Как правильно подобрать предохранитель

Как правильно подобрать предохранитель

Плавкие вставки. Как выбрать и расчет тока. Работа и применение

Плавкие вставки – электротехнические элементы для защиты аппаратуры от короткого замыкания и перенапряжения посредством отключения электроэнергии при превышении предельных значений токовых нагрузок. Размыкание цепи происходит вследствие расплавления предохранительной проволоки определенной толщины. Промышленности известны несколько типов данных устройств. Все они различаются внутренними и внешними конструктивными особенностями, а функционируют по единому принципу.

Сейчас с целью защиты квартирного электрооборудования используют более практичные многоразовые автоматы, однако до сих пор встречаются одноразовые плавкие вставки в пробках. Особенно они актуальны для помещений временных и старых построек, где установка эффективных современных щитков экономически неоправданна. В бытовых приборах же альтернативы классическому предохранителю по-прежнему нет.

Плавкие вставки

Активно используются и в промышленности. От них может зависеть работоспособность целого завода или инженерной сети. Промышленные предохранители лучше не покупать с рук, на рынке или в непроверенных организациях. Мудрое решение — обратиться к профессионалам в области электроники, например, в интернет-магазин Conrad.ru. В подобных вопросах скупой платит не дважды, а трижды

На принципиальных электросхемах графический символ вставки сродни символу резистора, но со сплошной линией, идущей посредине прямоугольника. Обозначается преимущественно как F либо Пр. За литерой обычно идет показатель величины тока защиты. Допустим, F1A указывает, что в схему вмонтирован предохранитель, рассчитанный на допустимую силу тока в 1 ампер. В некоторых случаях делают международное обозначение «fuse» («thermal fuse»).

Повторно использовать плавкие вставки можно, но осторожно…

Плавкие вставки имеют естественное свойство перегорать, и считается, что подобная продукция не ремонтируется. Это не так: если к делу подойти творчески, то потенциально каждая деталь успешно восстанавливается с последующим вторичным применением.

Дело в том, что корпус вставки не повреждается, в негодность приходит лишь калиброванный металлический волосок внутри него. Таким образом, если отслуживший свой срок волосок заменить, предохранитель вновь готов к употреблению. Однако такой вариант годится в крайнем случае, когда, например, запасного предохранителя в наличии не имеется, магазин закрыт, а музыкальное оформление торжества находится под угрозой.

Как правильно подобрать предохранитель

В нормальной же ситуации надлежит использовать только заводское изделие. То есть рациональное решение состоит в том, чтобы временно восстановить вставку до замены новым аналогом, сохранив защитные функции. Акцентируем на этом внимание потому что, увы, нередко сограждане просто замыкают контакты первой попавшейся под руку проволокой, или того хуже, вставляют в пробку вместо предохранителя стальной штырек. Такого рода «изобретение» – вопиющее нарушение техники безопасности, способствующее перегреву контактов и возгоранию.

Поистине универсальное приспособление

Предохранитель приходит в негодность по 2 причинам: из-за колебаний сетевых параметров или неисправностей в самих электроприборах. Бывают технологические отказы и вследствие неудовлетворительного качества той или иной партии продукции. Причем величина напряжения питающей сети, в которой находятся плавкие вставки, принципиально роли не играет. Так, допускается устанавливать образец номиналом 1A и в панели предохранителей автомашины, и в переносной светильник, и в распредустройство на 380V.

Как правильно подобрать предохранитель

Как правило, в процессе эксплуатации волосок, соединяющий противоположные концы корпуса предохранителя, может греться до t

+70°С, и это нормальное явление. Однако если токовая нагрузка увеличивается, t соответственно также растет. При достижении точки плавления материала, из которого проводник выполнен, происходит его мгновенное перегорание, цепь надежно размыкается и электропитание прекращается.

Совершенно ясно, что, скажем, при возникновении КЗ металл плавится, а не горит. Поэтому предохранитель и назвали плавким элементом, а если в обиходе говорят «лампочка перегорела», это вовсе не значит, что вольфрамовую нить накаливания уничтожил огонь – просто она расплавилась, не выдержав скачка электричества при включении. То же происходит и с предохранителем.

Как правильно выбрать предохранитель

Как правильно подобрать предохранитель

Самый распространенный на рынке – трубчатый предохранитель. Он изготавливается в виде полого керамического либо стеклянного цилиндра, с торцов заглушенного металлическими крышками, соединенными между собой волоском, расположенным внутри корпуса. В плавкие вставки для сверхбольших токов в полость цилиндра помещают наполнитель, в основном, кварцевый песок.

Если потребляемая мощность известна, номинальный ток предохранителя легко вычисляется по следующей формуле:

Хотя лучше пользоваться специально созданными для этой цели таблицами.

Приведем некоторые данные из них:

Рассмотрим ситуацию, при которой телевизор после грозы перестал включаться. Оказалось, перегорела вставка неопределенного номинала. Мощность телевизора – 120W. По справочнику находим: для аппаратуры с данной установленной мощностью ближайшее значение 150W, которому соответствует изделие, рассчитанное на 1A.

Если предохранитель всякий раз после очередной замены выходит из строя, то причина неисправности кроется не в нем, а в аппаратуре, нуждающейся в ремонте. Использование предохранителя, рассчитанного на больший ток, лишь усугубит положение вплоть до ее ремонтонепригодности.

Кулибиным на заметку

При выпуске предохранителей в зависимости от быстродействия и силы тока применяется калиброванная нить из алюминиевых, медных, нихромовых, оловянных, серебряных, свинцовых сплавов. Чтобы изготовить плавкие вставки в кустарных условиях доступны лишь медь да алюминий, но и этого вполне достаточно.

Создатели деталей электротехнической защиты руководствуются хорошо известным правилом: значение тока разрабатываемого устройства должно быть выше потребляемого оборудованием. Грубо говоря, если усилитель работает на 5A, то ток защиты предохранителя определяется в 10A. На колпачке или теле предохранителя выбивается маркировка, являющаяся его технической характеристикой. Наряду с этим, функциональные электрические показатели наносят и на крышку электроприбора возле точки монтажа предохранителя.

Как правильно подобрать предохранитель

Толщину проволоки определяют микрометром. Если он отсутствует, подойдет и ученическая линейка. Сделайте 10-20 сплошных витков на линейку (чем больше намотаете – тем точнее окажется результат), поделите число закрытых миллиметровых делений на число витков и узнаете искомую толщину. Намотаем 10 витков, покрывших 6,5 мм. Расстояние поделим на количество и получим диаметр провода – 0,65 мм, из которых приблизительно 0,05 мм занимает электроизоляционный лак. В итоге истинный диаметр равен 0,6 мм.

Обратимся к справочнику:

Таким образом, данная проволока сгодится для предохранителя на 30A.

Имеется 3 способа ремонта трубчатого предохранителя:

Описанную технологию можно успешно использовать для ремонта любых типов вставок.

Источник

Как выбрать предохранитель

Как правильно подобрать предохранитель

Предохранители — это защитные устройства, предназначенные для экстренного отключения электрических цепей. Они применяются для защиты кабелей, линий электропередач, электродвигателей, трансформаторов и другого электрооборудования от токов коротких замыканий и перегрузок.

Номинальное напряжение

Одной из основных рабочих характеристик предохранителя является номинальное напряжение. Выпускаются предохранители, рассчитанные на напряжение переменного тока 230, 400, 500, 690 В и постоянного тока 24, 110, 220, 440, 600, 1000 В. Номинальное напряжение должно быть равным или большим, чем напряжение в сети. Если номинальное напряжение предохранителя ниже напряжения сети, может произойти короткое замыкание.

Номинальный ток

Номинальный ток — это ток, на который рассчитана плавкая вставка в предохранителе. В корпус предохранителя могут устанавливаться проводники, рассчитанные на различные номинальные токи. Например, в предохранителе ПН2-100 можно установить плавкие вставки от 10 до 100 А.

Плавкая вставка не должна разрушаться при незначительных и кратковременных перегрузках электрической сети, например, при пуске электродвигателей. В общем случае плавкая вставка не должна расплавляться в течение одного часа при токе 125% от номинального, но должна плавиться в течение часа при уровне 160% от номинального.

Таблица рекомендованных значений поперечного сечения провода в зависимости от номинального тока в сети

Предохранители — это защитные устройства, предназначенные для экстренного отключения электрических цепей. Они применяются для защиты кабелей, линий электропередач, электродвигателей, трансформаторов и другого электрооборудования от токов коротких замыканий и перегрузок. \n\n

Номинальное напряжение \n\n

Номинальный ток \n\n

Номинальный ток — это ток, на который рассчитана плавкая вставка в предохранителе. В корпус предохранителя могут устанавливаться проводники, рассчитанные на различные номинальные токи. Например, в предохранителе ПН2-100 можно установить плавкие вставки от 10 до 100 А. \n\n

Плавкая вставка не должна разрушаться при незначительных и кратковременных перегрузках электрической сети, например, при пуске электродвигателей. В общем случае плавкая вставка не должна расплавляться в течение одного часа при токе 125% от номинального, но должна плавиться в течение часа при уровне 160% от номинального. \n\n

Таблица рекомендованных значений поперечного сечения провода в зависимости от номинального тока в сети «>,»props»:<"placement":"ContentWrapper">>>>,»meta»:<"/content/content/cms/CmsPageLayout-1/13755778":<"name":"@MarketNode/WysiwygText">>>

Как правильно подобрать предохранитель

Предельный и минимальный ток отключения

Предельный ток отключения плавкой вставки должен быть больше максимального расчетного тока короткого замыкания. При соблюдении этого условия дуга, возникающая при коротком замыкании, будет эффективно гаснуть, а корпус предохранителя при отключении поврежденной линии не разрушится.

Значение минимального тока отключения предохранителя, срабатывающего при определенных токах перегрузки, должно быть ниже, чем наименьший ожидаемый ток в месте установки предохранителя.

Предельный и минимальный ток отключения \n\n

Предельный ток отключения плавкой вставки должен быть больше максимального расчетного тока короткого замыкания. При соблюдении этого условия дуга, возникающая при коротком замыкании, будет эффективно гаснуть, а корпус предохранителя при отключении поврежденной линии не разрушится. \n\n

Категории применения

Буквой G обозначают предохранитель, срабатывающий во всем диапазоне нагрузок. Такой предохранитель может отключать все сверхтоки от тока плавления до предельного тока отключения. Предохранители с такой характеристикой могут применяться в качестве одиночных элементов защиты.

Буква А означает, что предохранитель срабатывает при определенных значениях тока перегрузки и может отключать только токи, многократно превосходящие номинальный. Предохранители такого типа подходят для защиты только от коротких замыканий и поэтому должны комбинироваться с другими устройствами защиты от перегрузок. Они используются в качестве резервной защиты для других коммутационных аппаратов с меньшей отключающей способностью, например, контакторов или силовых выключателей.

Вторая буква в обозначении типа плавкой вставки указывает на категорию применения.

gG — плавкие вставки общего назначения с отключающей способностью во всем диапазоне;

gM — плавкие вставки для защиты цепей двигателей с отключающей способностью во всем диапазоне;

аМ — плавкие вставки для защиты цепей двигателей с отключающей способностью в части диапазона;

gD — плавкие вставки с задержкой времени и отключающей способностью во всем диапазоне;

gN — плавкие вставки без задержки времени с отключающей способностью во всем диапазоне;

gTr — предохранитель, срабатывающий во всем диапазоне нагрузок, предназначенный для защиты трансформаторов;

gS — предохранитель, срабатывающий во всем диапазоне нагрузок, применяющийся для защиты полупроводниковых элементов и при повышенной нагрузке линии;

aR — предохранитель, срабатывающий при определенных токах перегрузки, для защиты полупроводниковых элементов от короткого замыкания;

gB — предохранитель, срабатывающий во всем диапазоне нагрузок, для защиты кабелей и линий электропередач при горных работах.

Категории применения \n\n

Буквой G обозначают предохранитель, срабатывающий во всем диапазоне нагрузок. Такой предохранитель может отключать все сверхтоки от тока плавления до предельного тока отключения. Предохранители с такой характеристикой могут применяться в качестве одиночных элементов защиты. \n\n

Буква А означает, что предохранитель срабатывает при определенных значениях тока перегрузки и может отключать только токи, многократно превосходящие номинальный. Предохранители такого типа подходят для защиты только от коротких замыканий и поэтому должны комбинироваться с другими устройствами защиты от перегрузок. Они используются в качестве резервной защиты для других коммутационных аппаратов с меньшей отключающей способностью, например, контакторов или силовых выключателей. \n\n

Вторая буква в обозначении типа плавкой вставки указывает на категорию применения. \n\n

gG — плавкие вставки общего назначения с отключающей способностью во всем диапазоне; \n\n

gM — плавкие вставки для защиты цепей двигателей с отключающей способностью во всем диапазоне; \n\n

аМ — плавкие вставки для защиты цепей двигателей с отключающей способностью в части диапазона; \n\n

gD — плавкие вставки с задержкой времени и отключающей способностью во всем диапазоне; \n\n

gN — плавкие вставки без задержки времени с отключающей способностью во всем диапазоне; \n\n

gTr — предохранитель, срабатывающий во всем диапазоне нагрузок, предназначенный для защиты трансформаторов; \n\n

gS — предохранитель, срабатывающий во всем диапазоне нагрузок, применяющийся для защиты полупроводниковых элементов и при повышенной нагрузке линии; \n\n

aR — предохранитель, срабатывающий при определенных токах перегрузки, для защиты полупроводниковых элементов от короткого замыкания; \n\n

gB — предохранитель, срабатывающий во всем диапазоне нагрузок, для защиты кабелей и линий электропередач при горных работах. «>,»props»:<"placement":"ContentWrapper">>>>,»meta»:<"/content/content/cms/CmsPageLayout-1/13755812":<"name":"@MarketNode/WysiwygText">>>

Источник

Как правильно подобрать быстродействующий предохранитель

В настоящей статье будут рассмотрены особенности применения быстродействующих предохранителей в цепях постоянного тока. Кроме того, пойдет речь о конструктивных вариантах исполнения различных серий предохранителей и некоторых областях их применения.

Предохранители в режиме постоянного тока

Использование предохранителей в цепях постоянного тока имеет свои особенности, т.к. из-за большой скорости процессов и отсутствия нулевых переходов тока цепи на работу предохранителя значительно влияют реактивные параметры цепи. Индуктивность в цепи постоянного напряжения ограничивает скорость нарастания тока. Время, затрачиваемое на достижение током 63% от конечного значения, называется постоянной времени, обозначаемой соотношением L/R. Скорость же нарастания тока влияет на начальную энергию плавления элемента предохранителя. Это определяет как время-токовую характеристику плавления, так и максимальный пропускаемый ток (Рис.1).

Для длительного периода времени (более 1 секунды) тепловой эффект переменного тока такой же, как и постоянного, характеристики сливаются (см. рис. 2).

Как правильно подобрать предохранитель

Рис.1. Время-токовая характеристика цепи постоянного тока

Как правильно подобрать предохранитель

Рис.2. Зависимость времени плавления от L/R

Большинство схем имеют постоянную времени между 10 и 20 миллисекундами, исходя из чего спецификации МЭК (международной электротехнической комиссии) требуют тестирования в этих пределах. Константы времени больше чем 20 мс встречаются не часто, за исключением тяговых решений электротранспорта, где большая длина контактной сети даёт чрезвычайно высокое соотношение индуктивности к сопротивлению. При коротких замыканиях, в условиях срабатывания предохранителя, значение постоянной времени цепи может отличаться от постоянной времени в «нормальных» рабочих условиях.

Во многих выпрямительных схемах, даже в условиях срабатывания, плавкая вставка будет под воздействием переменного напряжения (когда напряжение стремится к нулю или близко к нулю с регулярностью, соответствующей частоте питания).

В этих условиях, гашение дуги внутри плавкой вставки в случае срабатывания упрощается снижением напряжения до нуля. Когда предохранитель установлен в цепи постоянного тока, процесс гашения дуги при срабатывании не будет упрощаться периодическим снижением напряжения до 0, как в ситуации с переменным напряжением. При постоянном токе погасить дугу гораздо сложнее, вот почему и предохранитель в этом случае, как правило, должен быть гораздо больше по размерам (Рис.3).

Как правильно подобрать предохранитель

Рис.3. Предохранители одного номинала для переменного (слева) и постоянного (справа) тока

Напряжение, при котором плавкая вставка может безопасно работать, таким образом, зависит от постоянной времени цепи. Следует отметить, что при малых значениях постоянной времени номинал тока предохранителя при постоянном напряжении иногда может оказаться больше, чем при переменном (согласно стандартам IEC или UL). Однако для большинства случаев номинал предохранителей при постоянном токе не превышает 75% от номинала при переменном токе, и по мере увеличения постоянной времени он снижается.

Напряжение дуги, возникшей внутри плавкой вставки во время срабатывания, будет меняться по отношению к напряжению системы. Изменение напряжения дуги в результате самоиндукции относительно приложенного напряжения будет также различным для цепей переменного и постоянного тока. Если это специально не предусмотрено конструкцией, предохранители не рекомендуется применять для защиты от незначительных перегрузок в цепях постоянного тока. Производительность в этой области может быть ограничивающим фактором при выборе предохранителя.

Компания Bussmann производит большой диапазон предохранителей, специально разработанных для работы при постоянном токе в самых разнообразных приложениях: в тяговых транспортных решениях, системах бесперебойного питания, выпрямителях, частотных преобразователях, солнечной энергетике и др. Предохранители для цепей постоянного тока выпускаются на типовые напряжения 750, 1000, 1200, 1500, 2000 и 4000 В в диапазоне токов до 1600А, различного конструктивного исполнения.

Предохранители переменного тока в цепях постоянного тока

Учитывая вышесказанное, рассмотрим пример проверки возможности применения конкретного предохранителя в цепи постоянного тока.Приведенная ниже информация относится конкретно к прямоугольным предохранителям стандартной серии на 660, 690, 1000 и 1250 В переменного тока. При этом в каталоге для них нет информации о возможности их использования в цепях постоянного тока. Тем не менее эти предохранители могут применяться в цепях, где используется постоянное напряжение. Однако, при этом необходимо провести определённый проверочный расчёт.

Отключающая способность предохранителей зависит от сочетания:

Пример расчёта.

Используем параметры конкретного предохранителя 170M6149: 1100A, 1250 VAC,

I2t — 575.000 A2s

Прилагаемое напряжение E = 500V DC

Возможный ток короткого замыкания Ip = E/R = 500/16 = 31.3 kA

Постоянная времени L/R = 40 ms (0.64/16)

Как правильно подобрать предохранитель

Рис.4. Условная схема рассчитываемой цепи

Для расчётов используется ряд следующих зависимостей:

Шаг. 1 График на рис.5 показывает зависимость максимума приложенного напряжения постоянного тока от L/R с 3 уровнями тока Ip в качестве параметра.

Необходимо выбрать кривую 1, 2 или 3 выше точки пересечения известного напряжения и постоянной времени. Находим точку пересечения для прилагаемого напряжения 500 В и постоянной времени, равной 40ms. Непосредственно выше этой точки пересечения находится кривая 2.

Если выше точки пересечения напряжения и постоянной времени нет никакой кривой, тогда должен быть выбран плавкий предохранитель с номиналом переменного напряжения более 1250 В.

Как правильно подобрать предохранитель

Рис.5. Зависимость максимума приложенного напряжения постоянного тока от L/R

Шаг 2. Для правильного применения предохранителя необходимо использовать коэффициент F, связывающий I2t с предполагаемым током срабатывания Ipmin. На рис.6 показана зависимость коэффициента F от L/R. По параметру 2 (выбранной кривой 2) для постоянной времени L/R = 40 ms находим коэффициент F = 26,5.

Как правильно подобрать предохранитель

Рис.6. Определение промежуточного коэффициента F в зависимости от постоянной времени

Шаг 3. Для прилагаемого напряжения 500В по пересечению с кривой номинального напряжения используемого предохранителя находим пиковое напряжение дуги при срабатывании предохранителя.

Как видно из графика (Рис.7), для данного случая пиковое напряжение дуги при срабатывании предохранителя будет достигать значения 1900V.

Как правильно подобрать предохранитель

Рис.7. Определение пикового напряжения дуги при срабатывания предохранителя

Шаг 4. Минимальный уровень тока (Ipmin) цепи должен соответствовать следующему условию:

Проверка с конкретными параметрами цепи показала, что отключающая способность выбранного предохранителя достаточна при следующих основных условиях:

Повторимся, приведенная методика проверки применимости относится конкретно к прямоугольным предохранителям стандартной серии на 660, 690, 1000 и 1250 В переменного тока. Возможность применения в цепях постоянного тока других быстродействующих предохранителей необходимо уточнять в справочных данных соответствующих каталогов.

Таким образом, плавкие предохранители допускают работу в цепях как переменного, так и постоянного тока, но с существенной коррекцией максимально допустимых параметров, в частности, напряжения. Однако не существует универсальной верной методики подбора предохранителя для постоянного тока, основываясь на его параметрах для переменного тока. В связи с этим, производителем рекомендуется в цепях постоянного тока применять специально разработанные для этого предохранители или предохранители, в справочных данных которых оговаривается возможность работы в режиме постоянного тока.

Выбор конструктивного исполнения быстродействующих предохранителей.

Поскольку в рамках нашей статьи мы говорим о выборе предохранителей, то касаться особенностей их внутреннего устройства не будем, так как писали об этом ранее (Силовая Электроника, № 4’2013, № 6’2013). Кроме правильного определения электрических параметров предохранителя, перед пользователем стоит задача выбора его конструктивного исполнения. Часто выбор конструктивного исполнения определяется требованиями к допустимым размерам, исходя из свободного пространства в месте установки. С другой стороны, размеры предохранителя, как правило, зависят от номиналов тока, напряжения, режима использования (цепи переменного или постоянного тока). Компания Bussmann представляет наиболее широкий ассортимент быстродействующих предохранителей на мировом рынке. Быстродействующие предохранители Bussmann выпускаются в корпусах всех международных типов, соответствующих стандарту EN60269-4, который объединяет все предыдущие европейские и американские стандарты для этих устройств.

Семейство быстродействующих предохранителей Bussmann включает в себя цилиндрические предохранители (Ferrule Style) различного размера (от 6×32 до 25×146), являющихся отличным решением для защиты небольших ИБП, малых приводов переменного тока и другого оборудования небольшой мощности, где приоритетом является минимальное занимаемое пространство (Рис.8). Устанавливаются в специальные модульные держатели и держатели открытого типа, имеющиеся в ассортименте продукции производителя. В линейке имеются варианты исполнения предохранителей с бойком индикации срабатывания (в серии FWP).

Как правильно подобрать предохранитель

Рис.8. Быстродействующиецилиндрические предохранители (Ferrule Style)

Предохранители британского стандарта BS88:4 (Рис.9) для защиты полупроводников у Bussmann представлены самой широкой в индустрии линейкой, двумя диапазонами напряжения 240Vac/150Vdc и 690vac/500Vdc. Используют инновационные методы гашения дуги и материалы высокого класса, обеспечивающие минимальные значения I2t и отличную производительность в цепях постоянного тока. Конструктивное исполнение со смещёнными контактами под болт предполагает установку непосредственно на платы, монтажные панели приводов постоянного тока, выпрямителей, преобразователей напряжения, устройств плавного пуска и т.п. Опционально могут оснащаться индикаторами срабатывания.

Как правильно подобрать предохранитель

Рис.9. Быстродействующиепредохранители британского стандарта BS88:4

Ещё одно линейка быстродействующих предохранителей — североамериканские цилиндрические с ножевыми и торцевыми привинчиваемыми контактами (Рис.10). Представляют отличное решение для силового оборудования средней мощности. Конструкция оптимизирована для обеспечения малых значений I2t, потерь мощности, напряжения дуги и применения в цепях постоянного тока. Для предохранителей линейки разработаны держатели с фиксированным центром и модульные универсальные держатели.

Как правильно подобрать предохранитель

Рис.10. Быстродействующиепредохранители североамериканского стандарта

Как правильно подобрать предохранитель

Рис.11. Быстродействующиепредохранители в прямоугольном корпусе

Предназначены для защиты полупроводниковых приборов в оборудовании средней и большой мощности. Имеются серии, разработанные специально для использования в цепях постоянного тока. В зависимости от номинала и спецификации, Bussmann производит целый диапазон различных типов корпусов быстродействующих предохранителей, от 0000 до 5 типоразмера (Рис.12).

Как правильно подобрать предохранитель

Рис.12. Типоразмеры быстродействующих прямоугольных предохранителей

Также широкая линейка прямоугольных быстродействующих предохранителей делится на несколько подгрупп, характерных для определённых локальных стандартов и отличающихся преимущественно исполнением контактов (Рис.13).

Как правильно подобрать предохранитель

Рис.13. Стандартыпредохранителей в прямоугольном корпусе с различным исполнением контактов

Это даёт возможность пользователю подобрать наиболее подходящий вариант для используемого оборудования и обеспечивает гибкость при разработке новых специфичных приложений. Некоторые из них могут быть установлены только в предназначенные для них держатели (например, предохранители стандарта DIN 43 620), другие могут устанавливаться как в специальные держатели, так и непосредственно на токоподводящие шины (стандарт DIN 43 653). В пределах практически каждой из этих подгрупп имеются варианты исполнения предохранителей с разными типами индикации: визуальный индикатор срабатывания, боёк на торцевой части предохранителя (тип Т), адаптер индикации срабатывания на теле предохранителя (тип К). Для обоих типов доступны специальные микропереключатели, которые выбираются опционально (Рис.14).

Как правильно подобрать предохранитель

Рис.14. Микропереключатели индикации срабатывания прямоугольныхпредохранителей

Области применения быстродействующих предохранителей

Широкое распространение силовых полупроводниковых преобразователей определило рост применения быстродействующих предохранителей. Силовые полупроводниковые преобразователи используются для экономичного преобразования электрической энергии при автоматизации производственных процессов, механизации трубопрокатных и трубоэлектросварочных производств, питания и управления компрессорами и насосными станциями нефте- и газопроводов, горнодобывающей промышленности. Остановимся на специфике применения быстродействующих предохранителей в отдельных отраслях.

Компания Bussmann имеет специально разработанные решения для применения на железнодорожном и электротранспорте. Специфика определяется в первую очередь применением в цепях постоянного тока для большого диапазона токов и напряжений. Об особенностях применения в цепях постоянного тока мы уже говорили выше, в частности, в связи с более сложным процессом гашения дуги требуется использование более качественных материалов и увеличение физических размеров предохранителя. Особенностью тяговых преобразователей электроподвижного состава является к тому же эксплуатация в условиях непрерывных механических воздействий, циклических токовых перегрузок, большой индуктивности нагрузки, широкого диапазона климатических факторов, что накладывает ужесточение требований к применяемым предохранителям. В линейке для железнодорожного и электротранспорта у Bussmann есть предохранители для тяговых преобразователей, систем управления и контроля, преобразователей напряжения, вспомогательных систем подвижного состава (Рис.15).

Как правильно подобрать предохранитель

Рис.15. Применение предохранителей Bussmann в цепях подвижного состава

Ещё одной характерной областью применения быстродействующих предохранителей Bussmann является металлургическая отрасль.

Производство стали в дуговых сталеплавильных печах требует токов до 100кА при напряжении более 1000 В. Процесс хлорного электролиза требует постоянных токов до 300-350kA и напряжения до 1000 В постоянного тока. Медь, цинк, свинец, никель, кадмий и т.п производятся также с применением больших токов. Для питания электролизных ванн в цветной металлургии применяются силовые выпрямительные установки на номинальный ток до 100 кА при напряжении до 1000 В. Эти установки характеризуются большим количеством параллельно соединённых выпрямительных модулей и необходимостью обеспечения непрерывности питания. В ряде случаев, при аварии, вызванной одиночным отказом полупроводникового модуля, когда аварийный ток достигает 150-200 кА, возможно образование дуги, сопровождаемое взрывом. Взрывы полупроводников, вызванные отсутствием, либо невысоким качеством защитных устройств, приводят к тяжёлым последствиям — разрушению конструкции преобразователя, нарушению сложных технологических процессов, дорогостоящему ремонту. Быстродействующий предохранитель призван при пробое соответствующего полупроводника (тиристора, IGBT), соединённого последовательно с ним, своевременно сработать и отключить его, и это не должно критически сказаться на работе преобразователя. Для удовлетворения растущего спроса на допустимые нагрузочные способности по току специалистами Bussmann был разработан предохранитель 5 размера в единой конструкции, которая оптимизирует температурный режим предохранителя как при принудительном обдуве, так и при одно- или двустороннем водяном охлаждении (Рис.16).

Как правильно подобрать предохранитель

Рис.16. Специальные предохранители Bussmann 5 размера для металлургической отрасли

Ещё одно достаточно специфичное применение предохранителей Bussmann- оборудование солнечной энергетики (Рис.17). Солнечные системы для выработки электроэнергии состоят из массивов фотоэлементов и инверторов. Предохранители используются как для защиты линеек элементов солнечных панелей, подмассивов и массивов, так и для защиты связанных инверторов. Особенности солнечной энергетики — высокое напряжение постоянного тока, низкий выходной ток, очень низкие токи короткого замыкания, чувствительность к повреждению перенапряжением определяют и специфику защитных устройств. Bussmann производит весь спектр предохранителей для оборудования солнечных систем. В диапазоне есть цилиндрические предохранители с различным исполнением контактов для защиты линеек фотоэлементов (10×38мм 600В, 14×51мм 1000V/1100В, 14×65 мм 1300/1500В постоянного тока), а также прямоугольные предохранители разных типоразмеров на 1000/1500 В постоянного тока для защиты целых массивов. В ассортименте также различные держатели и прочие аксессуары. Предохранители с характеристикой gPV способны срабатывать при токе, всего в 1.3 превышающем номинальный, что является их характерной особенностью.

Как правильно подобрать предохранитель

Рис.17. Предохранители с характеристикой gPV для защиты солнечных батарей

Также стоит напомнить о широком применении быстродействующих предохранителей в цепях защиты полупроводников частотных преобразователей, устройств плавного пуска, приводов электродвигателей, использующихся в составе производственного оборудования различных отраслей промышленности, источников бесперебойного питания, преобразователей напряжения, оборудования альтернативных источников энергии и т.д.

Компания Bussmann является ведущей компанией в мире по количеству моделей плавких предохранителей, выпускаемых на множестве её заводов по всему миру. Однако, в связи с большим количеством подделок на рынке, необходимо быть уверенными, что приобретаемые вами предохранители являются оригинальным продуктом Bussmann. Избежать приобретения неоригинальной продукции можно, обращаясь к официальному представителю Bussmann в России — компании «Айтекс». Более подробно познакомиться с технической информацией и подобрать нужную модель предохранителя можно на сайте www.bussfuse.ru.

2. IEC 60 269 — 1 Low voltage fuses. Part 1. General requirements.

3. High Speed Fuse Application Guide, Cooper Industries plc, USA, 2010.

4. Намитоков К.К.и др. Аппараты для защиты полупроводниковых устройств.

М.: Энергоатомиздат, 1988г.

Автор: Руслан Черекбашев

Источник

Как правильно подобрать быстродействующий предохранитель

При замене сгоревшего предохранителя вопрос корректного подбора не стоит, так как в паспорте оборудования указан конкретный код производителя. В данной статье будет рассмотрен случай, когда при разработке нового оборудования, комплектации силовых шкафов требуется выбрать быстродействующие предохранители, исходя из параметров системы, условий эксплуатации, особых требований и т. д. Причем наиболее подробно будет обсуждено определение основных параметров, влияющих на подбор предохранителей, — значений номинального напряжения, номинального тока и др.

Определение значения номинального напряжения

Номинальное напряжение предохранителя — это рабочее напряжение переменного или постоянного тока. Чтобы правильно защитить любую систему, номинальное напряжение предохранителя должно быть не меньше напряжения в системе. По требованиям МЭК (Международная электротехническая комиссия) переменное напряжение при тестировании предохранителей должно соответствовать 110% номинального напряжения с коэффициентом мощности 10–20%. По североамериканским стандартам (UL) достаточно, чтобы все предохранители тестировались при их номинальном напряжении с коэффициентом мощности 15–20%. Поэтому на большинстве продуктов BUSSMANN указаны два номинальных напряжения (рис. 1).

Как правильно подобрать предохранитель

Рис. 1. Указание номинального напряжения предохранителя по стандарту МЭК и стандарту UL

Если два предохранителя устанавливаются последовательно, то каждый из них должен быть рассчитан на максимально возможное напряжение в цепи. Заявленные значения переменного номинального напряжения предохранителей BUSSMANN действительны при частотах 45–1000 Гц. Процесс прерывания на более низких частотах аналогичен процессам в цепи постоянного тока. При частоте ниже 45 Гц необходимо внести поправку к номинальному напряжению в соответствии с графиком, представленным на рис. 2.

Как правильно подобрать предохранитель

Рис. 2. Определение поправки к номинальному напряжению предохранителя при частоте ниже 45 Гц

Определение значения номинального тока предохранителя

Номинальный ток предохранителя — это среднеквадратичное значение тока, которое предохранитель способен пропускать продолжительное время без ухудшения его свойств и выхода температуры за допустимые пределы (рис. 3).

Как правильно подобрать предохранитель

Рис. 3. Указание номинального тока предохранителя

Для корректной работы предохранителя необходимо правильно подобрать значение номинального тока. Оно зависит как от параметров защищаемой цепи, так и от многих внешних факторов. При повышенной температуре окружающей среды номинальный ток предохранителя следует увеличить, а при низких температурах или при принудительном охлаждении потоком воздуха — понизить. Также на это значение влияют частота тока, плотность тока в контактной площадке, атмосферное давление (при высотах выше 2000 м над уровнем моря), а также длительность и частота воздействия токов перегрузки. Все эти параметры связаны с номинальным током предохранителя следующей формулой:

где In — номинальный ток предохранителя; Ib — среднеквадратичный максимальный ток нагрузки в цепи, действующий в течение длительного времени; Kt — коэффициент температуры воздуха; Ke — коэффициент контактной плотности тока; Kv — коэффициент воздушного потока; Kf — коэффициент частоты тока; Ka — коэффициент высоты над уровнем моря; Kb — постоянная (const) нагрузки предохранителя.

В технической документации Bussmann номинальный ток предохранителей определен для температуры окружающей среды, равной 20 °C. Однако в реальных условиях эксплуатации температура может отличаться от этого значения. Повышение температуры среды, например в условиях закрытого монтажа или в случае близости теплонагруженных элементов, вызывает необходимость выбора предохранителя большего номинала, так как для плавления перемычки потребуется выделение меньшего количества тепла. И наоборот, понижение температуры окружающей среды требует использования предохранителя с меньшим номинальным током. График определения поправочного коэффициента в зависимости от температуры окружающей среды для типичного быстродействующего предохранителя приведен на рис. 4.

Как правильно подобрать предохранитель

Рис. 4. Определение поправочного коэффициента к номинальному току в зависимости от температуры окружающей среды

Таким образом, если температура окружающего воздуха составляет около 60 °С, то при токе в цепи 100 А нужно использовать предохранитель 100А/0,8 = 125 А. Для оценки влияния воздуха используются различные эмпирические формулы и зависимости. При принудительном воздушном охлаждении предохранителей при скорости потока 2–10 м/с допустимо использовать предохранитель меньшего номинала.

Из графика на рис. 5 видно, что уже при воздушном потоке со скоростью 2 м/с для цепи с максимальным током 1100 А следует использовать предохранитель с номинальным током 1000 А. Следует учесть, что скорость воздушного потока должна браться непосредственно у корпуса предохранителя, а не у крыльчатки вентилятора.

Как правильно подобрать предохранитель

Рис. 5. Определение поправочного коэффициента к номинальному току в зависимости от скорости охлаждающего воздушного потока

Высокое быстродействие предохранителей достигается повышением плотности тока в перешейках плавких элементов, что вызывает сильный нагрев корпуса предохранителя. Следовательно, сечение и длина токоведущих шин оказывают большое влияние на характеристики предохранителя. Около 70% выделяемого в предохранителе тепла отводится через токоподводящие шины. Поэтому увеличение их сечения может обеспечить рост номинального тока на несколько процентов. По рекомендациям специалистов компании Bussmann, плотность тока в токоподводящих шинах должна составлять1,3 А/мм 2 (по стандарту МЭК 60269, часть 4, плотность тока может быть в диапазоне 1–1,6 А/мм 2 ). Если фактическая плотность тока в шинах больше этого значения, то следует повысить номинал предохранителя, используя для расчета коэффициент, определяемый по графику, приведенному на рис. 6.

Как правильно подобрать предохранитель

Рис. 6. Определение поправочного коэффициента к номинальному току в зависимости от плотности тока (эквивалентной сечению) в контактирующих шинах

Если обе подключаемые шины не одинаковы, то коэффициент Ke можно рассчитать по формуле:

Предохранители, работающие в высокочастотных цепях, требуют особого внимания. В таких условиях их токопроводящие способности могут быть понижены вследствие возникновения скин-эффекта и эффекта близости на токопроводящих элементах предохранителя. Скин-эффект выражается в увеличении плотности тока от центра к поверхности проводника. Это связано с явлением вытеснения тока в проводнике под действием собственного магнитного поля. Эффект близости выражается в смещении плотности тока из-за действия тока в расположенных рядом проводниках. Оба этих индукционных эффекта создают неравномерное распределение тока по сечению проводника, что приводит к повышенному выделению тепла. Для их учета вводится поправочный коэффициент частоты тока Kf, определяемый по графику, представленному на рис. 7.

Как правильно подобрать предохранитель

Рис. 7. Определение поправочного коэффициента к номинальному току при рабочей частоте выше 1000 Гц

Из графика видно, что при токе 100 А с частотой 10 кГц нужно использовать предохранитель на 100/0,7 = 143 А.

Когда предохранители применяются, например, в горах, то из-за снижения плотности атмосферы ухудшается конвекционное охлаждение. Поэтому на высотах более 2000 м над уровнем моря применяется коэффициент высоты над уровнем моря, вычисляемый по формуле:

где h — высота в метрах над уровнем моря.

Так, на высоте 5000 м в цепи с током 85 А следует использовать предохранитель на 85/(1 – (5000 – 2000)/20 000) = 100 А.

Постоянная (const) нагрузки предохранителя Kb определяется из технического описания предохранителя. Она зависит от материала корпуса предохранителя. Так, для фарфоровых предохранителей ее значение равно 1, а для корпуса из стекловолокна — 0,8.

Влияние перегрузок

Максимальный ток Imax, которому может подвергаться предохранитель, зависит от длительности и частоты импульсов перегрузки. По длительности перегрузки делятся на две категории:

В таблице приведены основные рекомендации по определению максимально допустимого тока перегрузок Imax.

Таблица. Определение максимально допустимого тока перегрузок Imax

Частота случаев

Перегрузки (>1 с)

Импульсные нагрузки (

Меньше одного раза в месяц

По первой оценке предохранитель на 200 A в этом случае достаточен. Проверим теперь запас прочности на B-фактор. Длительность импульса (рис. 10) равна 120 с. По время-токовой характеристике (рис. 11) определяем ток плавления It для 120 с. Он равен 440 А.

Как правильно подобрать предохранитель

Рис. 11. Определение тока плавления It по время-токовой характеристике предохранителя

Далее из графика (рис. 10) вычисляем период цикла Т. Он составляет 120 с + 15 мин = 17 мин. По графику (рис. 12) определяем коэффициент В для 17 мин. Коэффициент B равен 0,32.

Как правильно подобрать предохранитель

Рис. 12. Определение коэффициента В для периода цикла Т = 17 мин

Проверим выполнение условия надежности при работе с данной циклической нагрузкой. Умножая коэффициент B на ток плавления, получаем 440 × 0,32 = 141 А, что меньше тока импульса, равного 150 А. Значит, при такой циклической нагрузке предохранитель на 200 А не будет иметь достаточного запаса надежности. Необходимо увеличить номинал предохранителя. Проводя такие проверки, мы можем получить гарантию долговременной работы предохранителя в условиях импульсной циклической нагрузки.

Иногда в результате расчетов получается, что показатель тепловой энергии I 2 t предохранителя становится больше аналогичного показателя защищаемого устройства, например IGBT-модуля. При этом предохранитель будет неспособен выполнять назначенные ему функции. В таких ситуациях стоит несколько уменьшить запас прочности предохранителя или, если прочность снижается значительно, придется выбрать другую модель предохранителя.

Кроме выбора основных параметров предохранителя, рассмотренных выше и являющихся определяющими, есть еще и другие критерии, например конструктивное исполнение, вид контактов, наличие индикации срабатывания и т. д. Bussmann является ведущей компанией в мире по количеству выпускаемых моделей плавких предохранителей, а также предлагает наиболее широкий ассортимент быстродействующих предохранителей на мировом рынке.

Источник

Выбор предохранителей и выбор сечения провода. ВАЖНО!

Как правильно подобрать предохранитель

С безопасностью не шутят, поэтому постараюсь изложить кратко, емко и доступно. Без заумностей, кому они нужны — лезем в спец литературу.

1. Любой силовой провод, даже слаботочная сопля ДОЛЖЕН БЫТЬ ЗАЩИЩЕН ПРЕДОХРАНИТЕЛЕМ! Даже я, со своим маниакальным отношениям к проводке и немалым опытом горел разок именно из-за слаботочной проводки, которую впопыхах криво подключил!

2. Пред защищает ВСЕ, что идет ЗА НИМ до следующего предохранителя, поэтому если за предом провод разделяется на несколько меньших и в точке разделения НЕТ предохранителя, номинал предохранителя выбирается ПО МЕНЬШЕМУ сечению провода. Иными словами — предохранитель должен сгореть РАНЬШЕ, чем ЛЮБОЙ из проводков ЗА НИМ!

3. Не забываем о том, что помимо защищаемого + провода, у нас есть еще и — провод! Если сечение — провода МЕНЬШЕ сечения +, номинал предохранителя выбирается исходя из МЕНЬШЕГО сечения!

4. Также не забываем дублировать штатную развязку массы АКБ проводом того же номинала, что и — нагрузки, даже если — провод подключен не на кузов, а напрямую от АКБ, т.к. в случае его обрыва, ток пойдет по штатной массе, номинал которой не велик.

5. Подбор номинала провода осуществляется исходя из его длины и нагрузки (ее можно получить путем сложения номиналов предов на усилителях) по таблице

Как правильно подобрать предохранитель

6. Подбор номинала предохранителя осуществляется исходя из длины и сечения защищаемого кабеля (в случае нескольких кабелей — наименьшего, см. п2) В условиях автомобиля, при длине проводов до 8м (условно), максимальный ток, который может пропустить провод узнаем из таблицы.

Как правильно подобрать предохранитель

Предохранитель выбирается НЕ БОЛЕЕ ближайшего МЕНЬШЕГО номинала. Например, имея провод 4 AWG, видим макс ток 105,7А, соответственно пред — не более 100А

Как правильно подобрать предохранитель

Примечание: Все цифры приведены для медных проводов. Если провод аллюминевый, то пред нужно выбирать на 40% меньшим номиналом. Если провод КГ, где оплетка не терпима к температурам, то пред нужно выбирать на 15% меньшим номиналом.

ЗЫ В некоторых соревновательных лигах подбор предохранителя осуществляется по другим принципам, но для общей пожаробезопасности — этих таблиц достаточно, поэтому здесь я другие варианты не рассматривал.
ЗЫЫ Поправки-дополнения приветствуются. Я давно не практиковался, мог что-то упустить.

Источник

Плавкий предохранитель
Выбор проволоки для ремонта

Плавкий предохранитель – это установочное изделие, предназначенное для защиты электроприборов путем отключения подачи на них электроэнергии при превышении допустимой величины тока способом расплавления установленной в предохранителе калиброванной проволоки.

Как правильно подобрать предохранитель

Для защиты электрической проводки и дорогостоящей радиоаппаратуры от короткого замыкания, бросков тока в питающей сети и обеспечения безопасной эксплуатации электроприборов широко используются плавкие вставки – предохранители. Они выпускаются разных конструкций, типоразмеров и на любые токи защиты.

Рассмотренная технология ремонта предохранителей при соблюдении всех условий обеспечит его защитную функцию. Но не каждый имеет опыт работы с паяльником и измерения диаметра проволоки. Да и в любом случае предохранитель промышленного изготовления будет работать надежнее.

Квартирную электропроводку раньше тоже защищали исключительно с помощью плавких предохранителей, установленных в пробки. В настоящее время для защиты электропроводки применяются более надежные многоразовые приборы защиты от коротких замыканий – автоматические выключатели. В электроприборах же, более лучшей защиты от коротких замыканий, чем плавкий предохранитель пока ничего не придумали. Особенно актуально применение плавких предохранителей в автомобилях, так как они являются единственным надежным и дешевым средством защиты от короткого замыкания.

Условное графическое обозначение
плавкого предохранителя

Условное графическое обозначение плавкого предохранителя на схемах похоже на обозначения сопротивления, и отличается только тем, что через середину прямоугольника линия проходит не разрываясь. Рядом с условным обозначением обычно пишется и буквенное обозначение Пр. или F. Иногда на схемах просто пишут thermal fuse или fuse. После буквы часто указывают ток защиты предохранителя, например F 1 А, обозначает, что в схеме установлен предохранитель на ток защиты 1 ампер.

Как правильно подобрать предохранитель

При эксплуатации предохранители выходят из строя, и их приходится заменять новыми. Считается, что предохранители ремонту не подлежат. Но если к делу ремонта подойти грамотно, то практически любой предохранитель можно с успехом отремонтировать и использовать повторно. Ведь корпус предохранителя остается целым, а перегорает только тонкая калиброванная проволока, размещенная внутри корпуса. Если перегоревшую проволоку заменить на такую же, то предохранитель сможет служить дальше.

Принцип работы предохранителя на видеоролике

При прохождении электрического тока меньше предельно допустимого, калиброванная проволока, соединяющая контакты предохранителя, нагревается до температуры около 70˚С. В случае превышения тока номинала предохранителя, проволока начинает нагреваться сильнее и при достижении температуры плавления металла, из которого она сделана – расплавляется, электрическая цепь разрывается, и течение тока прекращается.

Поэтому предохранитель и назвали плавким или плавкой вставкой. Видеоролик представлен в замедленном виде, для того, чтобы было хорошо видно, как происходит перегорание провода в предохранителе. В реальных условиях провод в предохранителе перегорает практически мгновенно.

Предохранитель защищает от превышения тока в цепи и, не имеет значения напряжение питающей сети, в которой он установлен, это может быть батарейка на 1,5 В, и автомобильный аккумулятор на 12 В или 24 В, сеть переменного напряжения 220 В, трехфазная сеть на 380 В. То есть Вы можете установить один и тот же предохранитель, например номиналом 1 А и в колодке предохранителей автомобиля, и в фонарике и в распределительном щите 380 В. Все типы плавких предохранителей отличаются только внешним видом и конструкцией, а работают по одному принципу – при превышении заданного тока в цепи, в предохранителе из-за нагрева расплавляется проволока.

Основных причин выхода из строя предохранителя две, из-за бросков питающего напряжения или поломки внутри самой радиоаппаратуры. Редко, но встречаются отказы предохранителя и по причине плохого его качества.

Многие думают, что предохранитель ремонту не подлежит. Но это не совсем так. В экстренной ситуации, когда под рукой нет запасного и, например, из-за отказавшегося работать авто в пути или усилителя, и срывается музыкальное сопровождение школьного бала или свадьбы, а все магазины уже закрыты, выбирать не приходится.

При грамотном подходе можно с успехом восстановить для временного использования до замены новым перегоревший предохранитель, сохранив его защитные функции. Зачастую такие проблемы решают банальным замыканием контактов держателя предохранителя любой попавшейся проволокой, а еще хуже, просто вставляют вместо предохранителя гвоздь или кусок толстой проволоки. Такое решение может окончательно все испортить и способствует возникновению пожара.

Типы плавких предохранителей

По назначению и конструкции плавкие предохранители бывают следующих типов:

Рассмотренная в статье технология ремонта предназначена для восстановления вилочных, со слаботочными вставками, пробковых и ножевого типа предохранителей.

Трубчатые плавкие предохранители

Предохранитель трубчатой конструкции представляет собой стеклянную или керамическую трубочку, закрытую с торцов металлическими колпачками, которые соединены между собой проволокой калиброванной по диаметру, проходящей внутри трубочки. Внешний вид трубчатых плавких предохранителей Вы видите на фотографии.

Как правильно подобрать предохранитель

К колпачкам проволока приваривается точечной сваркой или припаивается припоем. В предохранителях, рассчитанных на очень большие токи, часто полость внутри трубочки заполняют кварцевым песком.

Автомобильные плавкие предохранители

Предохранители в автомобилях выходят из строя очень редко. Обычно только в случаях, когда отказывает оборудование. Чаще всего при перегорании лампочек у фар. Дело в том, что когда обрывается нить накаливания у лампочки, образуется Вольтова дуга, нить при этом сгорает и становится короче, сопротивление резко уменьшается и величина тока многократно увеличивается.

Бывает, плавкий предохранитель в автомобиле сгорает и при заклинивании стеклоочистителей. Реже при коротких замыканиях в электропроводке. На фотографии Вы видите широко применяемые автомобильные плавкие предохранители ножевого (вилочного) типа. Под каждым предохранителем приведен ток его защиты в амперах.

Как правильно подобрать предохранитель

Перегоревший предохранитель в авто положено заменять предохранителем такого же номинала, но можно его и отремонтировать, заменив перегоревший в предохранителе провод медным соответствующего диаметра. Напряжение бортовой сети автомобиля значения не имеет. Главное – соответствие тока защиты. Если трудно определить номинал сгоревшего авто предохранителя, то можно воспользоваться цветовой маркировкой.

Цветовая маркировка автомобильных предохранителей

Ток защиты, Ампер5,07,510,015,020,025,030,040,060,070,0
Цвет корпуса
предохранителя
оранжевыйкоричневыйкрасныйголубойжелтыйпрозрачныйзеленыйфиолетсинийчерный

Формула для расчета диаметра проволоки предохранителя
по мощности электроприбора

Мощность часто указывают на этикетках, приклеенных на изделиях. Если на изделии указана потребляемая мощность, то можно рассчитать номинальный ток предохранителя по нижеприведенной формуле.

Как правильно подобрать предохранительгде I nom – номинальный ток защиты предохранителя, А; P max – максимальная мощность нагрузки, Вт; U – напряжение питающей сети, В.

Но гораздо удобнее воспользоваться готовыми данными из таблиц. Обратите внимание, первая таблица служит для выбора номинала предохранителя изделий, питающихся от бытовой электросети 220 В, а вторая, для изделий, используемых в автомобилях с напряжением бортовой сети 12 В.

Таблица для выбора номинала предохранителя в зависимости от потребляемой мощности электроприбора при питающем напряжении 220 В

Максимальная мощность потребления электроприбором, ватт (BA)105010015025050080010001200160020002500300040006000800010000
Номинал стандартного предохранителя, А0,10,250,51,02,03,04,05,06,08,010,012,015,020,030,040,050,0

Рассмотрим на примере как выбирать предохранитель.
Телевизор перестал работать после грозы. Определено, что сгорел предохранитель. Номинал его не известен. На этикетке задней крышки написано, что потребляемая мощность составляет 120 Вт, бывает, что пишут и 120 ВА. Это обозначение одной и той же мощности, но по стандартам разных стран. По таблице получается, что для электроприборов с максимальной потребляемой мощностью 120 Вт (ближайшее значение 150 Вт) является предохранитель на 1 А.

Методика подбора предохранителя для защиты бортовой электропроводки автомобиля ничем не отличается от выбора для бытовой электропроводки 220 В.

Таблица для выбора номинала предохранителя в зависимости от потребляемой мощности электроприбора при питающем напряжении 12 В (бортовая сеть автомобиля)

Мощность электроприбора, ватт (BA)до 50до 75до 100до 150до 200до 250до 300до 400до 600до 700
Номинал стандартного предохранителя, А5,07,510,015,020,025,0030,040,060,070,0
Цвет корпуса предохранителяоранжевыйкоричневыйкрасныйголубойжелтыйпрозрачныйзеленыйфиолетсинийчерный

Если после двух замен предохранители каждый раз перегорали, значит, поврежден электроприбор и требуется уже его ремонт. Попытка установить предохранитель на больший ток может только нанести еще дополнительный вред изделию вплоть до неремонтопригодности.

Калькулятор для расчета тока предохранителя

Если в таблицах нет данных для Вашего случая, например, напряжение питания изделия составляет 24 В или 110 В, то можете самостоятельно с помощью приведенного ниже онлайн калькулятора выполнить расчет.

Онлайн калькулятор для определения тока предохранителя
Максимальная мощность нагрузки, Вт:
Напряжение питающей сети, В:

При расчете на калькуляторе Вы получите точное значение тока. Для надежной работы предохранителя необходимо, чтобы его номинал был не менее чем на 5% больше. Например, если получено расчетное значение тока 1 А, то нужно брать предохранитель большего ближайшего номинала из стандартного ряда, то есть 2 А.

Иногда попытки определить номинал предохранителя считыванием информации не получается. На электроприборе надписей нет, на предохранителе не читаемая маркировка. При наличии амперметра, и опыта работы с ним, то вынув предохранитель и подключив амперметр к контактам колодки, в котором был установлен предохранитель, можно измерять ток и тем самым определить его номинал.

Но тут есть подводный камень. Если предохранитель вышел из строя из-за неисправности электроприбора, то ток может быть намного больше, чем должен быть, в дополнение можно еще и вывести из строя измерительный прибор.

Расчет диаметра проволоки плавкого предохранителя

Для ремонта предохранителя необходимо заменить перегоревшую проволоку. При производстве предохранителей на заводах используют, в зависимости от величины тока и быстродействия, калиброванные серебряные, медные, алюминиевые, никелиновые, оловянные, свинцовые и проволоки из других металлов.

Для изготовления предохранителя в домашних условиях доступна только красная медь калиброванного диаметра. Все электропровода сделаны из меди, и чем эластичней провод, тем тоньше в нем проводники и большее их количество. Поэтому вся ниже предложенная технология ориентирована на применение медной проволоки.

При выборе предохранителя для аппаратуры разработчики пользуются простым законом. Ток предохранителя должен быть больше максимально потребляемый изделием. Например, если максимальный ток потребления усилителя составляет 5 ампер, то предохранитель выбирается на 10 ампер. Первое, что необходимо найти на корпусе предохранителя его маркировку, из которой можно узнать, на какой ток он рассчитан. Часто величину тока пишут на корпусе изделия, рядом с местом установки предохранителя. Затем из нижеприведенной таблицы определить какого диаметра нужен провод.

Таблицы для выбора диаметра проволоки
в зависимости от тока защиты предохранителя

Для ремонта предохранителей на ток защиты от 0.25 до 50 ампер

Ток защиты предохранителя, Ампер0.250.51.02.03.05.07.010.015.020.025.030.035.040.045.050.0
Диаметр проволоки, ммМедной0.020.030.050.090.110.160.200.250.330.400.460.520.580.630.680.73
Алюминиевой0.070.100.140.190.250.300.400.480.560.640.700.770.830.89
Стальной0.320.200.250.350.450.550.720.871.001.151.261.381.501.60
Оловянной0.180.280.380.530.660.851.021.331.561.771.952.142.302.45

Для ремонта предохранителей на ток защиты от 60 до 300 Ампер

Ток защиты предохранителя, Ампер60708090100120160180200225250275300
Диаметр проволоки, ммМедной0.830.911.001.081.161.311.591.721.841.992.142.282.41
Алюминиевой1.001.101.221.321.421.601.942.102.252.452.602.802.95
Стальной1.802.002.202.382.552.853.203.704.054.404.705.05.30
Оловянной2.803.103.403.653.904.454.905.806.206.757.257.708.20

Формула для расчета диаметра медной проволоки
для предохранителя

Для определения более точных значений диаметра медной проволоки для ремонта предохранителя, или если требуется предохранитель на ток защиты, значения которого нет в таблице, можно воспользоваться ниже приведенной формулой.

Как правильно подобрать предохранительгде I пр – ток защиты предохранителя, А; d – диаметр медной проволоки, мм.

Онлайн калькулятор для расчета диаметра проволоки в зависимости от тока
Введите величину максимального тока, A:

Как измерять диаметра проволоки

Диаметр тонкого провода лучше всего измерять микрометром. Если под рукой нет микрометра для измерения диаметра проволоки, то можно воспользоваться обыкновенной линейкой.

Как правильно подобрать предохранитель

Нужно намотать 10-20 витков к витку проволоки на линейку, поделить количество закрытых миллиметров на количество намотанных витков. Получите диаметр. Например, у меня намотано 10 витков провода, и они закрыли 6,5 мм. Делим 6,5 на 10. Диаметр провода получается равным 0,65 мм. 0,05 мм занимает изоляция. Следовательно, реальный диаметр составляет 0,6 мм.

Такой провод подойдет для изготовления предохранителя на 30 А. Провод мотал толстый для большей наглядности. Чем больше намотаете витков на линейку, тем точнее будет результат измерений. Нужно наматывать не менее одного сантиметра. Если в наличии проволока малой длины, то намотайте ее на любой стержень, например, отвертку, зубочистку или карандаш, а линейкой измерьте ширину намотки.

Онлайн калькулятор для расчета диаметра провода
Ширина намотки на линейке, мм:
Количество витков:

Результаты измерений можете обработать с помощью онлайн калькулятора. Для определения диаметра провода достаточно в окошках ввести ширину намотки, количество витков и нажать «Рассчитать диаметр провода».

Ремонт плавкого предохранителя своими руками

Ремонт трубочного плавкого предохранителя

Первый самый простой. Проволока зачищается до блеска и наматывается на каждую чашку по несколько витков, затем предохранитель вставляется в держатель. Этот способ ненадежен, и воспользоваться им можно, как временной мерой. Благодаря своей простоте он позволяет оперативно проверить исправность электроприбора. Если при включении проволока расплавилась, значит дело не в предохранителе, и требуется более квалифицированный ремонт.

Как правильно подобрать предохранитель

Второй способ несколько сложней. Но тоже не требует применения пайки. Нужно прогреть по очереди чашки зажигалкой или на газовой плите и удерживая через ткань руками снять их со стеклянной трубки. Нагревать можно и паяльником. Внутри чашки для хорошего контакта нужно тщательно очистить от остатков клея.

Как правильно подобрать предохранитель

Продеть зачищенную от изоляции проволоку через трубку по диагонали, загнуть ее концы вдоль трубки и надеть на место чашки. Плавкий предохранитель отремонтирован.

Третий способ по сути такой же, как и первых два. Но отремонтированный предохранитель практически не отличается от нового. Ремонт выполняется следующим образом.

Заводская калиброванная проволока при изготовлении предохранителя продевается в отверстия в торцах чашек и фиксируется припоем. Для того, чтобы вставить новую проволоку необходимо паяльником разогреть торцы чашек и зубочисткой или заточенной деревянной палочкой освободить отверстия в торцах чашек от припоя. Далее выполнить описанную выше заводскую операцию.

Как правильно подобрать предохранитель

Бывает отверстия в чашках очень маленького диаметра и сложно их очистить от припоя. Тогда при наличии технической возможности проще просверлить отверстия сверлом диаметром 1-2 мм или расширить граненым шилом

Предложенная технология ремонта предохранителей и плавких вставок с успехом может быть применена для восстановления практически любых типов плавких предохранителей.

Ремонт автомобильного предохранителя ножевого типа

Технология ремонта автомобильного предохранителя ничем не отличается от технологии ремонта трубчатого, даже проще, так как нет необходимости заниматься его разборкой.

Как правильно подобрать предохранитель

Сначала нужно наждачной бумагой или надфилем зачистить ножи предохранителя у его основания полоской в несколько миллиметров и залудить эти места припоем.

Как правильно подобрать предохранитель

При залуживании столкнулся с тем, что при использовании спирто-канифольного флюса припой не хотел растекаться по поверхности ножей. Пришлось применить флюс «ФИМ», предназначенный для пайки меди, серебра, константана, платины и черных металлов. Основой флюса является ортофосфорная кислота. Я его всегда использую для пайки, если канифоль не подходит. Остатки флюса ФИМ удаляются промывкой водой.

Как правильно подобрать предохранитель

Предохранитель был рассчитан на ток защиты 10 А, поэтому в соответствии с приведенной выше таблицей для ремонта был взят провод ⌀0,25 мм. Проводу была придана форма петли, как показано на фотографии, и концы его залужены припоем.

Как правильно подобрать предохранитель

После всех подготовительных работ осталось только завести петлю провода внутрь корпуса предохранителя и припаять концы к ножкам.

Как правильно подобрать предохранитель

Растекшийся припой можно срезать ножом, удалить с помощью наждачной бумаги или сточить надфилем.

Как правильно подобрать предохранитель

Автомобильный предохранитель отремонтирован, и теперь его можно повторно использовать для защиты цепей в электропроводке автомобиля. Если после установки отремонтированного предохранителя он опять перегорел, то нужно искать неисправность в электрооборудовании автомобиля.

Как сделать индикатор перегорания предохранителя своими руками

В продаже есть автомобильные предохранители с индикатором их неисправности. В корпусе предохранителя вмонтирована миниатюрная лампочка накаливания или светодиод, начинающие светиться при перегорании предохранителя. Такой индикатор перегорания авто предохранителя можно собрать своими руками по ниже предложенной на фотографии электрической схеме.

Как правильно подобрать предохранитель

Для этого достаточно подсоединить параллельно контактам предохранителя, любой светодиод VD1 через токоограничивающий резистор R1 или миниатюрную лампочку, рассчитанную на напряжение 12 В. Индикатор перегорания предохранителя можно смонтировать как в корпусе предохранителя, так и установить на колодке его держателя. Второй вариант предпочтительнее, так как при замене предохранителя индикатор останется на месте. Индикатор не будет светить при перегоревшем предохранителе, если не подключена нагрузка.

Приведенная на фотографии схема индикатора перегорания предохранителя или срабатывании автоматического выключателя с успехом может работать и в бытовой электросети при питающем напряжении 220 В.

Как правильно подобрать предохранитель

Достаточно увеличить номинал резистора R1 до 300-500 кОм и для защиты светодиода VD1 от пробоя обратным напряжение дополнить схему диодом VD2 любого типа, рассчитанного на обратное напряжение не менее 300 В. Подойдет, например, широко применяемый отечественный диод КД109Б или импортный 1N4004.

Для сети переменного тока 220 В можно индикатор перегорания предохранителя или автоматического выключателя сделать на неоновой лампочке.

Как правильно подобрать предохранитель

О принципе работы схем индикаторов и о расчете номиналов резистора с помощью онлайн калькулятора в зависимости от типа используемого светодиода или неоновой лампочки с примерами монтажа вопрос подробно рассмотрен в статье сайта «Схема подключения выключателя с подсветкой».

Источник

Как выбрать предохранитель?

Несмотря на то, что сегодня повсеместно применяются автоматы защиты, в ряде случаев требуется установка плавкого предохранителя – классического устройства, применяемого электротехниками для защиты электрической сети от перегрузки, короткого замыкания.

Можно сказать, что для некоторых устройств именно установка предохранителя является вариантом более предпочтительным, а то и незаменимым, выполняя роль важного звена в электроцепи в:

В народе предохранители называют чаще всего пробками, и они по-прежнему работают в огромном числе распредщитков в домах, оставшихся от советского периода застройки. Недорогие, маленькие по размеру, они популярны, потому что их просто заменить, к тому же, они хорошо справляются со своей задачей.

Как правильно подобрать предохранитель

Что такое предохранитель и как он работает

Предохранитель защищает от перегрузок тока посредством компонента, который называется плавкой вставкой. При определенных параметрах проводник расплавляется, и электрическая цепь размыкается. Вставки бывают одноразовыми, а предохранитель – это своего рода их многоразовый держатель.

В разных предохранителях используются разные вставки. Так, вставка может быть в виде тонкой проволоки, которые применяются в электронике. В цепях, где ток превышает тысячу ампер, применяются массивные пластины. В любом случае срабатывание происходит через несколько ступеней:

После этого наступает отключение.

Как выбрать предохранитель

Все предохранители отвечают единым параметрам:

В целом говорить о выборе предохранителя вряд ли корректно. Выбирать тут нечего, нужно искать именно тот предохранитель, который бы отвечал конкретным условиям. Главным условием можно назвать следующее: плавкая вставка предохранителя должна иметь номинальный ток со значением, превышающим номинальный ток цепи, которую защищает предохранитель. При этом напряжение данного предохранителя должно совпадать с сетевым напряжением.

Предохранители выбирают разных типов. Так, для сельских сетей низкого напряжения используются внутри помещения предохранители трубчатого и пробочного типа с нормированными по особой шкале номинальными токами – от 4 до 300 А.

Установку предохранителей производят в местах уменьшения сечения проводника в направлении мест энергопотребления, в местах ввода в сооружения и на головном участке сети. Если случится авария, то перегореть должен только тот предохранитель, который находится ближе прочих к месту повреждения. Этого можно достичь, если в каждом предохранителе плавкая вставка будет иметь номинальный ток с уменьшением в сторону от источника питания.

Предохранители автоматические

Кроме плавких предохранителей, существуют автоматические. Принято различать несколько типов:

Наибольшее распространение в настоящее время получили автоматические выключатели. Популярность их объясняется тем, что, в отличие от плавких предохранителей, они не требуют столь частой замены и более функциональны. Так, автомат можно без проблем и очень быстро включить повторно, а управлять им – на расстоянии, дистанционно.

Как устроен предохранитель-автомат

Каждый из автоматов работает, обеспечивая электромагнитную и тепловую защиту. При тепловой защите расцепитель представляет собой биметаллическую пластину, пропускающую через себя электроток, который ее и нагревает. Когда же ток доходит до максимально допустимой величины порога, срабатывает защита – благодаря деформированию самой пластины. Размеры минимального тока связаны с типом предохранителя. Удобство такого устройства в том, что, остывая, пластина вновь приобретает прежний вид и становится пригодной к дальнейшей эксплуатации.

Как правильно подобрать предохранитель

Как выбрать предохранитель-автомат

При выборе автомата нужно, в первую очередь, принимать во внимание такой показатель, как номинальный ток. Его максимальное значение не должно быть больше максимальной нагрузки в проводке – более того, нагрузка проводки должна быть больше на 15 процентов. Только в этом случае возможна ее защита.

Вторым критерием отбора является выбор предохранителя, наиболее близкого по стандартному ряду.

Наконец, выбор следующего параметра – тока срабатывания – зависит от того, для чего приобретается аппарат. Так, в доме или квартире можно установить сразу несколько предохранителей-аппаратов, в каждом из которых выбор номинала зависеть будет от той нагрузки, что несет каждая линия. Разумеется, при разработке электросхемы не нужно забывать и о селективности, то есть о том, что аппараты, расположенные в разноуровневых местах, должны работать по очереди – низший уровень раньше верхнего.

На вводе обычно ставят перед счетчиком автомат основной и двухполюсный, после чего производится подключение однополюсных автоматов по каждой из отдельных электролиний. Существуют также автоматы дифференциальные, предназначенные для работы в виде собственно автомата и УЗО.

Если главный ввод вы планируете как трехфазный, то стоит установить четырехполюсный предохранитель автоматического типа, распределив всю нагрузку на все линии равномерно. Когда требуется установить газовые котлы, станки с электродвигателем, применяют трехфазный ввод с соответствующим автоматом четырехполюсного типа и номиналом, который меньше главного, расположенного на входе.

Для основных однофазных потребителей применяются три типа предохранителя:

Электронные предохранители

Они бывают самовосстанавливающимися, сигнализирующими о наступлении аварии, восстанавливающими питание посредством внешнего вмешательства

Источник

Как правильно подобрать быстродействующий предохранитель?

Силовая электроника, управляющая киловаттами и мегаваттами энергии, немыслима без соответствующих мер защиты. Наряду со сложными автоматизированными системами в аппаратуре всегда имеется последний защитный барьер в виде предохранителей. От правильного выбора параметров предохранителя зависят затраты, которые понесет потребитель при последующем ремонте. При замене сгоревшего предохранителя вопрос корректного подбора не стоит, так как в паспорте оборудования указан конкретный код производителя. В данной статье будет рассмотрен случай, когда при разработке нового оборудования, комплектации силовых шкафов требуется выбрать быстродействующие предохранители, исходя из параметров системы, условий эксплуатации, особых требований и т. д. Причем наиболее подробно будет обсуждено определение основных параметров, влияющих на подбор предохранителей — значений номинального напряжения, номинального тока и др.

Определение значения номинального напряжения

Номинальное напряжение предохранителя — это рабочее напряжение переменного или постоянного тока. Чтобы правильно защитить любую систему, номинальное напряжение предохранителя должно быть не меньше напряжения в системе. По требованиям МЭК (Международная электротехническая комиссия)переменное напряжение при тестировании предохранителей должно соответствовать 110% номинального напряжения с коэффициентом мощности 10–20%. По северо-американским стандартам (UL) достаточно, чтобы все предохранители тестировались при их номинальном напряжении с коэффициентом мощности 15–20%. Поэтому на большинстве продуктов BUSSMANN указаны два номинальных напряжения (рис. 1).

Как правильно подобрать предохранитель

Если два предохранителя устанавливаются последовательно, то каждый из них должен быть рассчитан на максимально возможное напряжение в цепи. Заявленные значения переменного номинального напряжения предохранителей BUSSMANN действительны при частотах 45–1000 Гц. Процесс прерывания на более низких частотах аналогичен процессам в цепи постоянного тока. При частоте ниже 45 Гц необходимо внести поправку к номинальному напряжению в соответствии с графиком, представленным на рис. 2.

Как правильно подобрать предохранитель

Определение значения номинального тока предохранителя

Номинальный ток предохранителя — это среднеквадратичное значение тока, которое предохранитель способен пропускать продолжительное время без ухудшения его свойств и выхода температуры за допустимые пределы. Для корректной работы предохранителя необходимо правильно подобрать значение номинального тока. Оно зависит как от параметров защищаемой цепи, так и от многих внешних факторов. При повышенной температуре окружающей среды номинальный ток предохранителя следует увеличить, а при низких температурах или при принудительном охлаждении потоком воздуха — понизить. Также на это значение влияют частота тока, плотность тока в контактной площадке, атмосферное давление (при высотах выше 2000 м над уровнем моря),а также длительность и частота воздействия токов перегрузки. Все эти параметры связаны с номинальным током предохранителя следующей формулой:

In = Ib / (Kt × Ke × Kv × Kf × Ka × Kb),
где In — номинальный ток предохранителя; Ib — среднеквадратичный максимальный ток нагрузки в цепи, действующий в течение длительного времени; Kt — коэффициент температуры воздуха; Ke — коэффициент контактной плотности тока; Kv — коэффициент воздушного потока; Kf — коэффициент частоты тока; Ka — коэффициент высоты над уровнем моря; Kb — постоянная (const) нагрузки предохранителя. В технической документации Bussmann номинальный ток предохранителей определен для температуры окружающей среды, равной 20 °C.

Как правильно подобрать предохранитель

Однако в реальных условиях эксплуатации температура может отличаться от этого значения. Повышение температуры среды, например, в условиях закрытого монтажа или в случае близости теплонагруженных элементов вызывает необходимость выбора предохранителя большего номинала, так как для плавления перемычки потребуется выделение меньшего количества тепла. И наоборот, понижение температуры окружающей среды требует использования предохранителя с меньшим номинальным током. График определения поправочного коэффициента в зависимости от температуры окружающей среды для типичного быстродействующего предохранителя приведен на рис. 4.

Как правильно подобрать предохранитель

Таким образом, если температура окружающего воздуха составляет около 60 о С, то при токе в цепи 100 А нужно использовать предохранитель 100А/0,8 = 125 А. Для оценки влияния воздуха используются различные эмпирические формулы и зависимости. При принудительном воздушном охлаждении предохранителей при скорости потока 2–10 м/с допустимо использовать предохранитель меньшего номинала. Из графика на рис. 5 видно, что уже при воздушном потоке со скоростью 2 м/с для цепи с максимальным током 1100 А следует использовать предохранитель с номинальным током 1000 А.

Как правильно подобрать предохранитель

Следует учесть, что скорость воздушного потока должна браться непосредственно у корпуса предохранителя,
а не у крыльчатки вентилятора. Высокое быстродействие предохранителей достигается повышением плотности тока в перешейках плавких элементов, что вызывает сильный нагрев корпуса предохранителя. Следовательно, сечение и длина токоведущих шин оказывают большое влияние на характеристики предохранителя. Около 70% выделяемого в предохранителе тепла отводится через токоподводящие шины. Поэтому увеличение их сечения может обеспечить рост номинального тока на несколько процентов. По рекомендациям специалистов компании Bussmann, плотность тока в токоподводящих шинах должна составлять1,3 А/мм2 (по стандарту МЭК 60269, часть 4, плотность тока может быть в диапазоне 1–1,6 А/мм2). Если фактическая плотность тока в шинах больше этого значения, то следует повысить номинал предохранителя, используя для расчета коэффициент, определяемый по графику, приведенному на рис. 6.

Как правильно подобрать предохранитель

Например, прямоугольный предохранитель на 200 А установлен на шине с сечением 100 мм2. Плотность тока при этом равна 200/100 = 2 A/мм2. Чтобы удовлетворить требованию 1,3 А/мм2, рекомендуемое сечение шины должно быть 200/1,3 = 154 мм2. Фактический размер шины составляет 100/154 = 65% от рекомендуемого значения. Определив по графику коэффициент Ke, получаем номинальный ток предохранителя 200/0,94 = 213 А. Если обе подключаемые шины не одинаковы, то коэффициент Ke можно рассчитать по формуле: Ke = (Ke1 + Ke2) / 2. Предохранители, работающие в высоко частотных цепях, требуют особого внимания. В таких условиях их токопроводящие способности могут быть понижены вследствие возникновения скин-эффекта и эффекта близостина токопроводящих элементах предохранителя. Скин-эффект выражается в увеличении плотности тока от центра к поверхности проводника. Это связано с явлением вытеснения тока в проводнике под действием собственного магнитного поля. Эффект близости выражается в смещении плотности тока из-за действия тока в расположенных рядом проводниках. Оба этих индукционных эффекта создают неравномерное распределение тока по сечению проводника, что приводит к повышенному выделению тепла. Для их учета вводится поправочный коэффициент частоты тока Kf, определяемый по графику, представленному на рис. 7.

Как правильно подобрать предохранитель

Из графика видно, что при токе 100 А с частотой 10 кГц нужно использовать предохранитель на 100/0,7 = 143 А. Когда предохранители применяются, например, в горах, то из-за снижения плотности атмосферы ухудшается конвекционное охлаждение. Поэтому на высотах более 2000 м над уровнем моря применяется коэффициент высоты над уровнем моря, вычисляемый по формуле: Ka = (1 – (h – 2000)/20000),где h — высота в метрах над уровнем моря. Так, на высоте 5000 м в цепи с током 85 А следует использовать предохранитель на 85/(1 – (5000 – 2000)/20000) = 100 А. Постоянная (const) нагрузки предохранителя Kb определяется из технического описания предохранителя. Она зависит от материала корпуса предохранителя. Так, для фарфоровых предохранителей ее значение равно 1, а для корпуса из стекловолокна — 0,8.

Влияние перегрузок

Максимальный ток Imax, которому может подвергаться предохранитель, зависит от длительности и частоты импульсов перегрузки. По длительности перегрузки делятся на две категории:
• перегрузки длительностью более 1 с;
• перегрузки длительностью менее 1 с.
В таблице приведены основные рекомендации по определению максимально допустимого тока перегрузок Imax. Ток плавления берется из время-токовой характеристики предохранителя. Типичные примеры циклов нагрузки, включая токи перегрузки, приведены на рис. 8.

Как правильно подобрать предохранитель

Возьмем, для примера, предохранитель на 200 А, который 3–5 раз в день подвергается перегрузкам 300 A, каждая из которых длится по 5 с. Для данного типа предохранителя по время-токовой кривой находим, что ток плавления It, соответствующий времени длительности перегрузок 5 с, будет равняться 600 A. По таблице определяем, что для данного типа предохранителя максимальный возможный ток перегрузки равен 60% × 600 = 360 A. Значит, этот предохранитель может выдерживать временные перегрузки до 360 A. Таким образом, выбранный плавкий предохранитель на 200 A, подвергающийся перегрузкам в 300 A в течение 5 с 3–5 раз в день, будет работать правильно.

Циклические нагрузки

Циклическая нагрузка, приводящая к преждевременной усталости предохранителей, определяется регулярными и нерегулярными изменениями тока нагрузки. При этом параметры тока должны достигать величин, приводящих к деформации плавких элементов предохранителя. Для того чтобы избежать этого, при выборе предохранителя закладывается определенный запас прочности. Так как общее правило для всех ситуаций установить невозможно, используется добавочный коэффициент G, определяемый эмпирически. В большинстве случаев достаточным является следующее значение коэффициента G = 1,6. После того как предохранитель был выбран, необходимо провести проверку для определения достаточности запаса прочности в условиях периодической импульсной нагрузки. Для этого нужно определить ток плавления It по время-токовой характеристике предохранителя. В качестве аргумента берется длительность одного импульса из цикла. Далее следует по графику (рис. 9) найти коэффициент цикличных пульсаций B. Здесь в качестве аргумента используется период импульсов T. Чтобы предохранитель надежно выполнял свои функции, допустимое значение тока импульса должно быть менее произведения тока плавления It и коэффициента B:

Как правильно подобрать предохранитель

Ipulse Irms × G = 107 × 1,6 = 171 A.

По первой оценке предохранитель на 200 A в этом случае достаточен. Проверим теперь запас прочности на B-фактор. Длительность импульса (рис. 10) равна 120 с. По время-токовой характеристике (рис. 11) определяем ток плавления It для 120 с. Он равен 440 А.

Как правильно подобрать предохранитель

Далее из графика (рис. 10) вычисляем период цикла Т. Он составляет 120 с + 15 мин = 17 мин. По графику (рис. 12) определяем коэффициент В для 17 мин. Коэффициент B равен 0,32. Проверим выполнение условия надежности при работе с данной циклической нагрузкой. Умножая коэффициент B на ток плавления, получаем 440 × 0,32 = 141 А, что меньше тока импульса, равного 150 А.

Как правильно подобрать предохранитель

Значит, при такой циклической нагрузке предохранитель на 200 А не будет иметь достаточного запаса надежности. Необходимо увеличить номинал предохранителя. Проводя такие проверки, мы можем получить гарантию долговременной работы предохранителя в условиях импульсной циклической нагрузки. Иногда в результате расчетов получается, что показатель тепловой энергии I2t предохранителя становится больше аналогичного показателя защищаемого устройства, например IGBT-модуля. При этом предохранитель будет неспособен выполнять назначенные ему функции. В таких ситуациях стоит несколько уменьшить запас прочности предохранителя или, если прочность снижается значительно, придется выбрать другую модель предохранителя. Кроме выбора основных параметров предохранителя, рассмотренных выше и являющихся определяющими, есть еще и другие критерии, например, конструктивное исполнение, вид контактов, наличие индикации срабатывания и т. д.

Предохранители в режиме постоянного тока

Использование предохранителей в цепях постоянного тока имеет свои особенности, т.к. из-за большой скорости процессов и отсутствия нулевых переходов тока цепи на работу предохранителя значительно влияют реактивные параметры цепи. Индуктивность в цепи постоянного напряжения ограничивает скорость нарастания тока. Время, затрачиваемое на достижение током 63% от конечного значения, называется постоянной времени, обозначаемой соотношением L/R. Скорость же нарастания тока влияет на начальную энергию плавления элемента предохранителя. Это определяет как время-токовую характеристику плавления, так и максимальный пропускаемый ток (Рис.1).

Для длительного периода времени (более 1 секунды) тепловой эффект переменного тока такой же, как и постоянного, характеристики сливаются (см. рис. 2)

Как правильно подобрать предохранитель

Рис.1. Время-токовая характеристика цепи постоянного тока

Как правильно подобрать предохранитель

Рис.2. Зависимость времени плавления от L/R.

Большинство схем имеют постоянную времени между 10 и 20 миллисекундами, исходя из чего спецификации МЭК (международной электротехнической комиссии) требуют тестирования в этих пределах. Константы времени больше чем 20 мс встречаются не часто, за исключением тяговых решений электротранспорта, где большая длина контактной сети даёт чрезвычайно высокое соотношение индуктивности к сопротивлению. При коротких замыканиях, в условиях срабатывания предохранителя, значение постоянной времени цепи может отличаться от постоянной времени в «нормальных» рабочих условиях.

Во многих выпрямительных схемах, даже в условиях срабатывания, плавкая вставка будет под воздействием переменного напряжения (когда напряжение стремится к нулю или близко к нулю с регулярностью, соответствующей частоте питания).
В этих условиях, гашение дуги внутри плавкой вставки в случае срабатывания упрощается снижением напряжения до нуля. Когда предохранитель установлен в цепи постоянного тока, процесс гашения дуги при срабатывании не будет упрощаться периодическим снижением напряжения до 0, как в ситуации с переменным напряжением. При постоянном токе погасить дугу гораздо сложнее, вот почему и предохранитель в этом случае, как правило, должен быть гораздо больше по размерам (Рис.3).

Как правильно подобрать предохранитель

Рис.3. Предохранители одного номинала для переменного (слева) и постоянного (справа) тока.

Напряжение, при котором плавкая вставка может безопасно работать, таким образом, зависит от постоянной времени цепи. Следует отметить, что при малых значениях постоянной времени номинал тока предохранителя при постоянном напряжении иногда может оказаться больше, чем при переменном (согласно стандартам IEC или UL). Однако для большинства случаев номинал предохранителей при постоянном токе не превышает 75% от номинала при переменном токе, и по мере увеличения постоянной времени он снижается.

Напряжение дуги, возникшей внутри плавкой вставки во время срабатывания, будет меняться по отношению к напряжению системы. Изменение напряжения дуги в результате самоиндукции относительно приложенного напряжения будет также различным для цепей переменного и постоянного тока. Если это специально не предусмотрено конструкцией, предохранители не рекомендуется применять для защиты от незначительных перегрузок в цепях постоянного тока. Производительность в этой области может быть ограничивающим фактором при выборе предохранителя.

Компания Bussmann производит большой диапазон предохранителей, специально разработанных для работы при постоянном токе в самых разнообразных приложениях: в тяговых транспортных решениях, системах бесперебойного питания, выпрямителях, частотных преобразователях, солнечной энергетике и др. Предохранители для цепей постоянного тока выпускаются на типовые напряжения 750, 1000, 1200, 1500, 2000 и 4000 В в диапазоне токов до 1600А, различного конструктивного исполнения.

Предохранители переменного тока в цепях постоянного тока

Учитывая вышесказанное, рассмотрим пример проверки возможности применения конкретного предохранителя в цепи постоянного тока.Приведенная ниже информация относится конкретно к прямоугольным предохранителям стандартной серии на 660, 690, 1000 и 1250 В переменного тока. При этом в каталоге для них нет информации о возможности их использования в цепях постоянного тока. Тем не менее эти предохранители могут применяться в цепях, где используется постоянное напряжение. Однако, при этом необходимо провести определённый проверочный расчёт.

Отключающая способность предохранителей зависит от сочетания:

-максимального приложенного постоянного напряжения;

-постоянной времени цепи L/R;
— минимального предполагаемого тока короткого замыкания Ipmin цепи;

— преддугового интеграла I2t выбираемого предохранителя.

Пример расчёта.

Используем параметры конкретного предохранителя 170M6149: 1100A, 1250 VAC,

Прилагаемое напряжение E = 500V DC

Возможный ток короткого замыкания Ip = E/R = 500/16 = 31.3 kA

Постоянная времени L/R = 40 ms (0.64/16)

Как правильно подобрать предохранитель

Рис.4. Условная схема рассчитываемой цепи.

Для расчётов используется ряд следующих зависимостей:

Шаг.1 График на рис.5 показывает зависимость максимума приложенного напряжения постоянного тока от L/R с 3 уровнями тока Ip в качестве параметра.

Необходимо выбрать кривую 1, 2 или 3 выше точки пересечения известного напряжения и постоянной времени. Находим точку пересечения для прилагаемого напряжения 500 В и постоянной времени, равной 40ms. Непосредственно выше этой точки пересечения находится кривая 2.

Если выше точки пересечения напряжения и постоянной времени нет никакой кривой, тогда должен быть выбран плавкий предохранитель с номиналом переменного напряжения более 1250 В.

Как правильно подобрать предохранитель

Рис.5. Зависимость максимума приложенного напряжения постоянного тока от L/R

Шаг 2. Для правильного применения предохранителя необходимо использовать коэффициент F, связывающий I2t с предполагаемым током срабатывания Ipmin. На рис.6 показана зависимость коэффициента F от L/R. По параметру 2 (выбранной кривой 2) для постоянной времени L/R = 40 ms находим коэффициент F = 26,5.

Как правильно подобрать предохранитель

Рис.6. Определение промежуточного коэффициента F в зависимости от постоянной времени.

Шаг 3. Для прилагаемого напряжения 500В по пересечению с кривой номинального напряжения используемого предохранителя находим пиковое напряжение дуги при срабатывании предохранителя.

Как видно из графика (Рис.7),для данного случая пиковое напряжение дуги при срабатывании предохранителя будет достигать значения 1900V.

Как правильно подобрать предохранитель

Рис.7. Определение пикового напряжения дуги при срабатывания предохранителя.

Минимальный уровень тока (Ipmin) цепи должен соответствовать следующему условию:

Как правильно подобрать предохранитель

Проверка с конкретными параметрами цепи показала, что отключающая способность выбранного предохранителя достаточна при следующих основных условиях:

Повторимся, приведенная методика проверки применимости относится конкретно к прямоугольным предохранителям стандартной серии на 660, 690, 1000 и 1250 В переменного тока. Возможность применения в цепях постоянного тока других быстродействующих предохранителей необходимо уточнять в справочных данных соответствующих каталогов.

Таким образом, плавкие предохранители допускают работу в цепях как переменного, так и постоянного тока, но с существенной коррекцией максимально допустимых параметров, в частности, напряжения. Однако не существует универсальной верной методики подбора предохранителя для постоянного тока, основываясь на его параметрах для переменного тока. В связи с этим, производителем рекомендуется в цепях постоянного тока применять специально разработанные для этого предохранители или предохранители, в справочных данных которых оговаривается возможность работы в режиме постоянного тока.

Выбор конструктивного исполнения быстродействующих предохранителей

Поскольку в рамках нашей статьи мы говорим о выборе предохранителей, то касаться особенностей их внутреннего устройства не будем, так как писали об этом ранее (Силовая Электроника, № 4’2013, № 6’2013). Кроме правильного определения электрических параметров предохранителя, перед пользователем стоит задача выбора его конструктивного исполнения. Часто выбор конструктивного исполнения определяется требованиями к допустимым размерам, исходя из свободного пространства в месте установки. С другой стороны, размеры предохранителя, как правило, зависят от номиналов тока, напряжения, режима использования (цепи переменного или постоянного тока). Компания Bussmann представляет наиболее широкий ассортимент быстродействующих предохранителей на мировом рынке. Быстродействующие предохранители Bussmann выпускаются в корпусах всех международных типов, соответствующих стандарту EN60269-4, который объединяет все предыдущие европейские и американские стандарты для этих устройств.

Семейство быстродействующих предохранителей Bussmann включает в себя цилиндрические предохранители (Ferrule Style) различного размера (от 6х32 до 25х146),являющихся отличным решением для защиты небольших ИБП, малых приводов переменного тока и другого оборудования небольшой мощности, где приоритетом является минимальное занимаемое пространство (Рис.8). Устанавливаются в специальные модульные держатели и держатели открытого типа, имеющиеся в ассортименте продукции производителя. В линейке имеются варианты исполнения предохранителей с бойком индикации срабатывания (в серии FWP).

Как правильно подобрать предохранитель

Рис.8. Быстродействующиецилиндрические предохранители (Ferrule Style).

Предохранители британского стандарта BS88:4 (Рис.9) для защиты полупроводников у Bussmann представлены самой широкой в индустрии линейкой, двумя диапазонами напряжения 240Vac/150Vdc и 690vac/500Vdc. Используют инновационные методы гашения дуги и материалы высокого класса, обеспечивающие минимальные значения I2t и отличную производительность в цепях постоянного тока. Конструктивное исполнение со смещёнными контактами под болт предполагает установку непосредственно на платы, монтажные панели приводов постоянного тока, выпрямителей, преобразователей напряжения, устройств плавного пуска и т.п. Опционально могут оснащаться индикаторами срабатывания.

Как правильно подобрать предохранитель

Рис.9. Быстродействующиепредохранители британского стандарта BS88:4

Как правильно подобрать предохранитель

Рис.10. Быстродействующиепредохранители североамериканского стандарта.

Как правильно подобрать предохранитель

Рис.11. Быстродействующиепредохранители в прямоугольном корпусе.

Предназначены для защиты полупроводниковых приборов в оборудовании средней и большой мощности. Имеются серии, разработанные специально для использования в цепях постоянного тока. В зависимости от номинала и спецификации, Bussmann производит целый диапазон различных типов корпусов быстродействующих предохранителей, от 0000 до 5 типоразмера (Рис.12).

Как правильно подобрать предохранитель

Рис.12. Типоразмеры быстродействующих прямоугольных предохранителей

Также широкая линейка прямоугольных быстродействующих предохранителей делится на несколько подгрупп, характерных для определённых локальных стандартов и отличающихся преимущественно исполнением контактов (Рис.13).

Как правильно подобрать предохранитель

Рис.13. Стандартыпредохранителей в прямоугольном корпусе с различным исполнением контактов.

Это даёт возможность пользователю подобрать наиболее подходящий вариант для используемого оборудования и обеспечивает гибкость при разработке новых специфичных приложений. Некоторые из них могут быть установлены только в предназначенные для них держатели (например, предохранители стандарта DIN 43 620),другие могут устанавливаться как в специальные держатели, так и непосредственно на токоподводящие шины (стандарт DIN 43 653). В пределах практически каждой из этих подгрупп имеются варианты исполнения предохранителей с разными типами индикации: визуальный индикатор срабатывания, боёк на торцевой части предохранителя (тип Т),адаптер индикации срабатывания на теле предохранителя (тип К). Для обоих типов доступны специальные микропереключатели, которые выбираются опционально (Рис.14).

Как правильно подобрать предохранитель

Рис.14. Микропереключатели индикации срабатывания прямоугольныхпредохранителей.

Области применения быстродействующих предохранителей

Широкое распространение силовых полупроводниковых преобразователей определило рост применения быстродействующих предохранителей. Силовые полупроводниковые преобразователи используются для экономичного преобразования электрической энергии при автоматизации производственных процессов, механизации трубопрокатных и трубоэлектросварочных производств, питания и управления компрессорами и насосными станциями нефте- и газопроводов, горнодобывающей промышленности. Остановимся на специфике применения быстродействующих предохранителей в отдельных отраслях.

Компания Bussmann имеет специально разработанные решения для применения на железнодорожном и электротранспорте. Специфика определяется в первую очередь применением в цепях постоянного тока для большого диапазона токов и напряжений. Об особенностях применения в цепях постоянного тока мы уже говорили выше, в частности, в связи с более сложным процессом гашения дуги требуется использование более качественных материалов и увеличение физических размеров предохранителя. Особенностью тяговых преобразователей электроподвижного состава является к тому же эксплуатация в условиях непрерывных механических воздействий, циклических токовых перегрузок, большой индуктивности нагрузки, широкого диапазона климатических факторов, что накладывает ужесточение требований к применяемым предохранителям. В линейке для железнодорожного и электротранспорта у Bussmann есть предохранители для тяговых преобразователей, систем управления и контроля, преобразователей напряжения, вспомогательных систем подвижного состава (Рис.15).

Как правильно подобрать предохранитель

Рис.15. Применение предохранителей Bussmann в цепях подвижного состава.

Ещё одной характерной областью применения быстродействующих предохранителей Bussmann является металлургическая отрасль.

Производство стали в дуговых сталеплавильных печах требует токов до 100кА при напряжении более 1000 В. Процесс хлорного электролиза требует постоянных токов до 300-350kA и напряжения до 1000 В постоянного тока. Медь, цинк, свинец, никель, кадмий и т.п производятся также с применением больших токов. Для питания электролизных ванн в цветной металлургии применяются силовые выпрямительные установки на номинальный ток до 100 кА при напряжении до 1000 В. Эти установки характеризуются большим количеством параллельно соединённых выпрямительных модулей и необходимостью обеспечения непрерывности питания. В ряде случаев, при аварии, вызванной одиночным отказом полупроводникового модуля, когда аварийный ток достигает 150-200 кА, возможно образование дуги, сопровождаемое взрывом. Взрывы полупроводников, вызванные отсутствием, либо невысоким качеством защитных устройств, приводят к тяжёлым последствиям – разрушению конструкции преобразователя, нарушению сложных технологических процессов, дорогостоящему ремонту. Быстродействующий предохранитель призван при пробое соответствующего полупроводника (тиристора, IGBT),соединённого последовательно с ним, своевременно сработать и отключить его, и это не должно критически сказаться на работе преобразователя. Для удовлетворения растущего спроса на допустимые нагрузочные способности по току специалистами Bussmann был разработан предохранитель 5 размера в единой конструкции, которая оптимизирует температурный режим предохранителя как при принудительном обдуве, так и при одно- или двустороннем водяном охлаждении (Рис.16).

Как правильно подобрать предохранитель

Рис.16. Специальные предохранители Bussmann 5 размера для металлургической отрасли.

Как правильно подобрать предохранитель

Рис.17. Предохранители с характеристикой gPV для защиты солнечных батарей.

Также стоит напомнить о широком применении быстродействующих предохранителей в цепях защиты полупроводников частотных преобразователей, устройств плавного пуска, приводов электродвигателей, использующихся в составе производственного оборудования различных отраслей промышленности, источников бесперебойного питания, преобразователей напряжения, оборудования альтернативных источников энергии и т.д.

Подобрать и купить предохранитель необходимого номинала можно в интернет-магазине bussfuse.ru (ООО «Айтекс»). Bussmann является ведущей компанией в мире по количеству выпускаемых моделей плавких предохранителей, а также предлагает наиболее широкий ассортимент быстродействующих предохранителей на мировом рынке. Наша компания является официальным представителем Bussmann на территории Российской федерации, поэтому заказывая у нас вы можете быть уверенными, что приобретаемые предохранители являются оригинальным продуктом Bussmann.

Авторы

Литература

Извините, по вашему запросу ничего не найдено.

Пожалуйста, оформите форму заявки на подбор элементов. Наш менеджер свяжется с вами и предложит наиболее подходящий вариант.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *