллельны, Как доказать что прямые параллельны|| Как доказать что прямые параллельны, Как доказать что прямые параллельны|| Как доказать что прямые параллельны.

Как доказать что прямые параллельны

Вторая задача — проведение прямой, параллельной данной и проходящей через точку, не лежащую на данной прямой.

Как доказать что прямые параллельны

По рисунку 163 объясните процесс проведения прямой Как доказать что прямые параллельны, параллельной прямой Как доказать что прямые параллельныи проходящей через точку К.

Из построения следует: так как Как доказать что прямые параллельныКак доказать что прямые параллельны Как доказать что прямые параллельныи Как доказать что прямые параллельныКак доказать что прямые параллельныКак доказать что прямые параллельны, то Как доказать что прямые параллельны|| Как доказать что прямые параллельны. Решение второй задачи доказывает теорему о существовании прямой, параллельной данной, которая гласит:

Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной.

Накрест лежащие, соответственные и односторонние углы

При пересечении двух прямых Как доказать что прямые параллельныи Как доказать что прямые параллельнытретьей прямой Как доказать что прямые параллельны, которая называется секущей, образуется 8 углов (рис. 164).

Как доказать что прямые параллельны

Некоторые пары этих углов имеют специальные названия:

На рисунке 165 отмечены углы 1 и 2. Они являются внутренними накрест лежащими углами при прямых ВС и AD и секущей BD. В этом легко убедиться, продлив отрезки ВС, AD и BD.
Как доказать что прямые параллельны

Признаки параллельности прямых

С указанными парами углов связаны следующие признаки параллельности прямых.

Теорема (первый признак параллельности прямых). Если при пересечении двух прямых секущей внутренние накрест лежащие углы равны, то прямые параллельны.

Дано: Как доказать что прямые параллельныи Как доказать что прямые параллельны— данные прямые, АВ — секущая, Как доказать что прямые параллельны1 =Как доказать что прямые параллельны2 (рис. 166).

Как доказать что прямые параллельны

Доказать: Как доказать что прямые параллельны|| Как доказать что прямые параллельны.

Доказательство:

Из середины М отрезка АВ опустим перпендикуляр МК на прямую Как доказать что прямые параллельныи продлим его до пересечения с прямой Как доказать что прямые параллельныв точке N. Треугольники ВКМ и ANM равны по стороне и двум прилежащим к ней углам (АМ = МВ, Как доказать что прямые параллельны1 = Как доказать что прямые параллельны2 по условию, Как доказать что прямые параллельныBMK =Как доказать что прямые параллельныAMN как вертикальные). Из равенства треугольников следует, что Как доказать что прямые параллельныANM =Как доказать что прямые параллельныBKM = 90°. Тогда прямые Как доказать что прямые параллельныи Как доказать что прямые параллельныперпендикулярны прямой NK. А так как две прямые, перпендикулярные третьей, параллельны между собой, то Как доказать что прямые параллельны|| Как доказать что прямые параллельны.

Теорема (второй признак параллельности прямых). Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Дано: Как доказать что прямые параллельны1 =Как доказать что прямые параллельны2 (рис. 167).

Как доказать что прямые параллельны

Доказать: Как доказать что прямые параллельны|| Как доказать что прямые параллельны.

Доказательство:

Углы 1 и 3 равны как вертикальные. А так как углы 1 и 2 равны по условию, то углы 2 и 3 равны между собой. Но углы 2 и 3 — внутренние накрест лежащие при прямых Как доказать что прямые параллельныи Как доказать что прямые параллельныи секущей Как доказать что прямые параллельны. А мы знаем, что если внутренние накрест лежащие углы равны, то прямые параллельны. Значит, Как доказать что прямые параллельны|| Как доказать что прямые параллельны. Теорема доказана.

Теорема (третий признак параллельности прямых). Если при пересечении двух прямых секущей сумма внутренних односторонних углов равна 180°, то прямые параллельны.

Дано: Как доказать что прямые параллельныl +Как доказать что прямые параллельны2 = 180° (рис. 168).

Как доказать что прямые параллельны

Доказать: Как доказать что прямые параллельны|| Как доказать что прямые параллельны.

Доказательство:

Углы 1 и 3 — смежные, поэтому их сумма равна 180°. А так как сумма углов 1 и 2 равна 180° по условию, то углы 2 и 3 равны между собой. Но углы 2 и 3 — внутренние накрест лежащие при прямых Как доказать что прямые параллельныи Как доказать что прямые параллельныи секущей Как доказать что прямые параллельны. А мы знаем, что если внутренние накрест лежащие углы равны, то прямые параллельны. Значит, Как доказать что прямые параллельны|| Как доказать что прямые параллельны. Теорема доказана.

Пример №2

Доказать, что если отрезки AD и ВС пересекаются и точкой пересечения делятся пополам, то прямые АВ и CD параллельны.

Доказательство:

Пусть О — точка пересечения отрезков AD и ВС (рис. 169).

Как доказать что прямые параллельны

Треугольники АОВ и DOC равны по двум сторонам и углу между ними (Как доказать что прямые параллельныAOB = Как доказать что прямые параллельныDOC как вертикальные, ВО = ОС, АО = OD по условию). Из равенства треугольников следует, что Как доказать что прямые параллельныBAO=Как доказать что прямые параллельныCDO. Так как эти углы — накрест лежащие при прямых АВ и CD и секущей AD, то АВ || CD по признаку параллельности прямых.

Пример №3

На биссектрисе угла ВАС взята точка К, а на стороне АС — точка D, Как доказать что прямые параллельныBAK = 26°, Как доказать что прямые параллельныADK = 128°. Доказать, что отрезок KD параллелен лучу АВ.

Как доказать что прямые параллельны

Доказательство:

Так как АК — биссектриса угла ВАС (рис. 170), то

Как доказать что прямые параллельныBAC = 2 •Как доказать что прямые параллельныBAK = 2 • 26° = 52°.

Углы ADK и ВАС — внутренние односторонние при прямых KD и ВА и секущей АС. А поскольку Как доказать что прямые параллельныADK +Как доказать что прямые параллельныBAC = 128° + 52° = 180°, то KD || АВ по признаку параллельности прямых.

Пример №4

Биссектриса ВС угла ABD отсекает на прямой а отрезок АС, равный отрезку АВ. Доказать, что прямые а и b параллельны (рис. 171).

Как доказать что прямые параллельны

Доказательство:

Так как ВС — биссектриса угла ABD, то Как доказать что прямые параллельны1=Как доказать что прямые параллельны2. Так как Как доказать что прямые параллельныBAC равнобедренный (АВ=АС по условию), то Как доказать что прямые параллельны1 =Как доказать что прямые параллельны3 как углы при основании равнобедренного треугольника. Тогда Как доказать что прямые параллельны2 =Как доказать что прямые параллельны3. Но углы 2 и 3 являются накрест лежащими при прямых Как доказать что прямые параллельныи Как доказать что прямые параллельныи секущей ВС. А если накрест лежащие углы равны, то прямые параллельны. Следовательно, Как доказать что прямые параллельны||Как доказать что прямые параллельны.

Реальная геометрия

Как доказать что прямые параллельны

На рисунке 184 изображен электронный угломер — инструмент для нанесения параллельных линий на рейке или доске. Прибор состоит из двух частей, скрепленных винтом. Одна часть неподвижная, она прижимается к доске, а другая поворачивается на необходимый угол, градусная мера которого отражается на экране угломера. Зажав винт, закрепляют нужный угол. Сдвинув неподвижную часть угломера вдоль доски, наносят новую линию разметки. Так получают параллельные линии, по которым затем распиливают доску.

Аксиома параллельных прямых

Вы уже знаете, что на плоскости через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной (см. § 15). Из пятого постулата Евклида (постулат — аксиоматическое предположение) следует, что такая прямая — единственная.

На протяжении двух тысячелетий вокруг утверждения о единственности параллельной прямой разыгрывалась захватывающая и драматичная история! Со времен Древней Греции математики спорили о том, можно доказать пятый постулат Евклида или нет. То есть это теорема или аксиома?

В конце концов работы русского математика Н. И. Лобачевского (1792—1856) позволили выяснить, что доказать пятый постулат нельзя. Поэтому это утверждение является аксиомой.

Как доказать что прямые параллельны

Аксиома параллельных прямых. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.

Если прямая Как доказать что прямые параллельныпроходит через точку М и параллельна прямой Как доказать что прямые параллельны(рис. 186), то любая другая прямая, проходящая через точку М, будет пересекаться с прямой Как доказать что прямые параллельныв некоторой точке, пусть и достаточно удаленной.

Как доказать что прямые параллельны

Поиски доказательства пятого постулата Евклида привели к развитию математики и физики, к пересмотру научных представлений о геометрии Вселенной. Решая проблему пятого постулата, Лобачевский создал новую геометрию, с новыми аксиомами, теоремами, отличающуюся от геометрии Евклида, которая теперь так и называется — геометрия Лобачевского.

Вы уже знаете, что на плоскости две прямые, перпендикулярные третьей, параллельны между собой. А если две прямые параллельны третьей прямой, то что можно сказать про первые две прямые? На этот вопрос отвечает следующая теорема.

Теорема (о двух прямых, параллельных третьей). На плоскости две прямые, параллельные третьей, параллельны между собой.

Дано: Как доказать что прямые параллельны||Как доказать что прямые параллельны, Как доказать что прямые параллельны|| Как доказать что прямые параллельны(рис. 187).

Как доказать что прямые параллельны

Доказать: Как доказать что прямые параллельны||Как доказать что прямые параллельны.

Доказательство:

Предположим, что прямые Как доказать что прямые параллельныи Как доказать что прямые параллельныне параллельны. Тогда они пересекаются в некоторой точке М. Поэтому через точку М будут проходить две прямые Как доказать что прямые параллельныи Как доказать что прямые параллельны, параллельные третьей прямой Как доказать что прямые параллельны. А это противоречит аксиоме параллельных прямых. Значит, наше предположение неверно и Как доказать что прямые параллельны||Как доказать что прямые параллельны. Теорема доказана.

Метод доказательства «от противного»

При доказательстве теоремы о двух прямых, параллельных третьей, мы применили метод доказательства от противного (то есть «от противоположного»). Суть его в следующем. Утверждение любой теоремы делится на условие — то, что в теореме дано, и заключение — то, что нужно доказать.

В доказанной выше теореме условие: «Каждая из двух прямых параллельна третьей прямой», а заключение: «Эти две прямые параллельны между собой».

Используя метод от противного, предполагают, что из данного условия теоремы следует утверждение, противоположное (противное) заключению теоремы. Если при сделанном предположении путем логических рассуждений приходят к какому-либо утверждению, противоречащему аксиомам или ранее доказанным теоремам, то сделанное предположение считается неверным, а верным — ему противоположное.

В доказательстве нашей теоремы мы предположили, что эти две прямые не параллельны, а пересекаются в точке. И пришли к выводу, что тогда нарушается аксиома параллельных прямых. Следовательно, наше предположение о пересечении прямых не верно, а верно ему противоположное: прямые не пересекаются, то есть параллельны.

Методом от противного ранее была доказана теорема о двух прямых, перпендикулярных третьей.

Данный метод является очень мощным логическим инструментом доказательства. Причем не только в геометрии, но и в любом аргументированном споре.

Теорема. Если на плоскости прямая пересекает одну из двух параллельных прямых, то она пересекает и другую прямую.

Пример №5

На рисунке 188 Как доказать что прямые параллельны1 =Как доказать что прямые параллельны2,Как доказать что прямые параллельны3 =Как доказать что прямые параллельны4. Доказать, что Как доказать что прямые параллельны|| Как доказать что прямые параллельны.

Как доказать что прямые параллельны

Доказательство:

Так как накрест лежащие углы 1 и 2 равны, то Как доказать что прямые параллельны|| Как доказать что прямые параллельныпо признаку параллельности прямых. Так как соответственные углы 3 и 4 равны, то по признаку параллельности прямых Как доказать что прямые параллельны|| Как доказать что прямые параллельны. Так как Как доказать что прямые параллельны|| Как доказать что прямые параллельныи Как доказать что прямые параллельны|| Как доказать что прямые параллельны, то Как доказать что прямые параллельны|| Как доказать что прямые параллельныпо теореме о двух прямых, параллельных третьей.

Пример №6

Доказать, что если сумма внутренних односторонних углов при двух данных прямых и секущей меньше 180°, то эти прямые пересекаются.

Доказательство:

Пусть Как доказать что прямые параллельныи Как доказать что прямые параллельны— данные прямые, АВ — их секущая, сумма углов 1 и 2 меньше 180° (рис. 189).

Как доказать что прямые параллельны

Отложим от луча АВ угол 3, который в сумме с углом 1 дает 180°. Получим прямую Как доказать что прямые параллельны, которая параллельна прямой Как доказать что прямые параллельныпо признаку параллельности прямых. Если предположить, что прямые Как доказать что прямые параллельныи Как доказать что прямые параллельныне пересекаются, а, значит, параллельны, то через точку А будут проходить две прямые Как доказать что прямые параллельныи Как доказать что прямые параллельны, которые параллельны прямой Как доказать что прямые параллельны. Это противоречит аксиоме параллельных прямых. Следовательно, прямые Как доказать что прямые параллельныи Как доказать что прямые параллельныпересекаются.

Свойства параллельных прямых

Вы знаете, что если две прямые пересечены секущей и накрест лежащие углы равны, то прямые параллельны. Это признак параллельности прямых. Обратное утверждение звучит так: «Если две прямые параллельны и пересечены секущей, то накрест лежащие углы равны». Это утверждение верно, и оно выражает свойство параллельных прямых. Докажем его и два других свойства для соответственных и односторонних углов.

Теорема (о свойстве накрест лежащих углов при параллельных прямых и секущей). Если две параллельные прямые пересечены секущей, то внутренние накрест лежащие углы равны.

Дано: Как доказать что прямые параллельны|| Как доказать что прямые параллельны, АВ — секущая,Как доказать что прямые параллельны1 иКак доказать что прямые параллельны2 — внутренние накрест лежащие (рис. 195).

Как доказать что прямые параллельны

Доказать: Как доказать что прямые параллельны1 =Как доказать что прямые параллельны2.

Доказательство:

Предположим, чтоКак доказать что прямые параллельны1 Как доказать что прямые параллельныКак доказать что прямые параллельны2. Отложим от луча ВА угол 3, равный углу 2. Так как внутренние накрест лежащие углы 2 и 3 равны, то Как доказать что прямые параллельны|| Как доказать что прямые параллельныпо признаку параллельности прямых. Получили, что через точку В проходят две прямые Как доказать что прямые параллельныи Как доказать что прямые параллельны, параллельные прямой Как доказать что прямые параллельны. А это невозможно по аксиоме параллельных прямых. Следовательно, наше предположение неверно иКак доказать что прямые параллельны1 =Как доказать что прямые параллельны2. Теорема доказана.

Теорема (о свойстве соответственных углов при параллельных прямых и секущей). Если две параллельные прямые пересечены секущей, то соответственные углы равны.

Дано: Как доказать что прямые параллельны|| Как доказать что прямые параллельны, Как доказать что прямые параллельны— секущая,Как доказать что прямые параллельны1 иКак доказать что прямые параллельны2 — соответственные (рис. 196).

Как доказать что прямые параллельны

Доказать:Как доказать что прямые параллельны1 =Как доказать что прямые параллельны2.

Доказательство:

Углы 1 и 3 равны как накрест лежащие при параллельных прямых Как доказать что прямые параллельныи Как доказать что прямые параллельны. Углы 2 и 3 равны как вертикальные. Следовательно,Как доказать что прямые параллельны1 =Как доказать что прямые параллельны2. Теорема доказана.

Теорема (о свойстве односторонних углов при параллельных прямых и секущей).

Если две параллельные прямые пересечены секущей, то сумма внутренних односторонних углов равна 180°.

Дано: Как доказать что прямые параллельны|| Как доказать что прямые параллельны, Как доказать что прямые параллельны— секущая,Как доказать что прямые параллельны1 иКак доказать что прямые параллельны2 — внутренние односторонние (рис. 197).

Как доказать что прямые параллельны

Доказать:Как доказать что прямые параллельныl +Как доказать что прямые параллельны2 = 180°.

Доказательство:

Углы 2 и 3 — смежные. По свойству смежных углов Как доказать что прямые параллельны2 +Как доказать что прямые параллельны3 = 180°. По свойству параллельных прямыхКак доказать что прямые параллельныl =Как доказать что прямые параллельны3 как накрест лежащие. Следовательно,Как доказать что прямые параллельныl +Как доказать что прямые параллельны2 = 180°. Теорема доказана.

Следствие.

Прямая, перпендикулярная одной из двух параллельных прямых, перпендикулярна и другой прямой.

На рисунке 198 Как доказать что прямые параллельны|| Как доказать что прямые параллельныи Как доказать что прямые параллельныКак доказать что прямые параллельныКак доказать что прямые параллельны, т. е.Как доказать что прямые параллельны1 = 90°. Согласно следствию Как доказать что прямые параллельныКак доказать что прямые параллельныКак доказать что прямые параллельны, т. е.Как доказать что прямые параллельны2 = 90°.

Как доказать что прямые параллельны

Доказанные нами теоремы о свойствах углов при двух параллельных прямых и секущей являются обратными признакам параллельности прямых.

Чтобы не путать признаки и свойства параллельных прямых, нужно помнить следующее:

Пример №7

Доказать, что если отрезки АВ и CD равны и параллельны, а отрезки AD и ВС пересекаются в точке О, то треугольники АОВ и DOC равны.

Доказательство:

Углы BAD и CD А равны как накрест лежащие при параллельных прямых АВ и CD и секущей AD (рис. 199).

Как доказать что прямые параллельны

Углы ABC и DCB равны как накрест лежащие при параллельных прямых АВ и CD и секущей ВС. Тогда Как доказать что прямые параллельныАОВ =Как доказать что прямые параллельныDOC по стороне и двум прилежащим к ней углам. Что и требовалось доказать.

Пример №8

Доказать, что отрезки параллельных прямых, заключенные между двумя другими пересекающими их параллельными прямыми, равны между собой.

Доказательство:

Пусть АВ || CD, ВС || AD (рис. 200).

Как доказать что прямые параллельны

Докажем, что АВ = CD, ВС=AD. Проведем отрезок BD. У треугольников ABD и CDB сторона BD — общая,Как доказать что прямые параллельныABD =Как доказать что прямые параллельныCDB как накрест лежащие при параллельных прямых АВ и CD и секущей BD,Как доказать что прямые параллельныADB =Как доказать что прямые параллельныCBD как накрест лежащие при параллельных прямых ВС и AD и секущей BD. Тогда треугольники равны по стороне и двум прилежащим к ней углам. Из равенства треугольников следует, что AB=CD, BC=AD. Что и требовалось доказать.

Геометрия 3D

Две плоскости называются параллельными, если они не имеют общих точек (не пересекаются).

Если плоскости Как доказать что прямые параллельныи Как доказать что прямые параллельныпараллельны, то пишут: Как доказать что прямые параллельны|| Как доказать что прямые параллельны(рис. 211).

Как доказать что прямые параллельны

Существует еще один вид многогранников — призмы (рис. 212). У призмы две грани (основания) — равные многоугольники, которые лежат в параллельных плоскостях, а остальные грани (боковые) — параллелограммы (задача 137).

Как доказать что прямые параллельны

У прямой призмы боковые грани — прямоугольники, боковые ребра перпендикулярны плоскостям оснований и равны между собой. На рисунке 212 изображены треугольная и четырехугольная прямые призмы. У них параллельны плоскости верхней и нижней граней.

Углы с соответственно параллельными и соответственно перпендикулярными сторонами

Теорема (об углах с соответственно параллельными сторонами).

Углы с соответственно параллельными сторонами или равны (если оба острые или оба тупые), или в сумме составляют 180° (если один острый, а другой тупой).

1) Острые углы 1 и 2 (рис. 213, а) — это углы с соответственно параллельными сторонами. Используя рисунок, докажите самостоятельно, что углы 1 и 2 равны.

Как доказать что прямые параллельны

2) Острый угол 1 и тупой угол 2 (рис. 213, б) — это углы с соответственно параллельными сторонами. Используя этот рисунок и результат пункта 1), докажите, что сумма углов 1 и 2 равна 180°.

Теорема (об углах с соответственно перпендикулярными сторонами).

Углы с соответственно перпендикулярными сторонами или равны (если оба острые или оба тупые), или в сумме составляют 180° (если один острый, а другой тупой).

Доказательство:

1) Острые углы 1 и 2 — это углы с соответственно перпендикулярными сторонами (рис. 214, а). Построим острый угол 3 в вершине угла 1, стороны которого параллельны сторонам угла 2. Стороны угла 3 перпендикулярны сторонам угла 1 (прямая, перпендикулярная одной из параллельных прямых, перпендикулярна и другой прямой). По предыдущей теоремеКак доказать что прямые параллельны2 =Как доказать что прямые параллельны3. Поскольку угол 1 и угол 3 дополняют угол 4 до 90°, тоКак доказать что прямые параллельны1 =Как доказать что прямые параллельны3. Значит,Как доказать что прямые параллельны1 =Как доказать что прямые параллельны2.

Как доказать что прямые параллельны

2) Острый угол 1 и тупой угол 2 — это углы с соответственно перпендикулярными сторонами (рис. 214, б). Используя этот рисунок и результат пункта 1), докажите самостоятельно, что сумма углов 1 и 2 равна 180°.

Запомнить:

Расстояние между параллельными прямыми

Определение. Расстоянием между параллельными прямыми называется расстояние от точки одной из этих прямых до другой прямой.

Если Как доказать что прямые параллельны|| Как доказать что прямые параллельныи АВКак доказать что прямые параллельныКак доказать что прямые параллельны, то расстояние между прямыми Как доказать что прямые параллельныи Как доказать что прямые параллельныравно длине перпендикуляра АВ (рис. 284). Это расстояние будет наименьшим из всех расстояний от точки А до точек прямой Как доказать что прямые параллельны. Следующая теорема гарантирует, что расстояния от всех точек одной из параллельных прямых до другой прямой равны между собой.

Как доказать что прямые параллельны

Теорема (о расстоянии между параллельными прямыми).

Все точки каждой из двух параллельных прямых равноудалены от другой прямой.

Дано: Как доказать что прямые параллельны|| Как доказать что прямые параллельны, А Как доказать что прямые параллельныКак доказать что прямые параллельны, С Как доказать что прямые параллельныКак доказать что прямые параллельны, АВКак доказать что прямые параллельныКак доказать что прямые параллельны, CDКак доказать что прямые параллельныКак доказать что прямые параллельны.

Доказать: АВ = CD (рис. 285).

Как доказать что прямые параллельны

Доказательство:

Проведем отрезок AD. Углы CAD и BDA равны как внутренние накрест лежащие при параллельных прямых Как доказать что прямые параллельныи Как доказать что прямые параллельныи секущей AD. Прямоугольные треугольники ABD и ACD равны по гипотенузе (AD — общая) и острому углу (Как доказать что прямые параллельныCAD =Как доказать что прямые параллельныBDA). Откуда АВ = CD. Теорема доказана.

Следствие.

Все точки, лежащие в одной полуплоскости относительно данной прямой и равноудаленные от этой прямой, лежат на прямой, параллельной данной.

Доказательство:

Пусть перпендикуляры АВ и CD к прямой Как доказать что прямые параллельныравны (см. рис. 285). Прямая Как доказать что прямые параллельны, проходящая через точку А параллельно прямой Как доказать что прямые параллельны, будет пересекать луч DC в некоторой точке С1. По теореме о расстоянии между параллельными прямыми C1D = АВ. Но CD = AB по условию. Значит, точка С совпадает с точкой С1 и лежит на прямой Как доказать что прямые параллельны, которая параллельна прямой Как доказать что прямые параллельны. Утверждение доказано.

В силу того что прямая, перпендикулярная к одной из двух параллельных прямых, будет перпендикулярна и к другой прямой, перпендикуляр АВ к прямой Как доказать что прямые параллельныбудет перпендикуляром и к прямой Как доказать что прямые параллельны(см. рис. 285). Поэтому такой перпендикуляр называют общим перпендикуляром двух параллельных прямых.

Пример №9

В четырехугольнике ABCD АВ || CD, AD || ВС, АВ = 32 см, Как доказать что прямые параллельныADC=150°. Найти расстояние между прямыми AD и ВС.

Решение:

Как доказать что прямые параллельныBAD +Как доказать что прямые параллельныADC = 180° как сумма внутренних односторонних углов при параллельных прямых АВ и CD и секущей AD (рис. 286).

Как доказать что прямые параллельны

Тогда Как доказать что прямые параллельныBAD = 180°- 150° = 30°.

Расстояние между параллельными прямыми измеряется длиной перпендикуляра, опущенного из любой точки одной из прямых на другую прямую. Опустим перпендикуляр ВН на прямую AD. В прямоугольном треугольнике АВН катет ВН лежит против угла в 30°. Поэтому он равен половине гипотенузы. Значит, ВН =Как доказать что прямые параллельныАВ = 16 см.

Пример №10

Найти геометрическое место точек, равноудаленных от двух данных параллельных прямых.

Решение:

1) Пусть Как доказать что прямые параллельныи Как доказать что прямые параллельны— данные параллельные прямые (рис. 287), АВ — их общий перпендикуляр. Через середину К отрезка АВ проведем прямую Как доказать что прямые параллельны, параллельную прямой Как доказать что прямые параллельны.

Как доказать что прямые параллельны

Тогда Как доказать что прямые параллельны|| Как доказать что прямые параллельны. По теореме о расстоянии между параллельными прямыми все точки прямой Как доказать что прямые параллельныравноудалены от прямых Как доказать что прямые параллельныи Как доказать что прямые параллельнына расстояние Как доказать что прямые параллельныАВ.

2) Пусть некоторая точка М (см. рис. 287) равноудалена от прямых Как доказать что прямые параллельныи Как доказать что прямые параллельны, то есть расстояние от точки М до прямой Как доказать что прямые параллельныравно Как доказать что прямые параллельныАВ. По следствию из теоремы о расстоянии между параллельными прямыми точки К и М лежат на прямой КМ, параллельной прямой Как доказать что прямые параллельны. Но через точку К проходит единственная прямая Как доказать что прямые параллельны, параллельная Как доказать что прямые параллельны. Значит, точка М принадлежит прямой Как доказать что прямые параллельны.

Таким образом, все точки прямой Как доказать что прямые параллельныравноудалены от прямых Как доказать что прямые параллельныи Как доказать что прямые параллельны. И любая равноудаленная от них точка лежит на прямой Как доказать что прямые параллельны. Прямая Как доказать что прямые параллельны, проходящая через середину общего перпендикуляра прямых Как доказать что прямые параллельныи Как доказать что прямые параллельны, — искомое геометрическое место точек.

Геометрия 3D

Расстоянием между параллельными плоскостями называется длина перпендикуляра, опущенного из точки, принадлежащей одной из плоскостей, на другую плоскость (рис. 290). В вашем классе пол и потолок — части параллельных плоскостей. Расстояние между ними равно высоте классной комнаты.

Как доказать что прямые параллельны

Высотой прямой призмы называется расстояние между плоскостями оснований. Отрезок КК1 — перпендикуляр к плоскости ABC, равный ее высоте. У прямой призмы боковые ребра перпендикулярны плоскостям оснований. Поэтому высота призмы равна длине бокового ребра, то есть АА1 = КК1 (рис. 291).

Как доказать что прямые параллельныКак доказать что прямые параллельны

Запомнить:

Справочный материал по параллельным прямым

Параллельные прямые

Признаки параллельности двух прямых

Как доказать что прямые параллельны

Свойства параллельных прямых

Перпендикулярные и параллельные прямые

Две прямые называют взаимно перпендикулярными, если они пересекаются под прямым углом.

На рисунке 264 прямые Как доказать что прямые параллельныи Как доказать что прямые параллельны— перпендикулярные. Две прямые на плоскости называют параллельными, если они не пересекаются.

На рисунке 265 прямые Как доказать что прямые параллельныи Как доказать что прямые параллельны— параллельны.

Как доказать что прямые параллельны

Основное свойство параллельных прямых (аксиома параллельности прямых). Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.

Углы, образованные при пересечении двух прямых секущей. Признаки и свойство параллельности прямых. Свойства углов, образованных при пересечении двух параллельных прямых секущей

Прямую с называют секущей для прямых Как доказать что прямые параллельныи Как доказать что прямые параллельныесли она пересекает их в двух точках (рис. 266).

Как доказать что прямые параллельны

Признаки параллельности прямых:

Свойство параллельных прямых. Две прямые, параллельные третьей прямой, параллельны друг другу.

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Инструменты пользователя

Инструменты сайта

Боковая панель

Геометрия:

Контакты

Признаки параллельности двух прямых. Свойства параллельных прямых

Как доказать что прямые параллельны

Признаки параллельности двух прямых

Теорема 1. Если при пересечении двух прямых секущей:

прямые параллельны (рис.1).

Доказательство. Ограничимся доказательством случая 1.

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.

Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 — внешний угол треугольника АВМ, а ∠ 6 — внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.

Как доказать что прямые параллельны

Замечание. Способ, которым мы только что доказали случай 1 теоремы 1, называется методом доказательства от противного или приведением к нелепости. Первое название этот способ получил потому, что в начале рассуждения делается предположение, противное (противоположное) тому, что требуется доказать. Приведением к нелепости он называется вследствие того, что, рассуждая на основании сделанного предположения, мы приходим к нелепому выводу (к абсурду). Получение такого вывода заставляет нас отвергнуть сделанное вначале допущение и принять то, которое требовалось доказать.

Задача 1. Построить прямую, проходящую через данную точку М и параллельную данной прямой а, не проходящей через точку М.

Решение. Проводим через точку М прямую р перпендикулярно прямой а (рис. 3).

Как доказать что прямые параллельны

Затем проводим через точку М прямую b перпендикулярно прямой р. Прямая b параллельна прямой а согласно следствию из теоремы 1.

Из рассмотренной задачи следует важный вывод:
через точку, не лежащую на данной прямой, всегда можно провести прямую, параллельную данной.

Основное свойство параллельных прямых состоит в следующем.

Аксиома параллельных прямых. Через данную точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Рассмотрим некоторые свойства параллельных прямых, которые следуют из этой аксиомы.

1) Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую (рис.4).

Как доказать что прямые параллельны

2) Если две различные прямые параллельны третьей прямой, то они параллельны (рис.5).

Как доказать что прямые параллельны

Справедлива и следующая теорема.

Теорема 2. Если две параллельные прямые пересечены секущей, то:

Следствие 2. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой (см. рис.2).

Как доказать что прямые параллельны

Замечание. Теорема 2 называется обратной теореме 1. Заключение теоремы 1 является условием теоремы 2. А условие теоремы 1 является заключением теоремы 2. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна.

Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.

Пример 1. Две параллельные прямые пересечены третьей. Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы.

Решение. Пусть условию отвечает рисунок 6.

Как доказать что прямые параллельны

Углы 1 и 2 внутренние односторонние, их сумма равна 180°, т. е.
∠ l + ∠ 2 = 180°. (1)

Подставим в равенство (1) значения углов 1 и 2, получим
х + 30° + х = 180°.

Пример 2. Две параллельные прямые пересечены третьей. Известно, что сумма двух внутренних накрест лежащих углов равна 150°. Чему равны эти углы и остальные шесть?

Решение. Пусть условию задачи соответствует рисунок 7.

Как доказать что прямые параллельны

Углы 1 и 2 внутренние накрест лежащие, следовательно, они равны. Сумма этих углов по условию задачи равна 150°, тогда ∠ 1 = ∠ 2 = 75°.

Найдем остальные углы (рис. 8):

Как доказать что прямые параллельны

Получили четыре угла по 75°, четыре угла по 105°.

Источник

Как доказать что прямые параллельны

Наглядная геометрия 7 класс. Опорный конспект № 3 Параллельные прямые.

Как доказать что прямые параллельны

В геометрии нельзя «на глазок» определить, параллельны прямые или нет. Это может быть либо дано, либо доказано. Вы уже знаете, что на плоскости справедлива теорема: «Две прямые, перпендикулярные третьей, параллельны между собой».

Есть еще три признака параллельности прямых, которые можно объединить в одну теорему, она так и называется: «Признаки параллельности прямых». Данные признаки связаны с углами, которые образуются при пересечении двух прямых третьей прямой. Это так называемые накрест лежащие углы, соответственные углы и односторонние углы.

Оказывается, что если накрест лежащие углы равны, или соответственные углы равны, или сумма односторонних углов равна 180°, то прямые будут параллельны.

Справедливы и обратные утверждения. Если даны две заведомо параллельные прямые, которые пересечены третьей, то накрест лежащие углы равны, соответственные углы равны и сумма односторонних углов равна 180°.

Ранее мы доказали, что через точку вне прямой можно провести единственную прямую, перпендикулярную данной. Можно также доказать, что через точку, не лежащую на прямой, можно провести прямую, параллельную данной. А вот доказать, что такая прямая — единственная, нельзя! Утверждение «Через точку, не лежащую на прямой, можно провести ЕДИНСТВЕННУЮ прямую, параллельную данной» называется аксиомой параллельных прямых. У Евклида эта аксиома называлась пятым постулатом.Как доказать что прямые параллельны

На протяжении двух тысячелетий это утверждение вызывало захватывающие и драматичные споры между такими знаменитыми учеными, как Лобачевский, Гаусс и другие. Споры состояли в том, можно или нельзя доказать этот пятый постулат Евклида на основании уже известных теорем. В конце концов работы в этом направлении привели к полному пересмотру научных представлений о геометрии Вселенной.

Как доказать что прямые параллельны

При пересечении двух прямых третьей, которая называется секущей, образуется 4 пары накрест лежащих углов, 4 пары соответственных и 4 пары односторонних.

3 и 5; 4 и 6 — внутренние накрест лежащие углы;
1 и 7; 2 и 8 — внешние накрест лежащие углы;
1 и 5; 2 и 6; 4 и 8; 3 и 7 — соответственные углы;
3 и 6; 4 и 5 — внутренние односторонние углы;
2 и 7; 1 и 8 — внешние односторонние углы.

Признаки параллельности прямых. Если накрест лежащие углы равны, ши соответственные углы равны, ши сумма односторонних углов равна 180°, то прямые параллельны. В первую очередь нужно доказать, что если накрест лежащие углы равны, то прямые параллельны. Доказательство опирается на уже доказанное нами свойство: две прямые, перпендикулярные третьей, параллельны между собой. Из середины отрезка секущей опускают перпендикуляр на одну из параллельных прямых. Затем перпендикуляр продляют до пересечения со второй прямой. Из равенства полученных треугольников следует, что прямая, проходящая через перпендикуляр, будет перпендикулярна и второй прямой. Дальнейшее просто.

Через точку, не лежащую на данной прямой, МОЖНО провести прямую, параллельную данной. Опустив перпендикуляр из точки на прямую, а затем, восставив перпендикуляр к проведенной прямой, получим две прямые, перпендикулярные третьей, которые будут параллельны. А вот доказать, что такая прямая единственная, нельзя. Поэтому справедлива АКСИОМА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ: «Через точку, не лежащую на данной прямой, проходит ЕДИНСТВЕННАЯ прямая, параллельная данной».

Теорема о двух прямых, параллельных третьей. Две прямые, параллельные третьей, параллельны между собой. Если бы они пересекались, то через одну точку проходили бы две прямые, параллельные третьей.

Теорема о пересечении параллельных прямых. Если на плоскости прямая пересекает одну из двух параллельных прямых, то она пересекает и другую. Если бы эта прямая не пересекала вторую прямую, то она была бы ей параллельна. Но тогда через одну точку проходили бы две прямые, параллельные третьей. А это невозможно.

Свойства углов при параллельных прямых и секущей. Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны, соответственные углы равны и сумма односторонних углов равна 180°. В первую очередь нужно доказать, что если прямые параллельны, то накрест лежащие углы равны. Пусть прямые параллельны, а накрест лежащие углы 1 и 2 не равны. Отложим угол, равный углу 2, как показано на рисунке. Получим еще одну прямую, параллельную нижней прямой (если накрест лежащие углы равны, то прямые параллельны). Но через точку нельзя провести две прямые, параллельные третьей. Значит, наше предположение неверно, и накрест лежащие углы равны. Остальное несложно.

Из указанных свойств параллельных прямых вытекает важное следствие: перпендикуляр к одной из параллельных прямых будет перпендикуляром и к другой. Доказательство следует из равенства соответственных углов.

Теорема об углах с соответственно параллельными сторонами. Углы с соответственно параллельными сторонами равны, если они одновременно острые ши одновременно тупые, и в сумме составляют 180°, если один из них острый, а другой — тупой. Продлив стороны данных углов, получим две пары равных соответственных углов, откуда ∠1 = ∠2. Продлив сторону угла 1 за его вершину, получим доказательство второй части теоремы.

Теорема об углах с соответственно перпендикулярными сторонами. Углы с соответственно перпендикулярными сторонами равны, если они одновременно острые или одновременно тупые, и в сумме составляют 180°, если один из них острый, а другой — тупой. Проведя перпендикулярные лучи из вершины угла 1, получим, что углы 2 и 3 равны и углы 3 и 1 дополняют один и тот же угол 4 до 90°. Значит, ∠1 = ∠3, ∠1 = ∠2. Продлив сторону угла 2 за его вершину, получим доказательство второй части теоремы.

Это опорный конспект № 3 по геометрии в 7 классе «Параллельные прямые (опорный конспект)». Выберите дальнейшие действия:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *