Как найти вероятность события

Как найти вероятность события

Как решать задачи на вероятность?

Вероятность. Что это?

Теория вероятностей, как следует из названия, имеет дело с вероятностями. Нас окружают множество вещей и явлений, о которых, как бы ни была развита наука, нельзя сделать точных прогнозов.

Мы не знаем, какую карту вытянем из колоды наугад или сколько дней в мае будет идти дождь, но, имея некоторую дополнительную информацию, можем строить прогнозы и вычислять вероятности этих случайных событий.

Алгоритм решения задач на вероятность

Подробнее с основами теории вероятностей можно ознакомиться, например, в онлайн учебнике.

А теперь не будем ходить вокруг да около, и сформулируем схему, по которой следует решать стандартные учебные задачи на вычисление вероятности случайного события, а затем ниже на примерах проиллюстрируем ее применение.

Как решать задачи: классическая вероятность

Пример 1. В группе из 30 студентов на контрольной работе 6 студентов получили «5», 10 студентов – «4», 9 студентов – «3», остальные – «2». Найти вероятность того, что 3 студента, вызванные к доске, получили по контрольной работе «2».

Начинаем решение по пунктам, описанным выше.

Некогда решать? Найди решенную задачу

Готовые решения задач по любым разделам теории вероятностей, более 10000 примеров! Найди свою задачу:

Как решать задачи: формула Бернулли

Пример 2. Какова вероятность того, что при 8 бросаниях монеты герб выпадет 5 раз?

Снова по схеме решения задач на вероятность рассматриваем данную задачу:

И это все? Конечно, нет.

Выше мы упомянули только малую часть тем и формул теории вероятностей, для более подробного изучения вы можете посмотреть учебник онлайн на данном сайте (или скачать классические учебники по ТВ), ознакомиться со статьями по решению вероятностных задач, бесплатными примерами, воспользоваться онлайн калькуляторами. Удачи!

Источник

Как вычислить вероятность

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.

Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.

Количество источников, использованных в этой статье: 10. Вы найдете их список внизу страницы.

Количество просмотров этой статьи: 674 321.

Вероятность показывает возможность того или иного события при определенном количестве повторений. [1] X Источник информации Это число возможных результатов с одним или несколькими исходами, поделенное на общее количество возможных событий. Вероятность нескольких событий вычисляется путем разделения задачи на отдельные вероятности с последующим перемножением этих вероятностей.

Как найти вероятность события

Например:» невозможно вычислить вероятность такого события: при одном броске кубика выпадут 5 и 6 одновременно.

Источник

Теория вероятности формулы и примеры решения задач

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Как найти вероятность события

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом Как найти вероятность события.

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом Как найти вероятность события.

Важным частным случаем является ситуация, когда имеется Как найти вероятность событияравновероятных элементарных исходов, и произвольные Как найти вероятность событияиз этих исходов образуют события А. В этом случае вероятность можно ввести по формуле Как найти вероятность события. Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов Как найти вероятность события, прямо в условии написано число всех исходов Как найти вероятность события.

Как найти вероятность события

Ответ получаем по формуле Как найти вероятность события.

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть Как найти вероятность события, где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

Как найти вероятность события

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. Как найти вероятность события.

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. Как найти вероятность события.

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае Как найти вероятность события.

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение Как найти вероятность события, которое обозначается символом 6! и читается «шесть факториал».

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов Как найти вероятность событияВ нашем случае Как найти вероятность события.

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение Как найти вероятность события.

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

Как найти вероятность события

В нашем случае Как найти вероятность события.

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: Как найти вероятность события. В общем случае ответ на этот вопрос дает формула для числа сочетаний из Как найти вероятность событияэлементов по Как найти вероятность событияэлементам:

Как найти вероятность события

В нашем случае Как найти вероятность события.

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

Как найти вероятность события.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

Как найти вероятность события

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

Как найти вероятность события.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

Как найти вероятность события

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: Как найти вероятность события— лампочка горит, Как найти вероятность события— лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: Как найти вероятность события, где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: Как найти вероятность события.

Как найти вероятность событияКак найти вероятность события

Как найти вероятность событияКак найти вероятность события

Как найти вероятность событияКак найти вероятность события

Как найти вероятность событияКак найти вероятность события

Как найти вероятность событияКак найти вероятность события

Как найти вероятность событияКак найти вероятность события

Как найти вероятность событияКак найти вероятность события

Как найти вероятность событияКак найти вероятность события

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: Как найти вероятность события.

Еще одну задачку вы можете посмотреть на рисунке:

Как найти вероятность события

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.

Источник

Вычисление вероятности

На этой странице вы узнаете

Какова вероятность выиграть в лотерею? Исследователи подсчитали: один на восемь миллионов. «Или выиграю, или проиграю», — решаю я, покупая лотерейный билет. Так понятие вероятности преследует нас в обычной жизни. И не только в лотерее. Давайте разберемся подробнее.

Вероятность

Выходя утром из дома, мы задумываемся: брать ли с собой зонт? Проверяем прогноз погоды — вероятность выпадения осадков 2%. Зонтик нам сегодня вряд ли понадобится. В пути нас настигает ливень…

Прогноз погоды — самый яркий пример вероятности. Он не всегда бывает точный, не всегда сбывается. Мы не можем с уверенностью сказать, что будет завтра. Зато можем по совокупности факторов определить, на какую погоду стоит ориентироваться.

Теория вероятности — один из разделов математики, в котором изучаются модели случайных экспериментов.

Случайными экспериментами называются такие, результаты которых неизвестны заранее. Подбрасывая монетку, мы не знаем, что выпадет — орел или решка. Только поймав монетку, мы узнаем результат.

Как кот может быть одновременно жив и мертв?

Ученый по имени Эрвин Шредингер провел мысленный эксперимент. Он поместил кота в закрытый ящик, в котором был расположен механизм, содержащий атомное ядро и ёмкость с ядовитым газом.

По эксперименту с вероятностью 0,5 ядро распадется, емкость с газом откроется и кот умрет. Но при этом с вероятностью 0,5 ядро не распадается и кот останется жив.

Пока ящик закрыт, мы не знаем результат эксперимента — такой эксперимент в математике можно назвать случайным. Тем временем кот находится одновременно в двух состояниях: он и жив, и мертв.

Рассмотрим чуть подробнее пример с монеткой. Есть всего два варианта, какое событие может произойти:

Эти два события образуют множество элементарных событий.

Множество элементарных событий — множество всех возможных результатов случайного эксперимента.

В случае выше их всего два. А если мы будем подбрасывать игральную кость, то их будет уже 6. Множество элементарных событий будет менять в зависимости от ситуации.

Допустим, мы поспорили с друзьями, что выпадет орел. Для нас это событие будет благоприятным, поскольку мы выиграем спор. Второе событие будет неблагоприятным, потому что спор будет проигран.

Как найти вероятность, что мы выиграем спор? Нужно разделить число благоприятных событий на общее число событий. Таким образом, мы получили классическое определение вероятности.

Вероятность — отношение количества благоприятных событий к количеству всех возможных событий.

Пусть m — количество благоприятных исходов, а n — количество всех событий. Получаем следующую формулу.

Вероятность можно обозначить, как P(x), где х — некоторое событие.

Заметим, что количество благоприятных исходов должно быть либо меньше, либо равно количеству всех исходов. Если благоприятных событий больше, чем всех, значит, мы нашли не все множество элементарных событий.

Когда вероятность равна 1, то такое событие точно наступит. Иначе говоря, мы можем быть уверены на 100% — оно произойдет.

Можно ли всегда выигрывать спор с монеткой?

Можно, если хитро сформулировать условия. Например: «Орел — я выиграл, решка — ты проиграл». Вероятность выигрыша в этом случае будет равна \(P = \frac<2> <2>= 1\), то есть мы точно выиграем спор.

Однако вероятность не так проста, и даже здесь подготовила ловушку.

В редких случаях есть и третий вариант событий — монетка встанет на ребро. Вероятность такого события составляет \(\frac<1><6000>\). То есть за миллион бросков это может случиться 150 раз или 1 раз в 2 дня, если подкидывать монету каждый день по 8 часов в течение года. Чтобы монета встала на ребро два раза подряд, придется подбрасывать ее в том же темпе около 35 лет.

Вероятность всегда будет меньше или равна 1. Но ее можно выразить и через проценты. Для этого достаточно умножить полученный результат на 100%.

Пример 1. На ресепшене одного из отелей стоит ваза с конфетами. В вазе 56 яблочных конфет, 49 апельсиновых и 35 малиновых. Гость отеля наугад тянет конфету. Какова вероятность, что ему попадется апельсиновая конфета?

Решение. Найдем, сколько всего конфет в вазе: 56 + 49 + 35 = 140. Вероятность вытащить апельсиновую конфету будет равна
\(\frac<49> <140>= 0,35\)

Выразим в процентах:
0,35 * 100% = 35%

Задача решена. Обычно в ответе пишут значение вероятности через дробное число, а не проценты. Поэтому получаем следующий ответ.

Ответ: 0,35

Чтобы выразить вероятность через проценты в одно действие, достаточно воспользоваться следующей формулой.

Но что, если нам нужно найти вероятность для более сложных экспериментов? Первым делом нужно определить, какие события перед нами.

Равновозможные и противоположные события

Когда мы бросаем игральную кость, вероятность выпадения любого из чисел равна 16. То есть вероятности выпадения чисел равны между собой. Такие события называются равновозможными.

Равновозможные события — такие события, что по условиям опыта ни одно из них не является более возможным, чем другие.

Вероятности появления событий равны.

Для игрального кубика существует всего шесть событий, которые могут произойти: выпадет число 1, 2, 3, 4, 5 или 6. Все эти события образуют полную группу событий.

Полная группа событий — такая группа событий, если в результате опыта обязательно появится хотя бы одно из них.

В результате подбрасывания монеты выпадет либо орел, либо решка. То есть полная группа событий состоит из двух событий.

Мы подбросили монету и выпал орел. Следовательно, не выпала решка.

А если не выпадет орел? Обязательно выпадет решка. Эти события будут называться противоположными.

Противоположные события — такие события, если при не наступлении одного обязательно наступает второе.

Обозначим событие “выпала решка” как A. Противоположное ему событие “выпал орел” обозначим как \(\overline\).

Заметим, что вероятность события A равняется 12, как и вероятность события \(\overline\). Чему равна их сумма?

Так мы вывели связь между противоположными событиями. Поскольку они всегда образуют полную группу событий, то сумма их вероятностей будет равна 1.

Какие еще примеры противоположных событий можно назвать? Ясная и дождливая погода. Если наступает одно из этих событий, то второе уже не может наступить.

Объединение и пересечение событий

Допустим, у нас есть два события: сегодня пойдет снег и сегодня пойдет дождь. Что будет, если мы их объединим?

Объединение событий — событие, состоящее из всех элементарных исходов, благоприятствующих хотя бы одному из событий.

В этом случае мы получим событие, которое будет выполняться при любом из исходов: и если пойдет снег, и если не пойдет снег.

Объединение событий обозначается знаком \(\cup\). Объединение событий А и В можно записать как \(A \cup B\).

Рассмотрим немного другой пример. В первое событие входит, что Илья получит пятерку по физике, а второе событие — Антон получит пятерку по физике. А как можно назвать событие, если оба мальчика получат пятерку по физике?

Пересечение событий — событие, состоящее из всех элементарных исходов, благоприятствующих обоим событиям.

Пересечение событий обозначается знаком \(\cap\). Пересечение событий А и В можно записать как \(A \cap B\).

Несовместные и совместные события

Рассмотрим два события: “чайник исправно работает” и “чайник сломался”. Могут ли эти события существовать одновременно? Нет, поскольку появление одного из них исключает появление другого.

Такие события называются несовместными. Название само говорит, что события не могут существовать одновременно.

Несовместные события — такие события, появление одного из которых исключает появление другого.

Решим небольшую задачу. На экзамене есть несколько билетов. С вероятностью 0,5 попадется билет по планиметрии. С вероятностью 0,3 попадется билет по экономике. При этом не существует билетов, которые включают обе эти темы. С какой вероятностью на контрольной попадется билет по одной из этих тем?

Представим билеты в виде схемы. Заметим, что нам нужно объединить два из трех кругов, то есть сложить их вероятности.

Следовательно, вероятность будет равна 0,5 + 0,3 = 0,8.

Сформулируем определение суммы вероятностей двух несовместных событий.

Если события А и В несовместны, то вероятность их объединения равна сумме их вероятностей:

\(P(A \cup B) = P(A) + P(B)\)

Если существуют несовместные события, то существуют и совместные.

Совместные события — события, наступление одного из которых не исключает наступления другого.

В магазине работают два консультанта. Один из них занят общением с клиентом. Означает ли это, что второй консультант тоже занят? Нет, поскольку они работают независимо друг от друга. Если занят первый консультант, второй может быть как занят, так и нет.

Подбросим игральный кубик и рассмотрим два вида событий. Пусть событие А — это “выпадет число 2”, событие В — “выпадет четное число”.

Найдем вероятность события А: \(\frac<1><6>\).

Для события В всего три благоприятных исхода из шести: выпадет число 2, 4 или 6. Тогда вероятность наступления события В равна \(\frac<3> <6>= \frac<1><2>\)

Исключают ли события А и В друг друга? Нет, поскольку если произойдет событие А, произойдет и событие В. Когда произойдет событие В, есть вероятность, что произойдет и событие А.

Найдем объединение совместных событий на примере кругов. Если мы наложим их друг на друга, то в середине получится как бы два слоя. Проверить это можно, если наложить друг на друга два листа бумаги.

А нужно получить вот такую картину:

Поэтому для объединения двух кругов нам нужно будет исключить одну из серединок.

Если события А и В совместны, то вероятность их объединения равна сумме их вероятностей без вероятности их пересечения:

\(P(A \cup B) = P(A) + P(B) — P(A \cap B)\)

В каких случаях нужно пользоваться формулой со сложением? Достаточно, чтобы задачу можно было сформулировать с помощью “или”. Например, нужно, чтобы выпали темы по планиметрии или по экономике.

Независимые и зависимые события

Прогуляемся в магазин за булочками. В упаковке две булочки, а сама упаковка непрозрачная, то есть увидеть булочки до вскрытия упаковки мы не можем.

Известно, что на заводе, где изготавливаются булочки, 5 из 100 булочек подгорают. Значит, 95 из 100 булочек не подгорают. По классическому определению вероятности находим, что вероятность каждой булочки не подгореть равна \(\frac<95> <100>= 0,95\).

Какова вероятность, что в упаковке попадутся только не подгорелые булочки? Как найти вероятность сразу для двух булочек?

Ответим на вопрос: зависят ли булочки друг от друга?

Если подгорит одна из булочек в упаковке, не обязательно подгорит другая. Следовательно, булочки не зависят друг от друга. Такие события называются независимыми.

Независимые события — такие события, появление одного из которых не зависит от появления другого события.

Определим вероятность независимых событий.

Пусть вероятность, что подгорела первая булочка, будет равна Р(А) = 0,95, а вероятность для второй булочки будет равна Р(В) = 0,95.

А чтобы найти вероятность независимых событий, нужно воспользоваться следующей формулой:

\(P(A \cap B) = P(A) * P(B)\)

Тогда вероятность, что булочки в одной упаковке не подгорят, равняется P = 0,95 * 0,95 = 0,9025.

В каком случае нужно пользоваться этой формулой? Нужно подставить союз “и”.

Мы хотим, чтобы в упаковке первая булочка была не подгорелой и вторая булочка была не подгорелой.

Приведем еще один пример. В здании два автомата с кофе на разных этажах. Даже если сломается один из них, работа второго не будет зависеть от первого.

Но если автоматы стоят рядом и включены в одну розетку, то при поломке одного из них есть вероятность выхода из строя розетки, а значит, и второй автомат тоже сломается. Такие события будут зависимыми: появление одного из них зависит от появления другого.

Предположим, что в мешке лежит семь кубиков: два из них оранжевые, а пять — фиолетовые. Из мешка дважды вытаскивают кубики. Какова вероятность, достать во второй раз именно фиолетовый кубик?

Нужная последовательность может быть в двух случаях:

Разберем первый случай. Вероятность в первый раз вытащить фиолетовый кубик равна \(\frac<5><7>\). После этого в мешке останется шесть кубиков, четыре из которых будут фиолетовые.

Вероятность вытащить во второй раз фиолетовый кубик равна \(\frac<5> <7>* \frac<4> <6>= \frac<20> <42>= \frac<10><21>\).

Теперь рассмотрим второй случай. Вероятность в первый раз достать оранжевый кубик равна \(\frac<2><7>\). В мешке останется шесть кубиков, пять из которых будут фиолетовыми.

Вероятность вытащить во второй раз фиолетовый кубик будет уже равна \(\frac<2> <7>* \frac<5> <6>= \frac<10> <42>= \frac<5><21>\).

В этом примере очень наглядно видно, что вероятность напрямую зависит от того, какой кубик попался первым. Следовательно, эти события зависимы.

Как отличить зависимые и независимые события? Если после наступления первого события меняется количество благоприятных и всех исходов, то такие события — зависимые. Если количество благоприятных и всех исходов не меняется, то события независимые.

Условная вероятность — вероятность некоторого события В при условии наступления некоторого события А.

Условная вероятность обозначается P(B|A). В нашем примере условной вероятностью будет вычисление, что во второй раз попадется именно фиолетовый кубик.

Найдем вероятность двух зависимых событий. Формула похожа на ту, что используется для независимых событий. Но в этот раз нам нужно применить условную вероятность.

Вероятность появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, при условии, что первое событие уже наступило:

\(P(A \cap B) = P(A) * P(B | A)\)

Формула Бернулли

Рассмотрим случаи, когда испытание повторяется многократно. Для этого еще раз обратимся к игральному кубику. Подбросим кубик 8 раз. Какова вероятность, что цифра 5 выпала ровно три раза?

Пусть p — вероятность, что выпадет цифра 5. Тогда \(p = \frac<1><6>\).

Теперь возьмем q — противоположное р событие — вероятность, что цифра 5 не выпадет. \(q = \frac<5><6>\).

Обозначим количество всех бросков за n, а количество выпадения цифры 5 за k.

Чтобы решить задачу, нужно воспользоваться формулой Бернулли.

Множитель \(C_n^k\) — это число сочетаний. Подробнее узнать про сочетания можно в статье «Основы комбинаторики».

Решим задачу, подставив значения в формулу:

Фактчек

Проверь себя

Задание 1.
Какие события являются несовместными?

Задание 2.
Алена делает ошибку при решении задач по математике с вероятностью 0,17. С какой вероятностью она не сделает ошибку при решении задачи?

Задание 3.
Артем решал задачи на вероятность. Ниже приведены его ответы. В какой из задач он точно совершил ошибку?

Задание 4.
В упаковке три шариковые ручки. С вероятностью 0,1 такая ручка не будет писать. Найдите вероятность, что все три ручки в упаковке пишут.

Задание 5.
Перед Дашей лежит несколько карточек. Она случайно переворачивает одну из них. С вероятностью 0,5 на карточке окажется рисунок природы. С вероятностью 0,27 на карточке окажется мотивационная цитата. Карточек и с рисунком, и с цитатой нет. Найдите вероятность, что Дана перевернет карточку или с рисунком, или с цитатой.

Ответы: 1. — 3 2. — 3 3. — 4 4. — 4 5. — 1

Источник

Теория вероятностей

Основы теории вероятностей

В этой статье мы расскажем кратко о том, что такое вероятность события. Дадим определение вероятности, введем понятия зависимых и независимых, совместных и несовместных событий. Объясним, что такое сумма событий и произведение событий.

Больше задач – в статье «Задание 2 Профильного ЕГЭ по математике. Теория вероятностей».

Случайным называется событие, которое невозможно точно предсказать заранее. Оно может либо произойти, либо нет. Теория вероятностей изучает случайные события и их закономерности, а также случайные величины и действия над ними.

Благоприятным мы называем исход, способствующий наступлению данного события.

Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.

Очевидно, что вероятность – величина положительная и не может быть больше единицы.

Например, перед экзаменом вы выучили 3 билета из 20. Вероятность вытянуть счастливый билет равна

Вот две простых задачи из вариантов ЕГЭ, где применяется определение вероятности:

1. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир Иванов высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру Иванову достанется удобное место, если всего в самолёте 300 мест.

В самолете 21+18=30 мест, удобных для Иванова. Всего в самолете 400 мест. Поэтому вероятность того, что пассажир Иванов получит удобное место, равна 30 : 300 = 0,1.

Просто применили определение вероятности.

2. В группе туристов 32 человека. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 4 человека за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист К. полетит пятым рейсом вертолёта.

Каждый рейс, в том числе и пятый, перевозит 4 человек из 32. Вероятность полететь пятым рейсом:

События, взаимоисключающие друг друга в рамках данной задачи, называются несовместными. Появление одного из несовместных событий исключает появление других.

Сумма двух событий – термин, означающий, что произошло или первое событие, или второе, или оба сразу.
Вероятность суммы несовместных событий равна сумме их вероятностей.

Вы бросаете игральную кость. Вероятность выпадения «тройки» равна Вероятность выпадения «шестерки» также равна
Вероятность выпадения числа, которое делится на 3,

Произведение двух событий – термин, означающий, что произошло и одно, и другое событие.

События А и В называют независимыми, если вероятность появления события А не меняет вероятности появления события В.

Для нескольких независимых событий вероятность того, что все они произойдут, равна произведению вероятностей.

3. Говорят, что в старину каждый десятый на Руси был Иван, а каждый двадцатый Петр. Если это верно, то кого было больше: Иванов Петровичей или Петров Ивановичей?

Можно по-разному решать эту задачу, и вероятностный подход здесь тоже применим. Посчитаем вероятности двух событий
Событие А. Случайно выбранного мужчину зовут Иван Петрович
Событие В. Мужчину зовут Петр Иванович.

Вероятность быть Иваном Петровичем для жившего в старину россиянина равна Мы перемножили вероятности того, что наш древнерусский житель – Иван и что его отца зовут Петр.
А вероятность оказаться Петром Ивановичем точно такая же:

4. (ЕГЭ) Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с ве-роятностью 0,5. Если А. играет чёрными, то А. выигрывает у Б. с вероятностью 0,32. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Шахматист А. играет две партии, одну – белыми фигурами, другую – черными. События «выиграть белыми» и «выиграть черными фигурами» независимы. Вероятность того, что шахматист А. выиграет оба раза, равна произведению вероятностей выигрышей в каждой партии: 0,5 · 0,32 = 0,16.

5. (ЕГЭ) В классе 26 человек, среди них два друга — Андрей и Сергей. Класс случайным образом разбивают на 2 группы по 13 человек. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.

Следующую задачу можно решить методами комбинаторики – например, с помощью формулы Бернулли. Однако в обычной школе не изучают комбинаторику, и тем не менее эта задача появилась в сборниках для подготовки к ЕГЭ.

6. Монету бросают 10 раз. Во сколько раз событие «Орел выпадет ровно 8 раз» более вероятно, чем событие «Орел выпадет ровно 9 раз»?

По определению, вероятность равна отношению числа благоприятных исходов к общему числу исходов.

Рассмотрим случай, когда орел выпадет ровно 9 раз из 10 бросков монеты. Это значит, что решка выпала ровно 1 раз.

Это могло произойти при первом броске, при втором, при третьем… и, наконец, при десятом, всего 10 благоприятных исходов. Вероятность выпадения решки ровно 1 раз из 10 бросков

Теперь случай, когда орел выпал ровно 8 раз из 10 бросков монеты. Значит, решка выпала ровно 2 раза.

Пронумеруем броски: 1,2,3…10.

Решка могла выпасть в первый и во второй раз. Обозначим эту комбинацию 12.

Могла также выпасть в первый и третий раз, в первый и четвертый… Эти комбинации обозначаем как 13, 14…

Пронумеруем таким образом все благоприятные исходы.

12, 13, 14, 15, 16, 17, 18, 19, 1 10

23, 24, 25, 26, 27, 28, 29, 2 10

34, 35, 36, 37, 38, 39, 3 10

45, 46, 47, 48, 49, 4 10

56, 57, 58, 59, 5 10

9 10
Количество благоприятных исходов равно 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45.

Разберем какую-нибудь типовую задачу ЕГЭ по теме «Теория вероятностей». Такую, в которой мы рисуем «дерево» возможных исходов.

7. (ЕГЭ) Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Изобразим все возможные исходы.

Как найти вероятность события

По условию, купленное в магазине стекло для автомобильной фары оказалось бракованным. Как это могло получиться?

Стекло сделано либо на первой фабрике, либо на второй. Эти события несовместны.

Вероятность того, что стекло с первой фабрики, равна 0,45.

Вероятность того, что стекло сделано на второй фабрике, равна 0,55.

Первая фабрика выпускает 3% бракованных стекол. Значит, с вероятностью 0,03 стекло, произведенное на первой фабрике, бракованное.

Вторая фабрика выпускает 1% бракованных стекол. Значит, с вероятностью 0,01 сделанное на ней стекло бракованное.

Покупатель купил бракованное стекло. Оно могло быть сделано на первой фабрике и оказалось бракованным. Это означает одновременное наступление, или произведение, двух независимых случайных событий – «стекло сделано на первой фабрике» и «стекло бракованное». Вероятность произведения этих двух событий равна

Или другой случай. Стекло могло быть со второй фабрики и также бракованное. Вероятность одновременного наступления этих двух событий равна События «стекло с первой фабрики» и «стекло со второй фабрики» несовместны – они не могут случиться одновременно.
Вероятность суммы несовместных событий равна сумме вероятностей.

Значит, вероятность купить бракованное стекло равна:

Следующая задача будет интересна и старшеклассникам, и студентам. В самом деле – как быть, если вы пришли на экзамен, выучив всего 20 билетов из 30? Идти отвечать первым? Или вторым? Или предпоследним? В каком случае вероятность вытянуть билет, который ты выучил, будет наибольшей?

8. Экзамен проходит по следующей схеме: если некоторый билет уже был вытянут, то после ответа экзаменатор откладывает его в сторону. Студент выучил 20 билетов из 30. Когда ему выгоднее идти, первым или вторым, чтобы вероятность вынуть выученный билет была больше?

Назовем билеты, которые студент выучил, «счастливыми».
Если студент пошел отвечать первым, вероятность вытянуть «счастливый» билет равна

Если идти отвечать вторым, возможны два случая:

1) Первый билет, который вытянул кто-то другой, был «счастливым», и тогда «счастливых» билетов теперь 19.

2) Первый билет не был «счастливым», и «счастливых» билетов так и осталось 20.

Нарисуем схему возможных исходов, как всегда делаем в подобных задачах:

Как найти вероятность события

Вот наш студент идет отвечать вторым. Вероятность вытянуть «счастливый» билет равна Удивительный ответ! Та же самая вероятность! Значит, неважно, первым или вторым идти отвечать, если ты выучил 20 билетов из 30.

Конечно, это были самые простые задачи по теории вероятностей. Такие, которые встречаются на ЕГЭ по математике.

Источник

Теория вероятностей, формулы и примеры

Как найти вероятность события

Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!

Основные понятия

Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.

Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.

Как найти вероятность события

Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».

Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Событие и виды событий

Событие — это базовое понятие теории вероятности. События бывают достоверными, невозможными и случайными.

Достоверным является событие, которое в результате испытания обязательно произойдет. Например, камень упадет вниз.

Невозможным является событие, которое заведомо не произойдет в результате испытания. Например, камень при падении улетит вверх.

Случайным называется событие, которое в результате испытания может произойти, а может не произойти. Например, из колоды карт вытащили туза.

Обычно события обозначают большими латинскими буквами. Например, А — событие, при котором из колоды вытащили туза, D — событие, при котором из колоды вытащили семерку.

Несовместными называются события, в которых появление одного из событий исключает появление другого (при условии одного и того же испытания). Простейшим примером несовместных событий является пара противоположных событий. Событие, противоположное данному, обычно обозначается той же латинской буквой с черточкой вверху. Например:

A0 — в результате броска монеты выпадет орел;

Ā0 — в результате броска монеты выпадет решка.

Полная группа событий — это множество несовместных событий, среди которых в результате отдельно взятого испытания обязательно появится одно из этих событий.

Алгебра событий

Операция сложения событий означает логическую связку ИЛИ, а операция умножения событий — логическую связку И.

Сложение событий

Суммой двух событий A и B называется событие A+B, которое состоит в том, что наступит или событие A, или событие B, или оба события одновременно. В том случае, если события несовместны, последний вариант отпадает, то есть может наступить или событие A, или событие B.

Правило распространяется и на большее количество слагаемых, например, событие A1 + A2 + A3 + A4 + A5 состоит в том, что произойдет хотя бы одно из событий A1, A2, A3, A4, A5, а если события несовместны — то одно и только одно событие из этой суммы: или событие A1, или событие A2, или событие A3, или событие A4, или событие A5.

Событие (при броске игральной кости не выпадет 5 очков) состоит в том, что выпадет или 1, или 2, или 3, или 4, или 6 очков.

Событие B1,2 = B1 + B2 (выпадет не более двух очков) состоит в том, что появится 1 или 2 очка.

Событие BЧ = B2 + B4 + B6 (будет чётное число очков) состоит в том, что выпадет или 2 , или 4 , или 6 очков.

Умножение событий

Произведением двух событий A И B называют событие AB, которое состоит в совместном появлении этих событий. Иными словами, умножение AB означает, что при некоторых обстоятельствах наступит и событие A, и событие B. Аналогичное утверждение справедливо и для большего количества событий: например, произведение A1A2A3A10 подразумевает, что при определенных условиях произойдет и событие A1, и событие A2, и событие A3. и событие A10.

Рассмотрим испытание, в котором подбрасываются две монеты, и следующие события:

A1 — на 1-й монете выпадет орел;

Ā1 — на 1-й монете выпадет решка;

A2 — на 2-й монете выпадет орел;

Ā2 — на 2-й монете выпадет решка.

событие A1A1 состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет орел;

событие Ā2Ā2 состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет решка;

событие A1Ā2 состоит в том, что на 1-й монете выпадет орел и на 2-й монете решка;

событие Ā1A2 состоит в том, что на 1-й монете выпадет решка и на 2-й монете орел.

Классическое определение и формула вероятности

Вероятностью события A в некотором испытании называют отношение:

P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A.

Вероятность достоверного события равна единице.

Вероятность невозможного события равна нулю.

Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Таким образом, вероятность любого события удовлетворяет двойному неравенству 0 ≤ P(A) ≤ 1.

Как решать задачи по теории вероятности

Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?

Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:

Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное.

Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?

Вспоминаем основную формулу теории вероятности, которую мы привели выше. Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).

Источник

Как решать задачи на вероятность

Вероятность — очень лёгкая тема, если концентрироваться на смысле задач, а не на формулах. Но как решать задачи на вероятность. Во-первых, что такое вероятность? Это шанс, что какое-то событие произойдёт. Если мы говорим, что вероятность некоторого события 50%, что это значит? Что оно либо произойдет, либо не произойдет — одно из двух. Таким образом подсчитать значение вероятности очень просто — нужно взять количество подходящих нам вариантов и разделить на количество всех возможных вариантов. Например, шанс получить решку при подбрасывании монеты это ½. Как мы получаем ½? Всего у нас два возможных варианта (орёл и решка), из них нам подходит один (решка), так мы и получаем вероятность ½.

Как найти вероятность события

Как мы уже с вами увидели, вероятность может быть выражена как в процентах, так и в обычных числах. Важно: на ЕГЭ вам нужно будет записать ответ в числах, не в процентах. Принято, что вероятность изменяется от 0 (никогда не произойдет) до 1 (абсолютно точно произойдет). Также можно сказать, что всегда

Вероятность подходящих событий + вероятность неподходящих событий = 1

Теперь мы точно понимаем, как считать вероятность отдельного события, и даже такие задачи есть в банке ФИПИ, но понятно, что на этом всё не заканчивается. Чтобы жизнь была веселее, в задачах на вероятность обычно происходят как минимум два события, и надо посчитать вероятность с учетом каждого из них.

Вероятность нескольких событий

Подсчитываем вероятность каждого события в отдельности, затем между дробями ставим знаки:

1. Если нужно первое И второе событие, то умножаем.

2. Если нужно первое ИЛИ второе событие, то складываем.

Задачи и решения задач на вероятность

Задача 1. Среди натуральных чисел от 23 до 37 случайно выбирают одно число. Найдите вероятность того, что оно не делится на 5.

Решение:

Вероятность, это отношение благоприятных вариантов к общему их количеству.

Всего в этом промежутке 15 чисел. Из них на 5 делится всего 3, значит не делится 12.

Вероятность тогда: Как найти вероятность события

Задача 2. Для дежурства в столовой случайно выбирают двух учащихся класса. Какова вероятность того, что дежурить будут два мальчика, если в классе обучается 7 мальчиков и 8 девочек?

Решение: Вероятность, это отношение благоприятных вариантов к общему их количеству. В классе 7 мальчиков, это благоприятные варианты. А всего 15 учеников.

Вероятность что первый дежурный мальчик:

Как найти вероятность события

Вероятность что второй дежурный мальчик:

Как найти вероятность события

Раз оба должны быть мальчики, вероятности перемножим:

Как найти вероятность события

Задача 3. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.

Решение: Пассажиру В. удобны 30 мест (12 + 18 = 30), а всего в самолете 300 мест. Поэтому вероятность того, что пассажиру В. достанется удобное место равна 30/300, т. е. 0,1.

Задача 4. В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам.

Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам.

Решение: Из 25 билетов 15 не содержат вопроса по неравенствам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам, равна 15/25, т. е. 0,6.

Задача 5. В сборнике билетов по химии всего 35 билетов, в 7 из них встречается вопрос по кислотам.

Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам.

Решение: Из 35 билетов 28 не содержат вопроса по кислотам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам, равна 28/35, т. е. 0,8.

Задача 6. В среднем из 500 садовых насосов, поступивших в продажу, 2 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

Решение: Если из 500 насосов 2 подтекают, то 498 не подтекают. Следовательно, вероятность выбора хорошего насоса — 498/500, т. е. 0,996.

Задача 7. Вероятность того, что новый пылесос в течение года поступит в гарантийный ремонт, равна 0,065. В некотором городе из 1000 проданных пылесосов в течение года в гарантийную мастерскую поступило 70 штук.

На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?

Решение: Частота события «гарантийный ремонт» равна 70/1000, т. е. 0,07. Она отличается от предсказанной вероятности на 0,005 (0,07 – 0,065 = 0,005).

Задача 8. В чемпионате по гимнастике участвуют 50 спортсменок: 18 из России, 14 из Украины, остальные — из Белоруссии. Порядок, в котором выступают гимнастки, определяется жребием.

Найдите вероятность того, что спортсменка, выступающая первой, окажется из Белоруссии.

Решение: Всего участниц на чемпионате 50, а спортсменок из Белоруссии — 18 (50 – 18 – 14 = 18).

Вероятность того, что первой будет выступать спортсменка из Белоруссии — 18 из 50, т. е. 18/50, или 0,36.

Задача 9. Научная конференция проводится в 5 дней. Всего запланировано 80 докладов — первые три дня по 12 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой.

Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

Решение: За первые три дня будут прочитаны 36 докладов (12 ∙ 3 = 36), на последние два дня планируется 44 доклада. Поэтому на последний день запланировано 22 докладов (44 : 2 = 22). Значит, вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 22/80, т. е. 0,275.

Задача 10.

Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шахматистов, среди которых 14 участников из России, в том числе Егор Косов.

Найдите вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России?

Решение: В первом туре Егор Косов может сыграть с 25 шахматистами (26 – 1 = 25), из которых 13 ― из России. Значит, вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России, равна 13/25, или 0,52.

Задача 11.

В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?

Решение: Вероятность того, что команда России окажется во второй группе, равна отношению количества карточек с номером 2, к общему числу карточек, т. е. 4/16, или 0,25.

Задача 12. В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин?

Решение: Выбирают двоих туристов из пяти. Следовательно, вероятность быть выбранным равна 2/5, т. е. 0,4.

Задача 13. В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта.

Решение: На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что турист полетит первым рейсом вертолёта, равна 6/30, или 0,2.

Задача 14. Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?

Решение: Натуральных чисел от 10 до 19 десять, из них на 3 делятся три числа: 12, 15 и 18. Следовательно, искомая вероятность равна 3/10, т. е. 0,3.

Вероятность нескольких событий

Задача 1. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Стартер» по очереди играет с командами «Ротор», «Мотор» и «Стратор». Найдите вероятность того, что «Стартер» будет начинать только вторую игру.

Решение:

Тип вопроса: совмещение событий.

Нас устроит следующий вариант: «Статор» не начинает первую игру, начинает вторую игру, не начинает третью игру. Вероятность такого развития событий равна произведению вероятностей каждого из этих событий. Вероятность каждого из них равна 0,5, следовательно: 0,5 · 0,5 · 0,5 = 0,125.

Задача 2. Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей ― 1 очко, если проигрывает ― 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.

Решение:

Тип вопроса: совмещение событий.

Задачу выполняют несколько вариантов:

Игра №1Игра №2Вероятность данного варианта
310,4 · 0,2 = 0,08
130,2 · 0,4 = 0,08
330,4 · 0,4 = 0,16

Вероятность происхождения какого-либо их этих 3-х вариантов равна сумме вероятностей каждого из вариантов: 0,08 + 0,08 + 0,16 = 0,32.

Задача 3. В классе учится 21 человек. Среди них две подруги: Аня и Нина. Класс случайным образом делят на 7 групп, по 3 человека в каждой. Найти вероятность того что Аня и Нина окажутся в одной группе.

Решение:

Тип вопроса: уменьшение групп.

Вероятность попадания Ани в одну из групп равна 1. Вероятность попадания Нины в ту же группу равна 2 из 20 (2 оставшихся места в группе, а человек осталось 20). 2/20 = 1/10 = 0,1.

Задача 4. В кармане у Пети было 4 монеты по рублю и 2 монеты по два рубля. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что обе двухрублёвые монеты лежат в одном кармане.

Решение:

Способ №1

Тип задачи: уменьшение групп.

Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая однорублевая монета попадет в один из карманов (групп) = 1.

Вероятность, что две двухрублевые монеты попадут в этот же карман = количество оставшихся мест в этом кармане/на количество оставшихся мест в обоих карманах = 2/5 = 0,4.

Способ №2

Тип вопроса: совмещение событий.

Задачу выполняют в несколько вариантов:

Если Петя переложил в другой карман три из четырех рублевых монет (а двухрублевые не перекладывал), или если переложил в другой карман обе двухрублевые монеты и одну рублевую одним из трех способов: 1, 2, 2; 2, 1, 2; 2, 2, 1. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):

Как найти вероятность события

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: Как найти вероятность события

Задача 5. В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

Решение:

Тип задачи: уменьшение групп.

Способ №1

Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая двухрублевая монета попадет в один из карманов (групп) = 1. Вероятность, что вторая монета попадет в другой карман = количество оставшихся мест в другом/ на количество оставшихся мест в обоих карманах = 3/5 = 0,6.

Способ №2

Тип вопроса: совмещение событий.

Задачу выполняют несколько вариантов:

Чтобы пятирублевые монеты оказались в разных карманах, Петя должен взять из кармана одну пятирублевую и две десятирублевые монеты. Это можно сделать тремя способами: 5, 10, 10; 10, 5, 10 или 10, 10, 5. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):

Как найти вероятность события

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: Как найти вероятность события

Задача 6. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно два раза.

Решение: Тип вопроса: нахождение желаемого и действительного \ совмещение событий Нас устраивают три варианта:

Орёл ― решка ― орёл;

Орёл ― орёл ― решка;

Решка ― орёл ― орёл;

Вероятность каждого случая ― 1/2, а каждого варианта ― 1/8 (1/2 ∙ 1/2 ∙ 1/2 = 1/8)

Нас устроит либо первый, либо второй, либо третий вариант. Следовательно, складываем их вероятности и получаем 3/8 (1/8 + 1/8 + 1/8 = 3/8), т. е. 0,375.

Задача 7. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,5. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,34. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Решение:

Тип вопроса: совмещение событий.

В любом случае А. будет играть как белыми, так и черными, поэтому нас устроит вариант, когда гроссмейстер А. выиграет, играя белыми (вероятность ― 0,5), а также играя чёрными (вероятность ― 0,34). Поэтому надо перемножить вероятности этих двух событий: 0,5 ∙ 0,34 = 0,17.

Задача 8. Вероятность того, что батарейка бракованная, равна 0,02. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.

Решение:

Тип вопроса: совмещение событий.

Вероятность того, что батарейка исправна, равна 0,98. Покупателю надо, чтобы и первая, и вторая батарейка были исправны: 0,98 · 0,98 = 0,9604.

Задача 9. На рок-фестивале выступают группы ― по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из США будет выступать после группы из Канады и после группы из Китая? Результат округлите до сотых.

Решение:

Тип вопроса: совмещение событий.

Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (КИТ — Китай, КАН = Канада):

США находится после Китая и Канады в двух последних случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна:

Как найти вероятность события

Дополняющая вероятность

Задача 1.

Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,97. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,05.

Найдите вероятность того, что случайно выбранная батарейка будет забракована.

Решение:

Существуют 2 варианта, которые нам подходят:

Вариант А: батарейка забракована, она неисправна;

Вариант Б: батарейка забракована, она исправна.

Вероятность варианта А: 0,02 ∙ 0,97 = 0,0194;

Вероятность варианта Б: 0,05 ∙ 0,98 = 0,049;

Нас устроит либо первый, либо второй вариант: 0,0194 + 0,049 = 0,0684.

Задача 2. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 60% этих стекол, вторая — 40%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 5%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Решение:

Вероятность того, что стекло куплено на первой фабрике и оно бракованное: 0,6 · 0,03 = 0,018.

Вероятность того, что стекло куплено на второй фабрике и оно бракованное: 0,4 · 0,05 = 0,02.

Вероятность того, что случайно купленное в магазине стекло окажется бракованным, равна 0,018 + 0,02 = 0,038.

Задача 3. На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Результат округлите до тысячных.

Решение:

Предположим, у нас х тарелок изначально (ведь мы постоянно имеем дело с процентами, поэтому нам ничего не мешает оперировать конкретными величинами).

Тогда 0,1х — дефектные тарелки, а 0,9х — нормальные, которые поступят в магазин сразу. Из дефектных убирается 80%, то есть 0,08х, и остаётся 0,02х, которые тоже пойдут в магазин. Таким образом, общее количество тарелок на полках в магазине окажется: 0,9х + 0,02х = 0,92х. Из них нормальными будет 0,9х. Соответственно, по формуле вероятность будет 0,9х/0,92х ≈ 0,978.

Задача 4. По отзывам покупателей Игорь Игоревич оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,91. Вероятность того, что этот товар доставят из магазина Б, равна 0,89. Игорь Игоревич заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.

Решение. Вероятность того, что первый магазин не доставит товар, равна 1 − 0,91 = 0,09. Вероятность того, что второй магазин не доставит товар, равна 1 − 0,89 = 0,11. Вероятность происхождения двух этих событий одновременно равна произведению вероятностей каждого из них: 0,09 · 0,11 = 0,0099.

Задача 5. При изготовлении подшипников диаметром 70 мм вероятность того, что диаметр будет отличаться от заданного меньше чем на 0,01 мм, равна 0,961. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 69,99 мм или больше чем 70,01 мм.

Решение: Нам дана вероятность события, при котором диаметр будет в пределах между 69,99 мм и 70,01 мм, и она равна 0,961. Вероятность всех остальных вариантов мы можем найти по принципу дополняющей вероятности: 1 − 0,961 = 0,039.

Задача 6. Вероятность того, что на тесте по истории учащийся верно решит больше 9 задач, равна 0,68. Вероятность того, что верно решит больше 8 задач, равна 0,78. Найдите вероятность того, что верно решит ровно 9 задач.

Решение: Вероятность того, что Т. верно решит более 8 задач, включает в себя вероятность решения ровно 9 задач. При этом, события, при которых О. решит больше 9 задач, нам не подходят. Следовательно, отняв от вероятности решения более 9 задач вероятность решения более 8 задач, мы и найдём вероятность решения только 9 задач: 0,78 – 0,68 = 0,1.

Задача 7. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 21 пассажира, равна 0,88. Вероятность того, что окажется меньше 12 пассажиров, равна 0,66. Найдите вероятность того, что число пассажиров будет от 12 до 20.

Решение. Вероятность того, что в автобусе окажется меньше 21 пассажира, включает в себя вероятность, что в нём окажутся от 12 до 20 пассажиров. При этом события, при которых пассажиров будет меньше 12, нам не подходят. Следовательно, отняв от первой вероятности (менее 21) вторую вероятность (менее 12), мы и найдём вероятность того, что пассажиров будет от 12 до 20 : 0,88 – 0,66 = 0,22.

Задача 8. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,9 погода завтра будет такой же, как и сегодня. 10 апреля погода в Волшебной стране хорошая. Найдите вероятность того, что 13 апреля в Волшебной стране будет отличная погода.

Решение:

Задачу выполняют несколько вариантов («Х» — хорошая погода, «О» — отличная погода):

11 апреля12 апреля13 апреляВероятность данного варианта
X – 0,9X – 0,9O – 0,10,9 ·0,9 ·0,1 = 0,081
X – 0,9O – 0,1O – 0,90,9 ·0,1 ·0,9 = 0,081
O – 0,1O – 0,9O – 0,90,1 ·0,9 ·0,9 = 0,081
O – 0,1X – 0,1O – 0,10,1 ·0,1 ·0,1 = 0,001

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: 0,081 + 0,081 + 0,081 + 0,001 = 0,244.

Задача 9. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.

Решение:

Задачу выполняют несколько вариантов («Х» ― хорошая погода, «О» ― отличная погода):

4 июля5 июля6 июляВероятность данного варианта
X – 0,8X – 0,8O – 0,20,8 · 0,8 · 0,2 = 0,128
X – 0,8O – 0,2O – 0,80,8 · 0,2 · 0,8 = 0,128
O – 0,2O − 0,8O − 0,80,2 · 0,8 · 0,8 = 0,128
O – 0,2X – 0,2O – 0,20,2 · 0,2 · 0,2 = 0,008

Вероятность происхождения какого-либо их этих 4 ― х вариантов равна сумме вероятностей каждого из вариантов: 0,128 + 0,128 + 0,128 + 0,008 = 0,392.

Как найти вероятность события

Как решать текстовые задачи по математике ЕГЭ

Как найти вероятность события

Как решать экономические задачи егэ по математике профильный уровень

Как найти вероятность события

Задачи на движение

Как найти вероятность события

Задачи ЕГЭ по кодированию генетического кода

Как найти вероятность события

Задачи и Сны М. Булгакова в романе «Белая гвардия»

Как найти вероятность события

Сочинение на тему: В чем Некрасов видит свой долг перед народом и какие задачи ставит перед искусством своего времени?

Источник

Теории вероятностей: готовимся к собеседованию и разрешаем «парадоксы»

Как найти вероятность события

Каждый год я участвую примерно в сотне собеседований в образовательных проектах JetBrains: собеседую абитуриентов в Computer Science Center и корпоративную магистратуру ИТМО (кстати, набор на программу идёт прямо сейчас). Все собеседования устроены по одному шаблону: мы просим на месте порешать задачи и задаём базовые вопросы по дисциплинам, которые студенты изучали в университетах. Большинство вопросов, которые мы задаём, довольно простые — нужно дать определение некоторого понятия, сформулировать свойство или теорему. К сожалению, у значительной доли студентов все эти определения выветриваются сразу после экзаменов в университетах. Казалось бы, что тут удивительного? В современном мире любое определение можно за пару секунд нагуглить, если это нужно. Но невозможность восстановить базовое определение свидетельствует о непонимании сути предмета.

Если непонимание алгебры или математического анализа может мало влиять на вашу жизнь, то непонимание теории вероятностей делает из вас лёгкую мишень для обмана и манипулирования. Суждения о вероятностях различных событий настолько глубоко вошли в нашу повседневную жизнь, что умение правильно рассуждать и отличать правду от невежества или манипуляции является необходимым. В этом небольшом обзоре мы поговорим о базовых понятиях теории вероятностей, научимся правильно формулировать утверждения про простые случайные процессы и разберём несколько парадоксов. Часть материала позаимствована из брошюры А. Шеня «Вероятность: примеры и задачи», которую я очень рекомендую для самостоятельного изучения.

Перед тем, как говорить об определениях, нам нужно договориться о том, откуда же в нашем мире берётся случайность. Например, почему мы считаем, что подбрасывание монеты — это случайный процесс? С точки зрения классической физики, описывающей процессы в макромире, всё детерминировано, поэтому по параметрам подброса монеты можно однозначно определить, какой стороной она упадёт. Однако на практике оказывается, что измерить и учесть все силы, которые действуют на монетку фактически, невозможно, и поэтому результат этого эксперимента принято считать случайным. Важно понимать, что этот вопрос не является вопросом теории вероятностей. Теория вероятностей работает с моделями — для неё монетка, у которой орёл и решка выпадают одинаково часто, и монетка, у которой орлов в два раза больше, чем решек, — это просто две разные модели. Вопрос о том, какая из моделей больше соответствует наблюдаемой действительности — это вопрос нашего опыта (опыт показывает, что частота орла и решки примерно одинаковая). Таким образом, первым делом мы должны договориться о модели.

Определения

Для определения модели, которая позволит нам говорить о вероятностях, нужно описать вероятностное пространство.

Вероятностное пространство в самом простом конечном случае состоит из множества элементарных исходов Как найти вероятность событияи набора неотрицательных чисел Как найти вероятность события, таких что их сумма равна Как найти вероятность события. Довольно часто все исходы считаются равновероятными, т.е. Как найти вероятность события. В более сложном бесконечном случае нужно отдельно выделять множество интересующих нас событий и задавать вероятности событий при помощи функции, называемой вероятностной мерой. Событием называется множество, состоящее из элементарных событий, т.е. любое подмножество Как найти вероятность события. Вероятность события Как найти вероятность события, обозначается Как найти вероятность события, — это сумма всех таких Как найти вероятность события, что Как найти вероятность события. В частности, вероятность пустого события Как найти вероятность событияравна нулю, а события Как найти вероятность событияравна 1. В случае, когда все исходы считаются равновероятными, вероятность события просто равна отношению количества исходов, содержащихся в событии, к общему количеству элементарных исходов, т.е. Как найти вероятность события.

Вероятность любого события заключена между 0 и 1. Если вероятность события нулевая, то такое событие называется невозможным, если же вероятность события равна единице, то такое событие называется достоверным.

Важно, что без определения вероятностного пространства нельзя (в математическом смысле) говорить о вероятности чего-либо.

Замечание

На основе определения вероятностного пространства легко провести разделение между теорией вероятностей и статистикой: теория вероятностей предсказывает частоты на основе знания вероятностного пространства, а статистика решает обратную задачу — на основе наблюдаемых частот определяет параметры неизвестного вероятностного пространства.

Пример: подбрасывание монетки

Будем считать, что монетка чеканная «правильная» или «симметричная», т.е. она одинаково часто выпадает орлом и решкой, а на ребро никогда не встаёт. Тогда множество элементарных исходов состоит из двух элементов, Как найти вероятность события. Так как мы договорились, что монетка «правильная», то разумно считать, что Как найти вероятность события. Теперь давайте перечислим все возможные события и их вероятности.

Пример: подбрасывание игрального кубика

Как и в случае с монеткой мы будем предполагать, что игральный кубик выпадает всеми гранями одинаково часто. Тогда множество элементарных исходов состоит из шести элементов, Как найти вероятность события, все их вероятности равны Как найти вероятность события. Количество различных событий в этом эксперименте равно Как найти вероятность события(это количество всех подмножеств множества из 6 элементов). Удивительным образом вопрос «сколько существует различных событий в эксперименте с подбрасывание игрального кубика?», по моим наблюдения, ставит в тупик 9 из 10 абитуриентов.
Давайте рассмотрим некоторые примеры событий.

Пример: два подбрасывания монетки

Как найти вероятность события

Симметриченость монетки позволяет нам заключить, что все элементарные исходы равновероятны, т.е. Как найти вероятность события.
Примеры событий.

Пример: выбираем случайное число из календаря 2020 года

Множество элементарных исходов Как найти вероятность события. Как выбрать вероятности? Это зависит от того, как устроен эксперимент. Например, мы можем вырвать случайный лист отрывного календаря и посмотреть число на нем. Наиболее точной моделью, описывающей этот эксперимент, было бы вероятностное пространство с Как найти вероятность событияисходами, где одинаковые числа разных месяцев различаются. И тогда вероятность того, что выпадет число 1, была бы суммой вероятностей элементарных исходов, соответствующих первым числам разных месяцев, т.е. Как найти вероятность события. Но мы можем для удобства рассмотреть более простое множество элементарных исходов Как найти вероятность событияс 31 исходом, но с разными вероятностями: Как найти вероятность события, Как найти вероятность события, Как найти вероятность события.

Пример события: «выпавшее число месяца делится на 10». Это соответствует событию
Как найти вероятность события.

Замечание

Как только мы определили вероятностное пространство (т.е. определились с множеством Как найти вероятность событияи вероятностями, которые мы приписываем элементарным исходам), то вопрос о вероятности некоторого события становится чисто арифметическим. Другими словами, как только мы выбрали некоторую математическую модель, которая с нашей точки зрения описывает физический процесс, то вероятности всех событий однозначно определены.

Задачи для самопроверки

В каждой задаче следует сначала описать вероятностное пространство, а уже только потом производить вычисления.

Пример вероятностного пространства, не соответствующего физическому миру

Рассмотрим следующий эксперимент: подбрасываем две монетки и смотрим на то, какими сторонами они выпали. Можно было бы сказать, что в данной задаче всего три исхода: две решки, два орла и орёл и решка. Если предполагать, что все исходы равновозможны, то получается, что вероятность выпадения двух орлов равна 1/3. Математика не запрещает нам рассматривать такое вероятностное пространство, но экспериментальная проверка подсказывает, что в физическом мире ответ скорее ближе к 1/4. Поэтому не стоит по умолчанию предполагать все исходы равновозможными, иначе мы получим 1/2 в ответ на вопрос о вероятности встречи динозавра.

Формула суммы вероятностей

Будем называть два события несовместными, если их пересечение равно пустому множеству. Т.е., нет исходов, которые соответствовали бы обоим событиям. Пример: события «на игральном кубике выпало чётное число» и «на игральном кубике выпала единица или тройка» несовместны.

Несовместные события обладают следующим свойством. Пусть Как найти вероятность событияи Как найти вероятность события— два несовместных события. Вероятность того, что произойдёт хотя бы одно из них, равна сумме вероятностей Как найти вероятность событияи Как найти вероятность события, другими словами Как найти вероятность события, событие Как найти вероятность событиятакже называют суммой событий Как найти вероятность событияи Как найти вероятность события и обозначают Как найти вероятность события. Это свойство не выполняется для произвольных событий. Например, события «на игральном кубике выпало чётное число» и «на игральном кубике выпало число больше четырёх» не несовместны и сумма их вероятностей (5/6) больше вероятности их суммы (4/6).

Рассмотрим следующую задачу. В мешке лежат шарики трёх цветов: белые, жёлтые и чёрные. Причём известно, что белых Как найти вероятность событияот общего числа, а жёлтых — Как найти вероятность события. Какова вероятность того, что случайно вытащенный шар будет светлым? Аккуратный подсчёт показывает, что если в мешке Как найти вероятность событияшаров, то рассматриваемому событию соответствует Как найти вероятность событияшаров, т.е. Как найти вероятность событияот общего числа шаров. События «вытащен белый шар» и «вытащен жёлтый шар» несовместны, поэтому вероятность, что шар будет светлым равна сумме вероятностей этих событий.

События называются противоположными, если всегда происходит ровно одно из них. Из этого определения можно заключить, что во-первых, эти события несовместны, а во-вторых, их суммарная вероятность равна 1. Событие, противоположное событию Как найти вероятность события, выражается, как Как найти вероятность события(если все элементарные исходы имеют положительную вероятность, то это единственное такое событие).

Задача для самопроверки

Наудачу выбирается число Как найти вероятность событияот 1 до 100. Рассмотрим следующие события:

Формула включений и исключений

Как найти вероятность события

Как найти вероятность события

где Как найти вероятность события— это пересечение событий Как найти вероятность событияи Как найти вероятность события, т.е. это событие состоящее из тех элементарных исходов, которые входят одновременно и в Как найти вероятность события, и в Как найти вероятность события(такое событие также называют произведением событий Как найти вероятность событияи Как найти вероятность события и обозначают Как найти вероятность события).

Задача для самопроверки

Известно, что ученики класса, имеющие двойки по алгебре, составляют 25%, а ученики, имеющие двойки по геометрии, составляют 15%. Сколько учеников имеют двойки и по алгебре, и по геометрии, если ученики, не имеющие двоек ни по одному из предметов, составляют 70%?

Условная вероятность

Как найти вероятность события

Какова вероятность, что случайно выбранный школьник знает немецкий при условии, что он знает французский?

Из формулы условной вероятности можно получить формулу для вероятности произведения двух событий.

Как найти вероятность события

Словами: чтобы найти вероятность того, что произойдут оба события Как найти вероятность событияи Как найти вероятность события, надо умножить вероятность события Как найти вероятность событияна условную вероятность события Как найти вероятность событияпри известном Как найти вероятность события.

Задача для самопроверки

В классе 50% мальчиков; среди мальчиков 60% любит мороженое. Какова доля мальчиков, любящих мороженое, среди учеников класса? Как это переформулировать на языке теории вероятностей?

Независимость

Как найти вероятность события

(В этом определении предполагаются, что обе вероятности событий Как найти вероятность событияи Как найти вероятность событиястрого больше нуля.)

Альтернативное определение можно получить, если воспользоваться определением условной вероятности: два события называются независимыми, если вероятность их произведения равна произведению их вероятностей.

Как найти вероятность события

Задачи для самопроверки

Как найти вероятность события

И подставив это в определение получаем формулу Байеса

Как найти вероятность события

которая позволяет менять местами событие и условие под знаком вероятности. Думаю, что про применение формулы Баейса нужно писать отдельный пост, например, такой.

На этом мы закончим с определениями и перед тем, как перейти к парадоксам, давайте обсудим, а в каких случаях мы можем говорить о вероятности.

Когда мы можем говорить о вероятности?

Предлагаю рассмотреть несколько вопросов, которые проиллюстрируют важность формулировок.

Какова вероятность того, что гуляя по улице вы встретите динозавра?

Я думаю, что всем ясно, что это не 1/2. Но всё же, как правильно ответить на этот вопрос? Проблема этого вопроса в том, что он сформулирован некорректно — из него нельзя однозначным образом определить вероятностное пространство, а следовательно и о вероятности говорить нельзя. Можно предложить какую-нибудь другую формулировку вопроса, в которой это будет очевидно. Например, начиная с завтрашнего дня на каждой улице города каждую минуту с вероятностью 0.00001 материализуется динозавр и существует в течение часа, никуда не уходя. В данной формулировке понятен случайный процесс и можно оценить вероятность встречи, если определить, как устроена прогулка, сколько длится и сколько улиц она затрагивает.

Как найти вероятность события

Вы подбросили монетку и не подглядывая накрыли её рукой. Какова вероятность того, что монетка повёрнута орлом вверх?

Очень хочется сказать, что в данном случае уж точно вероятность — 1/2. Однако, строго говоря, никакого случайного процесса уже нет. Монетка уже упала какой-то стороной. От того, что вы чего-то не знаете, не значит, что это что-то случайное. Например, если вы не знаете решение уравнения — это не значит, что его решением с одинаковой вероятностью может быть любое число. Поэтому в данном случае описать вероятностное пространство не получится. Можно переформулировать вопрос, например, так: «Какова вероятность, что вы угадаете сторону монетки, если наугад равновероятно выберите орёл или решку?». В такой формулировке уже ясно, что является случайным процессом (выбор орла или решки), как определить вероятностное пространство и получить ответ 1/2. При этом, в такой формулировке уже совершенно неважно, была монетка «честной» или нет.

Замечание. Нашу уверенность в чём-то тоже можно описывать в терминах теории вероятностей — это делается в рамках Байесовской интерпретации теории вероятностей. Эта интерпретации позволяет использовать аппарат теории вероятностей для оценки нашей уверенности в истинности каких-то утверждений (не обязательно случайных) основываясь на информации, которая нам известна. Однако стоит заметить, что в этом случае понятие вероятности становится субъективным — у одного и того же события с точки зрения разных наблюдателей может быть разная вероятность. Например, в покере вы можете считать вероятность выпадения пиковой дамы положительной (так как вы не видите её на столе и в своей руке), а ваш противник, у которого в руке уже есть пиковая дама, будет оценивать вероятность её выпадения как нулевую. При этом можно придумать и такой вариант, в котором обе оценки окажутся отличными от «реальной», объктивной, вероятности. В этом нет противоречия, т.к. в это три различные величины (игроки обладают разной информацией, а объективная вероятность в данном случае соответствует полной информации).

Вы проснулись утром. Какова вероятность того, что сегодня воскресенье?

Думаю, что вы уже поняли, что ответ 1/7 — неправильный, а точнее, вопрос некорректный. Не понятно, что является случайный процессом. Для того, чтобы получить 1/7 нужно уточнить вопрос, например, так: вы засыпаете в воскресенье вечером и случайным образом просыпаетесь в любое утро на следующей неделе, какова вероятность, что вы проснётесь в воскресенье? Но даже с этим уточнением, если спросить вас о дне недели уже после того, как вы проснулись (после того, как случайный выбор был сделан), то такой вопрос останется некорректным — иначе придётся предполагать, что вы находитесь в суперпозиции всех дней недели до тех пор, пока не посмотрите на календарь.

Как найти вероятность события

Я написал на доске некоторое (конкретное) число и утверждаю, что дважды успешно проверил его на простоту вероятностным алгоритмом, который ошибается с вероятность менее 1%. С какой вероятностью это число простое?

Хотелось бы сказать, что это число простое с вероятностью более 99.99%. Однако, с математической точки зрения число может быть либо простым, либо нет. Поэтому так говорить некорректно. После того, как алгоритм завершил работу, ничего случайного в этой постановке задачи уже нет, следовательно нет и вероятности. Правильно было бы сказать, что вы уверены на 99.99%, что это число простое, но и это вы можете заявить только в том случае, если доверяете мне на 100% 🙂

Парадоксы

В этом разделе мы попробуем разобрать несколько известных «парадоксов» теории вероятностей и понять, что в них либо нет противоречий, либо вопросы поставлены некорректно.

Парадокс Монти-Холла

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас — не желаете ли вы изменить свой выбор и выбрать дверь номер 2? Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

Как подсказывает Википедия, для того, чтобы задача была определена корректно, нам требуется уточнить, что участнику игры заранее известны следующие правила:

Как найти вероятность события

Для того, чтобы ответить на заданный вопрос, давайте разберёмся, что тут является случайным процессом. По уточнению видно, что случайный процесс упоминается только в пунктах 1 и 4: «автомобиль равновероятно размещён за любой из трёх дверей» и «если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью». Вопрос, на который мы должны научиться отвечать, звучит так: «Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор». Т.е. нас спрашивают о том, какая из двух стратегий даёт большую вероятность выигрыша. Замечу, что условие номер 4 никак не влияет на факт выигрыша игрока, поэтому нет смысла включать его в вероятностное пространство. Поэтому предлагается выбрать вероятностное пространство с множеством элементарных исходов Как найти вероятность события, соответствующим номеру двери, за которым находится автомобиль, и вероятностями Как найти вероятность события. Теперь рассмотрим две стратегии игрока: «оставить выбранную дверь», обозначим Как найти вероятность события, и «сменить дверь», обозначим Как найти вероятность события.

Мы не знаем, как игрок делает выбор первой двери, но нам и не нужно это знать. Достаточно проверить, как работает стратегия при всех выборах первой двери. Обозначим через Как найти вероятность событиядверь, которую игрок выбрал изначально, а через Как найти вероятность события— дверь, за которой спрятан автомобиль. Тогда для любого Как найти вероятность событиясобытие «игрок выиграл при использовании стратегии Как найти вероятность события» соответствует тому, что он угалад правильную дверь с первой попытки. Говоря формально, нас интересует событие Как найти вероятность события, т.е. Как найти вероятность события, и его вероятность Как найти вероятность события. Событие «игрок выиграл при использовании стратегии Как найти вероятность события» соответствует противоположному событию Как найти вероятность события, т.е. Как найти вероятность события, и его вероятность Как найти вероятность события. Осталось ещё раз отметить, что, если этот анализ верен для любого выбора Как найти вероятность события, поэтому верен и при любой стратегии выбора первой двери. Кроме того, заметим, что мы никак не использовали условие 4.

Как видите, никаких неоднозначностей тут нет, парадоксом эта задача называется только потому, что ответ может не соответствовать интуиции. Но так в математике случается довольно часто.

Парадокс мальчика и девочки

Впервые задача была сформулирована в 1959 году, когда Мартин Гарднер опубликовал один из самых ранних вариантов этого парадокса в журнале Scientific American под названием «The Two Children Problem», где привёл следующую формулировку:

Вероятностное пространоство задано Как найти вероятность событияи все вероятности равны Как найти вероятность события. В первом случае нам известно, что выполнено событие Как найти вероятность события. Поэтому при условии Как найти вероятность событиявероятность двух девочек равна 1/2.

Во втором случае всё сложнее, т.к. не понятно, как мы узнали, что у мистера Смита один из детей мальчик. Можно предположить два варианта:

Парадокс Спящей Красавицы

Испытуемой («Спящей Красавице») делается укол снотворного. Бросается симметричная монетка. В случае выпадения орла её будят, и эксперимент на этом заканчивается. В случае выпадения решки её будят, делают второй укол (после чего она забывает о побудке) и будят на следующий день, не бросая монеты (в таком случае эксперимент идёт два дня подряд). Вся эта процедура Красавице известна, однако у неё нет информации, в какой день её разбудили.

Представьте себя на месте Спящей Красавицы. Вас разбудили. Какова вероятность того, что монетка упала решкой?

Предлагается рассмотреть два альтернативных решения с разными результатами.

Как найти вероятность события

Решение 1

У вас нет никакой информации о результате выпадения монеты и предыдущих побудках. Поскольку известно, что монетка честная, можно предположить, что вероятность выпадения решки равна Как найти вероятность события.

Решение 2

Проведём эксперимент 1000 раз. Спящую Красавицу будят в среднем 500 раз с орлом и 1000 раз с решкой (т.к. при выпадении решки Спящую Красавицу спрашивают 2 раза). Поэтому вероятность выпадения решки равна Как найти вероятность события.

Кажется, что оба решения могут претендовать на звание правильного. Однако, при попытке определить вероятностное пространство нас ожидают серьёзные трудности. Что же является случайным процессом? Дело в том, что когда Спящая Красавица просыпается, никакого случайного процесса уже нет. Выбор уже сделан. Ей не известен результат этого выбора, но ничего случайного уже нет. Это возвращает нас к примеру с динозавром. Если вы не знаете, есть ли за углом динозавр, то это не значит, что он там есть с вероятностью 1/2. Поэтому «Решение 1» отвечает не на вопрос про вероятность, а на вопрос про степень уверенности Спящей Красавицы. А «Решение 2» предлагает рассмотреть совершенно другой эксперимент, в котором задаётся в общем-то совершенно другой вопрос, на который предлагается ответить внешнему наблюдателю до начала эксперимента.

Для того, чтобы придать этому вопросу математический смысл и получить желаемый ответ 2/3, придётся воспользоваться каким-нибудь философским приёмом, вроде «подселения душ». Например, так: вы заходите в аппарат переселения душ, после этого подбрасывается монетка для Спящей Красавицы, которая создаёт две параллельные вселенные: одну, где монетка выпала орлом, и другую, где выпала решкой. Суммарно в пространстве-времени этих двух альтернативных вселенных есть три различных пробуждения Спящей Красавицы. Аппарат по переселению душ с вероятностью 1/3 подселяет вашу душу в тело Спящей Красавицы незадолго до одного из этих пробуждений. Какова вероятность, что вы проснетесь в параллельной вселенной, где выпала решка?

Как видите, для придания математического смысла этому вопросу, придётся хорошенько пофантазировать, но этим занимаются не математики, а философы (подробнее в этом посте). Утверждать, что «оба решения правильные», некорректно с математической точки зрения.

Задача для самопроверки

Объясните, почему в задаче о детях моряка, с которой начинается этот пост, вопрос поставлен некорректно (т.е. ни 1/2, ни 1/3 не являются правильным ответом).

Бесконечный случай

Когда мы переходим к бесконечному случаю, т.е. рассматриваем эксперименты с бесконечным числом элементарных исходов, то всё становится значительно сложнее. Я не буду вдаваться в детали и даже не буду определять вероятностное пространство для бесконечного случая, т.к. это требует более сложной математики. Однако, для иллюстрации отмечу, что в бесконечном случае могут быть такие (плохие) множества элементарных исходов, которые не имеют вероятности (неизмеримые множества). При этом для всех хороших (измеримых) событий вероятность определена однозначно. Поэтому и те «парадоксы», которые возникают в бесконечном случае, тоже возникают из-за неоднозначности выбора вероятностного пространства. Хорошим наглядным примером служит парадокс Бертрана, показывающий, как казалось бы эквивалентные (на самом деле нет) вероятностные пространства приводят к разным результатам.

Вместо заключения

Даже если вы не собираетесь никуда поступать или проходить собеседования на технические позиции в IT-компании, то вы всё равно можете захотеть освежить знания по математике, которые могут пригодиться в программировании. Могу посоветовать онлайн-курс СS центра по теории вероятностей, который читает А.И. Храбров.

Как найти вероятность события

БОНУС

Приглашаю всех послушать лекция Александра Шеня «Генераторы «случайных чисел»: теория и практика» в это воскресенье 26 апреля в 14:00 в Computer Science клубе. Лекция будет читаться в zoom-е, для участия нужно записаться на курс или подписаться на рассылку.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *