Как работает термопара

Как работает термопара

Термопары: подробно простым языком

Термопары — это наиболее распространенное устройство для измерения температуры. Термопары генерируют напряжение при нагревании и возникающий ток позволяет проводить измерения температуры. Отличается своей простотой, невысокой стоимостью, но внушительной долговечностью. Благодаря своим преимуществам, термопара используется повсеместно.

Как работает термопараСтандартная термопара

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Как работает термопараТермопара в электрической цепи

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.

Как работает термопараЦепь термопары

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

Как работает термопараВоздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Как работает термопараЦепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Как работает термопараРабочий спай и холодный спай

Типы термопары

Термопары конструируются с учетом диапазона измеряемых температур и могут изготавливаться из комбинаций различных металлов. Комбинация используемых металлов определяет диапазон температур, измеряемых термопарой. По этой причине была разработана маркировка с помощью букв для обозначения различных типов термопар. Каждому типу присвоено соответствующее буквенное обозначение, и это буквенное обозначение указывает на комбинацию используемых металлов в данной термопаре.

Как работает термопараТипы термопар и диапазон их температур

Как работает термопараЦвет изоляции проводов термопар

Во многих случаях приходится использовать провода для удлинения протяженности цепи термопары. Цвет изоляции соединительных проводов также несет в себе информацию. Цвет внешней изоляции соединительных проводов — разный, в зависимости от производителя, однако цвет первичной изоляции проводов обычно соответствует кодировке, указанной в таблице выше.

Неисправности термопары

Если термопара выдает неточные показания температуры, и было проверено, что нет ослабленных соединений, то причина может крыться либо в регистрирующем приборе, либо в самой термопаре, первым обычно проверяется регистрирующий прибор, так как приборы чаще выходят из строя, чем термопары.

Более того, если прибор показывает хоть какие-нибудь показания, пусть даже неточные, то, скорей всего, дело не в термопаре. Если термопара неисправна, то обычно она не выдает вообще никакого напряжения, и прибор не будет выдавать никаких показаний. Если показаний на приборе нет совсем, то вероятно дело в термопаре.

Если Вы подозреваете, что термопара вышла из строя, то проверьте ее сигнал на выходе с помощью прибора, который называется милливольтный потенциометр, который используется для измерения малых величин напряжения.

Как работает термопараПотенциометр

Источник

Термопары: базовые принципы и основы проектирования

Как работает термопара

С начала XX века термопары (ТП) обеспечивали измерение критических температур, особенно – очень высоких. Для многих промышленных применений как ТП, так и РТД (резисторные температурные детекторы) стали «золотым стандартом» температурных измерений. Хотя РТД имеют лучшую точность и повторяемость, относительными преимуществами термопар являются:

Проведение высокоточных измерений с термопарами может, однако, стать непростой задачей. Вы можете улучшить точность измерений путем схемного улучшения и калибровки, но перед разработкой схем или использованием термодатчиков необходимо понимание того как термопары работают.

Как работают термопары

Когда к отрезку металлического провода приложено напряжение, ток протекает от положительного полюса к отрицательному, и часть энергии расходуется на нагрев провода. Эффект, открытый в 1821 году Томасом Джоханом Сибеком, имеет и обратное действие. Когда температурный градиент приложен к металлическому проводу, создается электрический потенциал. Это – физическая основа термопары.

Рассмотрим несколько формул.

Как работает термопара(1)

Где ∇V – градиент напряжения, ∇T – градиент температуры, а S(T) – коэффициент Сибека. Этот коэффициент зависит от материала, и также изменяется как функция температуры. Напряжение между двумя точками на проводе равняется интегралу функции коэффициента Сибека по температурному диапазону.

Как работает термопара(2)

Например, Т1, Т2 и Т3 на рисунке 1 представляют температуры в разных точках металлического провода. Т1 (синий) представляет самую холодную точку, а Т3 (красный) – самую горячую точку. Напряжение между точками Т2 и Т1 равно:

Как работает термопара(3)

Подобным же образом напряжение между точками Т3 и Т1 равно:

Как работает термопара(4)

Используя аддитивное свойство интеграла, V31 также равняется:

Как работает термопара(5)

Имейте в виду это обстоятельство, когда мы будем обсуждать преобразование «напряжение-температура» в термопаре.

Как работает термопара

Рис. 1. Напряжения, создаваемые на проводнике температурным градиентом и эффектом Сибека

Термопары состоят из двух различных материалов, обычно металлических проводов, с разным коэффициентом Сибека, S(T). Почему два материала существенны, когда температурная разница в одном из них производит разницу напряжений? Предположим, что металлический провод на рисунке 2 сделан из материала «А». Если вольтметр подключен через пробники из того же материала, он теоретически не покажет никакого напряжения.

Как работает термопара

Рис. 2. Отсутствие разницы потенциалов: пробники и провод сделаны из одного материала

Причина в том, что пробники, присоединенные к концам провода, работают как продолжение металлического провода. Концы этого длинного провода, которые подключены к входам вольтметра, имеют одинаковую температуру (ТМ). Если концы провода имеют одинаковую температуру – напряжение на проводе создаваться не будет. Чтобы доказать это математически, мы посчитаем напряжение, создаваемое на целом контуре провода, начиная с положительного терминала вольтметра к отрицательному.

Как работает термопара(6)

Используя аддитивное свойство интеграла, предыдущее равенство будет выглядеть как:

Как работает термопара(7)

Когда нижний и верхний пределы интеграла равны, результат интеграла V = 0.

Если материал пробников сделан из материала «В», как показано на рисунке 3, тогда:

Как работает термопара(8)

Упрощая интеграл, мы получим:

Как работает термопара(9)

Равенство 9 показывает, что измеренное напряжение равно интегралу разницы коэффициентов Сибека двух различных материалов. В этом причина того, что термопары делаются из двух различных металлов.

Как работает термопара

Рис. 3. Эффект Сибека на вольтметре с пробниками и проводом, сделанными из различных материалов

Из схемы на рисунке 3, подставив в равенстве 9 SA(T), SB(T) и известное измеренное напряжение, мы пока не можем вычислить температуру на горячем спае (TH). Во времена появления термопар в качестве опорной температуры (как температура холодного спая) использовалась ванная со льдом, соответствующая 0°C – этот способ очень дешев, легко реализуем, и температура саморегулируется. Эквивалентная схема показана на рисунке 4.

Как работает термопара

Рис. 4. Для вычисления ТН термопары нуждаются в опорной температуре, показанной здесь как 0°C

Хотя мы знаем опорную температуру для схемы на рисунке 4, непрактично решать интегральное уравнение для ТН. Стандартные референсные таблицы доступны для всех основных видов термопар, так вы можете определить температуру для соответствующего напряжения на выходе. Но важно иметь в виду, что все стандартные референсные таблицы для термопар были составлены для опорной температуры 0°C.

Системы термопар и основы проектирования

Системы термопар

Современные термопары состоят из двух различных металлических проводников, соединенных на одном конце (ТН). Напряжение измеряется на свободных концах пары проводов. Согласно эквивалентной схеме, показанной на рисунке 5, VC – то же, что и в равенстве 9, полученное ранее для схемы на рисунке 3.

Как работает термопара(10)

Как работает термопара

Рис. 5. Современная конфигурация термопары использует компенсацию холодного спая

Компенсация холодного соединения

Температура холодного соединения, или холодного спая (ТС), может быть установлена в 0°C с помощью ледяной ванны, но на практике вы не будете использовать ведро холодной воды для получения опорной температуры. Метод CJC (компенсации холодного соединения) позволит вам посчитать температуру горячего спая. Температура холодного спая даже не должна быть постоянной. Этот метод просто использует отдельный датчик температуры для измерения в точке ТН. Становится возможным определить ТН, если ТС известна.

Если у нас есть датчик температуры для измерения температуры холодного спая, почему мы не используем его сразу для измерения температуры горячего? Дело в том, что диапазон изменения температуры холодного спая гораздо уже, чем диапазон изменения температуры горячего спая, поэтому датчик температуры, в отличие от термопары, не должен выдерживать такие экстремальные температуры.

Вычисление температуры горячего спая методом CJC

Как было замечено ранее, все стандартные референсные таблицы термопар были выпущены для температуры холодного спая 0°C. В таком случае, как мы должны использовать эти таблицы для вычисления температуры горячего спая? Представим, что открытые концы термопары были продолжены и эти воображаемые концы подключены к спаю с температурой 0°C (рисунок 6). Если мы можем посчитать значение V0, то мы можем легко найти соответствующую температуру горячего спая, используя референсные таблицы.

Как работает термопара

Рис. 6. Определение неизвестной температуры горячего спая ТН

Как работает термопара(11)

Как работает термопара(12)

Как работает термопара(13)

Как работает термопара(14)

Первое слагаемое в формуле 13 точно такое же, как и в 10, которое получено из подключения, показанного на рисунке 5. Соответствующее напряжение выхода – VC, а оно известно, поскольку напряжение холодного спая измеряется вольтметром. Второе слагаемое эквивалентно выходу напряжения термопары, если температура его горячего спая равняется ТС, а температура холодного спая – 0°C.

Поскольку ТС также измеряется отдельным датчиком температуры, мы можем использовать стандартные референсные таблицы для определения соответствующего напряжения Сибека (Vi) для второго слагаемого (13):

Как работает термопара(15)

С этим значением V0 соответствующая температура на ТН может быть определена с помощью стандартной референсной таблицы.

Процедура определения температуры горячего спая с компенсацией холодного имеет следующие шаги:

Стандартные референсные таблицы, а также набор стандартных формул для всех типов термопар можно найти в базе данных термопар NIST ITS-90.

Основы проектирования системы

До этой главы дискуссия содержала только теорию работы термопар. Чтобы улучшить точность в реальной системе, вы должны соблюсти несколько условий. Каждое устройство в блок-схеме базовой сигнальной цепи термопар (рисунок 7) повлияет на точность преобразования и должно быть выбрано внимательно для минимизации ошибки.

Как работает термопара

Рис. 7. Основные компоненты измерительной системы на основе термопары

Рассмотрим рисунок 7 слева направо. Термопара соединяется с разъемом системной платы. Хотя термопара – это датчик, она и сама может быть источником ошибок. Длинная термопара легко «собирает» окружающий электромагнитный шум; экранирование провода может значительно снизить его.

Важно, чтобы следующий компонент, – усилитель, – имел высокое входное сопротивление, потому что входное сопротивление усилителя и сопротивление термопары образуют резистивный делитель. Чем выше входное сопротивление усилителя – тем меньшую ошибку он создаст (формула 16).

Как работает термопара(16)

Далее, усилитель увеличивает значение выхода термопары, которое обычно находится в диапазоне единиц милливольт. В то время как высокий коэффициент усиления усилителя с замкнутой петлей ОС увеличивает и сигнал, и шум, добавление низкочастотного фильтра на входе АЦП обрежет большую часть шума. Фильтр НЧ эффективен, так как частота аналого-цифрового преобразования для этих приложений обычно очень низкая – на уровне нескольких выборок в секунду, поскольку температура не изменяется очень быстро.

В заключение отметим, что температурный датчик на плате необходимо располагать очень близко к разъему холодного соединения (в идеале – касаясь концов выводов термопары, хотя это невозможно во многих случаях), чтобы получить наилучшее качество измерений температуры холодного спая. Любая ошибка в измерениях холодного спая отразится на вычислении температуры горячего спая.

Пример схемы термопары и результаты испытаний

Каким бы ни был ваш проект –собственным или объединенным с типовой разработкой – вам необходимо проверить его точность. Вот описание, как мы проверяли точность в референсном проекте MAXREFDES67# (рисунок 8).

Как работает термопара

В качестве примера того, как снизить погрешность измерения, рассмотрим использование системы термопар в типовом проекте MAXREFDES67# производства Maxim Integrated. Для проверки точности этой или любой другой измерительной системы вам необходимо знать температуру и иметь поверенный измерительный прибор для сравнения. В данном примере использовались три референсных термометра: Omega HH41 (сейчас заменен на HH42), термометр ETI и температурный калибратор Fluke 724.

Термопарный пробник К-типа, соединенный с MAXREFDES67#, был помещен в калибровочную ванну Fluke 7341 и откалиброван при температуре 20°C. Синие точки – это данные от Omega HH41, использующиеся в качестве опорных, а зеленые точки – данные, отражающие показания прибора ETI. Красные точки – данные инструмента Fluke 724 с максимальной погрешностью менее 0,1°C, хотя Fluke 724 не использовался как референсный измеритель. Он симулирует выход идеальной термопары К-типа и соединяется с входом MAXREFDES67# с помощью проводов для термопары. На рисунке 9 показаны результаты испытаний.

Как работает термопара

Рис. 9. Зависимость ошибки от температуры в MAXREFDES67#; результат показывает высокую полученную точность

Заключение

Использование термопар для промышленных измерений имеет много преимуществ, в числе которых – широкий температурный диапазон, достаточно быстрое время отклика, привлекательная цена цена и долговечность. Теория термопар достаточно сложна, но необходима для полного понимания того, как вы можете провести корректные измерения и точные преобразования напряжения в температуру.

Источник

Термопары: устройство и принцип работы простым языком

Что такое термопары

Термопарой, или термоэлектрическим преобразователем, называют устройство для измерения температуры, основой работы которого является термоэлектрический эффект.

Работа термопары основана на свойстве изменения термо-ЭДС (термоэлектродвижущей силы) от повышения или уменьшения температуры. Точность показаний зависит от типа конструкции, соблюдения технологических требований, схемы подключения проводников.

Конструкция термоэлектрического преобразователя обусловлена тепловой инерцией и чувствительностью используемых элементов, условиями применения: диапазоном температур, агрессивностью и агрегатным состоянием среды, необходимостью использовать защиту.

Принцип работы термопары

Как работает термопара

На практике в термопаре используют проводники из разных сплавов, они также называются термоэлектродами. Один спай, «горячий», выполняют сваркой или скручиванием и помещают в среду с измеряемой температурой; другой, «холодный», замыкается на контакты измерительного прибора или соединяется с устройством автоматического управления. В современных сложных термопарах используются цифровые преобразователи сигнала.

Термо-ЭДС возникает за счет разницы потенциалов между соединениями проводников при интенсивном нагреве или охлаждении горячего спая. Напряжение на холодном спае пропорционально зависит от температуры на горячем. При этом температура на холодном должна быть постоянной, иначе возникает большая погрешность измерений. Для высокой точности холодный контакт помещается в специальные камеры, где температура поддерживается на одном уровне.

Применение термопар и их особенности

Область применения термопар огромна, в первую очередь, благодаря широкому измерительному диапазону температур: от сверхнизких до экстремально высоких. Широкое распространение эти устройства получили также из-за стабильности и точности измерений. Их используют в бытовых и промышленных приборах, производственных технологиях для измерения температуры различных устройств, объектов и сред: воздуха, твердых тел, расплавленного металла, жидкостей и газов, вращающихся деталей, тепловых двигателей.

Как датчики температур термоэлектрические преобразователи применяют в автоматизированных системах управления. В газовом оборудовании (котлы, плиты, колонки) с помощью термопар осуществляют термоконтроль. По данным термопары срабатывает аварийное отключение приборов, если превышена допустимая температура.

От назначения термопары зависит ее конструкция и материалы проводников: различные комбинации металлов предназначены для различных сред и диапазонов температур.

Как работает термопара

Если среда измерения не оказывает вредного влияния на проводники, защиту не используют. Бескорпусный вариант с незакрытым местом соединения двух проводников отличается низкой инертностью и практически мгновенным измерением температуры.

В зависимости от количества мест измерения термопары могут быть одноточечные и многоточечные. Соответственно, длина рабочей части термопары колеблется от 120 мм до 20000 мм. Потребность во многих точках измерения (до нескольких десятков) возникает, в частности, в химической и нефтехимической промышленности для тех емкостей, где перерабатываются жидкости (реакторов, баков, колонн фракционирования).

Классификация термопар

Принцип действия термопары основан на возникновении разности потенциалов в проводниках, поэтому металлы термоэлектродов должны отличаться по химическим и физическим характеристикам. Для применения в термопарах используются различные сплавы цветных и благородных металлов.

Благородные металлы позволяют существенно повысить точность измерений, сказывается меньшая термоэлектрическая неоднородность и стойкость к окислению. Они используются для измерений до 1900 о С, при более высоких температурах необходимы специальные жаростойкие сплавы. Неблагородные металлы применяются до 1400 о С.

Все материалы проводников обладают различной плавкостью, стойкостью к окислению, диапазоном рабочих температур. Именно в указанном производителем интервале температур возможна качественная работа устройства и точные данные измерений.

Для классификации групп термопар по российскому ГОСТу используют три кириллические буквы, международная классификация подразумевает обозначение одной буквой латиницы: например, нихросил-нисиловая термопара имеет обозначение ТНН, или N; платинородий-платинородиевая — ТПР, тип В.

Другая классификация термопар учитывает типы спаев, которые могут быть использованы:

Инерционность термопары снижается при заземлении на корпус, а это увеличивает быстродействие и точность измерений. Также для уменьшения инерционности в некоторых устройствах спай оставляют снаружи защитного корпуса.

Хромель+алюмель ТХА (тип K)

Как работает термопара

Существует множество типов термопар, хромель-алюмель — одна из самых распространенных.

Состав сплава хромель:

Отличается высокой чувствительностью (примерно 41 мВ/ о С) и регистрирует даже небольшие изменения температуры, очень широко применяется во многих областях.

Недостатки и особенности. Никель имеет магнитные свойства, что вызывает изменение выходного сигнала при температурах 350 о С. В серной среде возможен преждевременный отказ, при определенных низких концентрациях кислорода работа также нарушается.

Железо+константан ТЖК (Тип J)

Как работает термопара

Надежная и недорогая термопара для промышленности и науки.

Константан обычно состоит из :

Хорошо подходит для вакуумной среды, измерения проводятся также в окислительных, восстановительных, нейтральных средах. Температура длительного воздействия — до +750 о С, кратковременного — до +1100 о С.

Нельзя постоянно применять при отрицательных температурах из-за коррозии на металлическом выводе, окислительные среды сокращают срок действия. При высоких положительных температурах негативно влияет сера.

Хромель+копель ТХК (тип L).

Как работает термопара

Копель изготавливается примерно в таких пропорциях:

Одна из самых высокочувствительных термопар — до 80 мкВ/ о С.

Чувствительна к деформации, очень хрупкая.

Преимущества и недостатки термопар

Термопары имеют давнюю историю эксплуатации и широко применяются благодаря следующим преимуществам:

К недостаткам термопар можно отнести:

Какой тип термопар выбрать

В промышленном оборудовании термопары используются крайне часто для более точного контроля этапов производства товара. В то время пока вы рассматриваете какую термопару выбрать, рекомендуем заострить свое внимание на следующих характеристиках:

Как подобрать тип спая термопары

У термопар имеется три типа спая: изолированный, неизолированный или открытый.

Как работает термопара

На конце датчика с неизолированным переходом провода термопары прикреплены к стенке датчика с внутренней стороны. Благодаря этому достигается отличная теплопередача снаружи через стенку оболочки к спаю термопары. В изолированном типе спай термопары отделен от стенки оболочки. Время отклика меньше, чем у неизолированного типа, но изолированный обеспечивает изоляцию от электричества.

Термопара в стиле открытого спая выступает из конца оболочки и подвержена воздействию среды которая ее окружает. Этот тип обеспечивает лучшее время отклика, но его можно эксплуатировать только для некоррозионных и негерметичных случаев.

Неизолированный спай используют для замера температур агрессивных сред, или же для областей применения где характерно высокое давление. Спай неизолированной термопары приварен к защитной оболочке, благодаря чему достигается более быстрый отклик, чем при эксплуатации спая изолированного типа.

Изолированный спай отлично себя показывает в измерениях температур в агрессивных средах, где рекомендуется иметь термопару, которая электрически изолирована от оболочки и экранированную ею. Термопара из сварной проволоки физически изолирована от оболочки термопары порошком MgO (оксид магния).

Открытый переход рекомендуется для измерения статических или текущих температур некоррозионных газов, где понадобится быстрое время отклика. Соединение выходит за пределы защитной оболочки из металла, в следствии чего получается более точный и быстрый отклик. Изоляция оболочки герметична в соединительных местах, благодаря чему исключается любое проникновение влаги или газа, которое могло бы привести к ошибкам.

Источник

Термопара принцип работы

Термопара – это устройство для измерения температур во всех отраслях науки и техники.

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г. Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды.

Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

4) Защитный чехол.

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера.

Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом.

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Схема подключения термопары

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Факторы, увеличивающие быстродействие:

Устройство и принцип действия

Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык. Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай. Схематически устройство изображено на рисунке 1.

Особенности устройства промышленной термопары

Термодатчики изготавливаются по большей части из неблагородных металлов. От воздействия внешней среды их закрывают трубой с фланцем, служащим для крепления прибора. Защитная арматура предохраняет проводники от влияния агрессивной среды и делается без шва. Материалом служит обычная (до 600ºС) или нержавеющая (до 1100ºС) сталь. Термоэлектроды изолируют друг от друга асбестом, фарфоровыми трубками или керамическими бусами.

Если терминал расположен близко, то провода термопары подключаются к нему напрямую, без дополнительных разъемов. При расположении измерительного прибора на удалении, при включении его в цепь свободные концы термопары размещаются в литой головке, прикрепленной к защитной трубе. Внутри располагаются латунные клеммники на фарфоровом основании для подключения компенсационных проводов, изготовленных из таких же материалов, что и термоэлектроды, но не обладающих точными и строго контролируемыми характеристиками. Они имеют меньшую стоимость и большую толщину. Их вводят в головку через штуцер с асбестовой прокладкой. Керамика служит для выравнивания температуры во всех местах соединения. Сверху располагается резьбовая защитная крышка с герметичным уплотнением.

На провода нельзя устанавливать обжимные оконцеватели, поскольку они могут ухудшить точность показаний. Из проволоки делают кольцо и зажимают его под винт.

Корректировка изменения температуры на клеммах может производиться электронным прибором, что повышает точность измерений.

Недостатки термопары

Недостатков у термопары не так много, в особенности если сравнивать с ближайшими конкурентами (температурными датчиками других типов), но все же они есть, и было бы несправедливо о них умолчать.

Так, разность потенциала измеряется в милливольтах. Поэтому необходимо применять весьма чувствительные потенциометры. А если учесть, что не всегда приборы учета можно разместить в непосредственной близости от места сбора экспериментальных данных, то приходится применять некие усилители. Это доставляет ряд неудобств и приводит к лишним затратам при организации и подготовке производства.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара в электрической цепи

Погрешность измерений

Правильность температурных показателей, получаемых с помощью термопары, зависит от материала контактной группы, а также внешних факторов. К последним можно отнести давление, радиационный фон либо иные причины, способные повлиять на физико-химические показатели металлов, из которых изготовлены контакты.

состоит из следующих составных частей:

случайная погрешность, вызванная особенностями изготовления термопары;

погрешность, вызванная нарушением температурного режима «холодного» контакта;

погрешность, причиной которой послужили внешние помехи;

погрешность контрольной аппаратуры.

Устройство и принцип действия термопары

Действительно, постоянно находиться в зоне открытого пламени может далеко не каждый материал. Термоэлемент же изготовлен из металла, точнее, из нескольких металлов, поэтому высокой температуры не боится. При работе газовой котельной установки без него никак не обойтись, выход из строя термопары означает полную остановку агрегата и немедленный ремонт. Все дело в том, что термоэлемент работает совместно с электромагнитным отсекающим клапаном, перекрывающим вход в топливный тракт. Стоит только этой детали выйти из строя, как клапан закроется, подача топлива прекратится и горелочное устройство потухнет.

Чтобы лучше понять принцип работы термопары газового котла, стоит рассмотреть схему, представленную на рисунке.

В основе этого принципа лежит следующее физическое явление: если надежно соединить между собой 2 разнородных металла, а потом место соединения нагревать, то на холодных концах этого спая появится разница потенциалов, то есть, напряжение. А при подключении к ним измерительного прибора цепь замкнется и возникнет постоянный электрический ток. Напряжение будет совсем небольшим, но этого вполне достаточно, чтобы в чувствительной катушке электромагнитного клапана возникла индукция и он открылся, позволяя топливу пройти к запальнику.

Для справки. Некоторые современные электромагнитные клапаны настолько чувствительны, что остаются открытыми, пока напряжение на входе не станет ниже 20 мВ. Термоэлемент в обычном рабочем режиме вырабатывает напряжение порядка 40—50 мВ.

Соответственно, устройство термопары газового котла основано на описанном явлении, носящем название эффекта Зеебека. Две детали из различных металлов прочно соединяются между собой в одной или нескольких точках, при этом качество соединения играет большую роль. Оно влияет на рабочие параметры элемента и долговечность его эксплуатации. Место соединения и будет той самой рабочей частью, помещаемой в зону открытого огня.

Поскольку для изготовления термоэлементов применяется множество различных пар металлов, не вдаваясь в подробности, отметим, что в термопаре для газового котла используется пара хромель – алюминий. К холодным концам этих металлов приварены проводники, заключенные в защитную оболочку. Второй конец проводников вставляется в соответствующее гнездо автоматики агрегата и закрепляется с помощью зажимной гайки.

В процессе розжига запальника и горелки газового котла для подачи топлива мы открываем электромагнитный клапан вручную, нажимая на его шток. Газ попадает на запальник и поджигается, а термопара находится рядом и нагревается от его пламени. Спустя 10—30 сек кнопку можно отпускать, так как термоэлемент уже начал вырабатывать напряжение, удерживающее шток клапана в открытом состоянии.

Схема подключения термопары

Наиболее распространенными способами подключения измерительных приборов к термопарам являются так называемый простой способ, а также дифференцированный. Суть первого метода заключается в следующем: прибор (потенциометр или гальванометр) напрямую соединяется с двумя проводниками. При дифференцированном методе спаивается не одни, а оба конца проводников, при этом один из электродов «разрывается» измерительным прибором.

Нельзя не упомянуть и о так называемом дистанционном способе подключения термопары. Принцип работы остается неизменным. Разница лишь в том, что в цепь добавляются удлинительные провода. Для этих целей не подойдет обычный медный шнур, так как компенсационные провода в обязательном порядке должны выполняться из тех же материалов, что и проводники термопары.

Как работает датчик пламени в газовом котле

Датчик ионизации пламени – прибор, который призван обеспечить безопасную работу газового котельного оборудования. Устройство следит за наличием огня, и при обнаружении отсутствия пламени автоматически отключает котел. Принцип работы датчика пламени газового котла предусматривает следующее:

К ключевым причинам срабатывания датчика ионизации относят загрязнение клапана и некорректное соотношение уровня «газ-воздух». Также это происходит при оседании большого количества пыли на устройстве розжига.

Основные типы термопар для газового котла

При изготовлении термоэлектрических преобразователей применяют сплавы благородных и неблагородных металлов. Для конкретных диапазонов рабочих температур используют определенные группы сплавов.

В зависимости от металлических пар, применяемых при изготовлении, приборы делятся на несколько типов.

Для работы котельного оборудования на газовом топливе чаще всего используют следующие типы устройств:

Термопара для газового котла типа J

Следующие образцы продукции находят применение в сфере тяжелой промышленности:

Также изготавливаются и другие варианты аналогичных приборов из сплавов благородных металлов, которые актуальны в тяжелой промышленности и литейном производстве.

Термопара в системе газового контроля

При эксплуатации газового оборудования требуется энергонезависимая автоматика, что способствует оперативному перекрытию подачи газа в случае, если внезапно погаснет пламя. В современных отопительных котлах с газовой горелкой предусмотрена система газ-контроль, которая включает в себя электромагнитный клапан и термопару. К составным элементам электроклапана относятся:

При нажатии на кнопку подачи газа, шток заглубляется внутрь катушки и заряжается пружина. По регламенту клапан подачи следует удерживать около 30 секунд, чтобы термопара прогрелась, и на концах образовалось напряжение для удержания клапана внутри катушки. Термопара начинает остывать, если гаснет горелка. Что дальше происходит:

В этом заключается работа термопары в газовом котле. Система газ-контроль на термопаре отличается высокой надежностью, в том числе и благодаря тому, что она способна функционировать без подключения к энергосети.

Источник

О термопарах: что это такое, принцип действия, подключение, применение

В автоматизации технологических процессов очень часто приходится снимать показатели о температурных изменениях, для их загрузки в системы управления, с целью дальнейшей обработки. Для этого требуются высокоточные, малоинерционные датчики, способные выдерживать большие температурные нагрузки в определённом диапазоне измерений. В качестве термоэлектрического преобразователя широко используются термопары – дифференциальные устройства, преобразующие тепловую энергию в электрическую.

Устройства также являются простым и удобным датчиком температуры для термоэлектрического термометра, предназначенного для осуществления точных измерений в пределах довольно широких температурных диапазонов. В частности, управляющая автоматика газовых котлов и других отопительных систем срабатывает от электрического сигнала, поступающего от сенсора на базе термопары. Конструкции датчика обеспечивают необходимую точность измерений в выбранном диапазоне температур.

Устройство и принцип действия

Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык. Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай. Схематически устройство изображено на рисунке 1.

Как работает термопара Рис. 1. Схема строения термопары

Красным цветом выделено зону горячего спая, синим – холодный спай.

Электроды состоят из разных металлов (металл А и металл В), которые на схеме окрашены в разные цвета. С целью защиты термоэлектродов от агрессивной горячей среды их помещают в герметичную капсулу, заполненную инертным газом или жидкостью. Иногда на электроды надевают керамические бусы, как показано на рис. 2).

Как работает термопара Рис. 2. Термопара с керамическими бусами

Принцип действия основан на термоэлектрическом эффекте. При замыкании цепи, например милливольтметром (см. рис. 3) в точках спаек возникает термо-ЭДС. Но если контакты электродов находятся при одинаковой температуре, то эти ЭДС компенсируют друг друга и ток не возникает. Однако, стоит нагреть место горячей спайки горелкой, то согласно эффекту Зеебека возникнет разница потенциалов, поддерживающая существование электрического тока в цепи.

Примечательно, что напряжение на холодных концах электродов пропорционально зависит от температуры в области горячей спайки. Другими словами, в определённом диапазоне температур мы наблюдаем линейную термоэлектрическую характеристику, отображающую зависимость напряжения от величины разности температур между точками горячей и холодной спайки. Строго говоря, о линейности показателей можно говорить лишь в том случае, когда температура в области холодной спайки постоянна. Это следует учитывать при выполнении градуировок термопар. Если на холодных концах электродов температура будет изменяться, то погрешность измерения может оказаться довольно значительной.

В тех случаях, когда необходимо добиться высокой точности показателей, холодные спайки измерительных преобразователей помещают даже в специальные камеры, в которых температурная среда поддерживается на одном уровне специальными электронными устройствами, использующими данные термометра сопротивления (схема показана на рис. 4). При таком подходе можно добиться точности измерений с погрешностью до ± 0,01 °С. Правда, такая высокая точность нужна лишь в немногих технологических процессах. В ряде случаев требования не такие жёсткие и погрешность может быть на порядок ниже.

Как работает термопара Рис. 4. Решение вопроса точности показаний термопар

На погрешность влияют не только перепады температуры в среде, окружающей холодную спайку. Точность показаний зависит от типа конструкции, схемы подключения проводников, и некоторых других параметров.

Типы термопар и их характеристики

Различные сплавы, используемые для изготовления термопар, обладают разными коэффициентами термо-ЭДС. В зависимости от того, из каких металлов изготовлены термоэлектроды, различают следующие основные типы термопар:

Технические требования к термопарам задаются параметрами определёнными ГОСТ 6616-94, а их НСХ (номинальные статические характеристики преобразования), оптимальные диапазоны измерений, установленные классы допуска регулируются стандартами МЭК 62460, и определены ГОСТ Р 8.585-2001. Заметим, также, что НСХ в вольфрам-рениевых термопарах отсутствовали в таблицах МЭК до 2008 г. На сегодняшний день указанными стандартами не определены характеристики термопары хромель-копель, но их параметры по прежнему регулируются ГОСТ Р 8.585-2001. Поэтому импортные термопары типа L не являются полным аналогом отечественного изделия ТХК.

Классификацию термодатчиков можно провести и по другим признакам: по типу спаев, количеству чувствительных элементов.

Типы спаев

В зависимости от назначения термодатчика спаи термопар могут иметь различную конфигурацию. Существуют одноэлементные и двухэлементные спаи. Они могут быть как заземлёнными на корпус колбы, так и незаземленными. Понять схемы таких конструкций можно из рисунка 5.

Как работает термопара Рис. 5. Типы спаев

Буквами обозначено:

Заземление на корпус снижает инерционность термопары, что, в свою очередь, повышает быстродействие датчика и увеличивает точность измерений в режиме реального времени.

С целью уменьшения инерционности в некоторых моделях термоэлектрических преобразователей оставляют горячий спай снаружи защитной колбы.

Многоточечные термопары

Часто требуется измерение температуры в различных точках одновременно. Многоточечные термопары решают эту проблему: они фиксируют данные о температуре вдоль оси преобразователя. Такая необходимость возникает в химических и нефтехимических отраслях, где требуется получать информацию о распределении температуры в реакторах, колоннах фракционирования и в других ёмкостях, предназначенных для переработки жидкостей химическим способом.

Многоточечные измерительные преобразователи температуры повышают экономичность, не требуют сложного обслуживания. Количество точек сбора данных может достигать до 60. При этом используется только одна колба и одна точка ввода в установку.

Таблица сравнения термопар

Выше мы рассмотрели типы термоэлектрических преобразователей. У читателя, скорее всего, резонно возник вопрос: Почему так много типов термопар существует?

Дело в том, что заявленная производителем точность измерений возможна только в определённом интервале температур. Именно в этом диапазоне производитель гарантирует линейную характеристику своего изделия. В других диапазонах зависимость напряжения от температуры может быть нелинейной, а это обязательно отобразится на точности. Следует учитывать, что материалы обладают разной степенью плавкости, поэтому для них существует предельное значение рабочих температур.

Для сравнения термопар составлены таблицы, в которых отображены основные параметры измерительных преобразователей. В качестве примера приводим один из вариантов таблицы для сравнения распространённых термопар.

Тип термопарыKJNRSBTE
Материал положительного электродаCr—NiFeNi—Cr—SiPt—Rh (13 % Rh)Pt—Rh (10 % Rh)Pt—Rh (30 % Rh)CuCr—Ni
Материал отрицательного электродаNi—AlCu—NiNi—Si—MgPtPtPt—Rh (6 % RhCu—NiCu—Ni
Температурный коэффициент40…4155.268
Рабочий температурный диапазон, ºC0 до +11000 до +7000 до +11000 до +16000 до 1600+200 до +1700−185 до +3000 до +800
Значения предельных температур, ºС−180; +1300−180; +800−270; +1300– 50; +1600−50; +17500; +1820−250; +400−40; +900
Класс точности 1, в соответствующем диапазоне температур, (°C)±1,5 от −40 °C до 375 °C±1,5 от −40 °C до 375 °C±1,5 от −40 °C до 375 °C±1,0 от 0 °C до 1100 °C±1,0 от 0 °C до 1100 °C±0,5 от −40 °C до 125 °C±1,5 от −40 °C до 375 °C
±0,004×T от 375 °C до 1000 °C±0,004×T от 375 °C до 750 °C±0,004×T от 375 °C до 1000 °C±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °±0,004×T от 125 °C до 350 °C±0,004×T от 375 °C до 800 °C
Класс точности 2 в соответствующем диапазоне температур, (°C)±2,5 от −40 °C до 333 °C±2,5 от −40 °C до 333 °C±2,5 от −40 °C до 333 °C±1,5 от 0 °C до 600 °C±1,5 от 0 °C до 600 °C±0,0025×T от 600 °C до 1700 °C±1,0 от −40 °C до 133 °C±2,5 от −40 °C до 333 °C
±0,0075×T от 333 °C до 1200 °C±0, T от 333 °C до 750 °C±0,0075×T от 333 °C до 1200 °C±0,0025×T от 600 °C до 1600 °C±0,0025×T от 600 °C до 1600 °C±0,0075×T от 133 °C до 350 °C±0,0075×T от 333 °C до 900 °C
Цветовая маркировка выводов по МЭКЗелёный – белыйЧёрный – белыйСиреневый – белыйОранжевый – белыйОранжевый – белыйОтсутствуетКоричневый – белыйФиолетовый – белый

Способы подключения

Каждая новая точка соединения проводов из разнородных металлов образует холодный спай, что может повлиять на точность показаний. Поэтому подключения термопары выполняют, по возможности, проводами из того же материала, что и электроды. Обычно производители поставляют изделия с подсоединёнными компенсационными проводами.

Некоторые измерительные приборы содержат схемы корректировки показаний на основе встроенного термистора. К таким приборам просто подключаются провода, соблюдая их полярность (см. рис. 6).

Как работает термопара Рис. 6. Компенсационные провода

Часто используют схему подключения «на разрыв». Измерительный прибор, подключают через проводник того же типа что и клеммы (чаще всего медь). Таким образом, в местах соединения отсутствует холодный спай. Он образуется лишь в одном месте: в точке присоединения провода к электроду термопары. На рисунке 7 показана схема такого подключения.

Как работает термопара Рис. 7. Схема подключения на разрыв

При подключении термопары следует как можно ближе размещать измерительные системы, чтобы избежать использования слишком длинных проводов. Во всяком проводе возможны помехи, которые усиливаются с увеличением длины проволоки. Если от радиопомех можно избавиться путём экранирования проводки, то бороться с токами наводки гораздо сложнее.

В некоторых схемах используют компенсирующий терморезистор между контактом измерительного прибора и точкой холодного спая. Поскольку внешняя температура одинаково влияет на резистор и на свободный спай, то данный элемент будет корректировать такие воздействия.

И напоследок: подключив термопару к измерительному прибору, необходимо, пользуясь градуировочными таблицами, выполнить процедуру калибровки.

Применение

Термопары используются везде, где требуется измерение температуры в технологической среде. Они применяются в автоматизированных системах управления в качестве датчиков температуры. Термопары типа ТВР, у которых внушительный диаметр термоэлектрода, незаменимы там, где требуется получать данные о слишком высокой температуре, в частности в металлургии.

Газовые котлы, конвекторы, водонагревательные колонки также оборудованы термоэлектрическими преобразователями.

Преимущества

Недостатки

Недостатками изделий являются факторы:

Благодаря тому, что проблемы связанные с недостатками решаемы, применение термопар более чем оправдано.

Источник

Что такое термопара, принцип действия, основные виды и типы

Термопара – это устройство для измерения температур во всех отраслях науки и техники. Данная статья представляет общий обзор термопар с разбором конструкции и принципом действия устройства. Описаны разновидности термопар с их краткой характеристикой, а также дана оценка термопары как измерительного прибора.

Как работает термопара

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Как работает термопара

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

Как работает термопара

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Как работает термопара

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

ВАЖНО: Не рекомендуется использовать способ скручивания из-за быстрой потери свойств спая.

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

4) Защитный чехол.

Как работает термопара

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Как работает термопара

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».

Как работает термопара

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Лайфхак! Для правильного определения полярности компенсационных проводов и их подключения к термопаре запомните мнемоническое правило ММ — минус магнитится. То есть берём любой магнит и минус у компенсации будет магнитится, в отличии от плюса.

Типы и виды термопар

Многообразие термопар объясняется различными сочетаниями используемых сплавов металлов. Подбор термопары осуществляется в зависимости от отрасли производства и необходимого температурного диапазона.

Как работает термопара

Термопара хромель-алюмель (ТХА)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав алюмель (95% Ni, 2% Mn, 2% Al, 1% Si).

Изоляционный материал: фарфор, кварц, окиси металлов и т.д.

Рабочая среда: инертная, окислительная (O2=2-3% или полностью исключено), сухой водород, кратковременный вакуум. В восстановительной или окислительно-восстановительной атмосфере в присутствии защитного чехла.

Недостатки: легкость в деформировании, обратимая нестабильность термо-ЭДС.

Возможны случаи коррозии и охрупчивания алюмеля в присутствии следов серы в атмосфере и хромеля в слабоокислительной атмосфере («зеленая глинь»).

Термопара хромель-копель (ТХК)

Как работает термопара

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав копель (54,5% Cu, 43% Ni, 2% Fe, 0,5% Mn).

Рабочая среда: инертная и окислительная, кратковременный вакуум.

Недостатки: деформирование термоэлектрода.

Возможно испарение хрома при длительном вакууме; реагирование с атмосферой, содержащей серу, хром, фтор.

Термопара железо-константан (ТЖК)

Положительный электрод: технически чистое железо (малоуглеродистая сталь).
Отрицательный электрод: сплав константан (59% Cu, 39-41% Ni, 1-2% Mn).

Применение складывается на совместном измерении положительных и отрицательных температур. Невыгодно использовать только для отрицательных температур.

Недостатки: деформирование термоэлектрода, низкая коррозийная стойкость.

Изменение физико-химических свойств железа около 700°С и 900 °С. Взаимодействует с серой и водными парами с образованием коррозии.

Как работает термопара

Термопара вольфрам-рений (ТВР)

Положительный электрод: сплавы ВР5 (95% W, 5% Rh)/ВАР5 (BP5 с кремнещелочной и алюминиевой присадкой)/ВР10 (90% W, 10% Rh).
Отрицательный электрод: сплавы ВР20 (80% W, 20% Rh).

Изоляция: керамика из химически чистых окислов металлов.

Отмечается механическая прочность, термостойкость, малая чувствительность к загрязнениям, легкость изготовления.

Измерение температур от 1800°С до 3000°С, нижний предел – 1300°С. Измерения проводятся в среде инертного газа, сухого водорода или вакуума. В окислительных средах только для измерения в быстротекущих процессах.

Недостатки: плохая воспроизводимость термо-ЭДС, ее нестабильность при облучении, непостоянная чувствительность в температурном диапазоне.

Термопара вольфрам-молибден (ВМ)

Положительный электрод: вольфрам (технически чистый).
Отрицательный электрод: молибден (технически чистый).

Изоляция: глиноземистая керамика, защита кварцевыми наконечниками.

Инертная, водородная или вакуумная среда. Возможно проведение кратковременных измерений в окислительных средах в присутствии изоляции. Диапазон измеряемых температур составляет 1400-1800°С, предельная рабочая температура порядка 2400°С.

Недостатки: плохая воспроизводимость и чувствительность термо-ЭДС, инверсия полярности, охрупчивание при высоких температурах.

Термопары платинородий-платина (ТПП)

Положительный электрод: платинородий (Pt c 10% или 13% Rh).
Отрицательный электрод: платина.

Изоляция: кварц, фарфор (обычный и огнеупорный). До 1400°С — керамика с повышенным содержанием Al2O3, свыше 1400°С — керамику из химически чистого Al2O3.

Предельная рабочая температура 1400°С длительно, 1600°С кратковременно. Измерение низких температур обычно не производят.

Рабочая среда: окислительная и инертная, восстановительная в присутствии защиты.

Недостатки: высокая стоимость, нестабильность при облучении, высокая чувствительность к загрязнениям (особенно платиновый электрод), рост зерен металла при высоких температурах.

Как работает термопара

Термопары платинородий-платинородий (ТПР)

Положительный электрод: сплав Pt c 30% Rh.
Отрицательный электрод: сплав Pt c 6% Rh.

Среда: окислительная, нейтральная и вакуум. Использование в восстановительных и содержащих пары металлов или неметаллов средах в присутствии защиты.

Максимальная рабочая температура 1600°С длительно, 1800°С кратковременно.

Изоляция: керамика из Al2O3 высокой чистоты.

Менее подвержены химическим загрязнениям и росту зерна, чем термопара платинородий-платина.

Схема подключения термопары

Как работает термопара

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

ВАЖНО: Необходимо узнать используемый стандарт на предприятии для предотвращения ошибок.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

ВАЖНО: Характеристики на момент изготовления меняются в период эксплуатации.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Как работает термопара

Факторы, увеличивающие быстродействие:

Проверка работоспособности термопары

Для проверки работоспособности подключают специальный измерительный прибор (тестер, гальванометр или потенциометр) или измеряют напряжение на выходе милливольтметром. При наличии колебаний стрелки или цифрового индикатора термопара является исправной, в противном случае устройство подлежит замене.

Как работает термопара

Причины выхода из строя термопары:

Преимущества и недостатки использования термопар

Достоинствами использования данного устройства можно назвать:

К недостаткам следует отнести:

Как работает термопара

Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды

Как работает термопара

Что такое тензодатчик, типы тензометрических датчиков, схема подключения и их применение

Как работает термопара

Что такое люминесцентная лампа и как она работает?

Как работает термопара

Что такое частотный преобразователь, основные виды и какой принцип работы

Как работает термопара

Трансформаторы тока: устройство, принцип действия и типы

Как работает термопара

Что такое элемент Пельтье, устройство и принцип работы

Источник

О термопарах максимально подробно

Автоматизация производства, технологических процессов, работа бытовых и прочих приборов часто связаны с мониторингом температурных изменений, там применяют высокоточные датчики с малой инерционностью — термопары (ТП). Отличия от других измерителей температуры, например, от терморезисторов: принцип основывается на возникновения тока при нагревании спаянных электродов, температурный диапазон намного шире. Есть и минусы: потребность в усилителях, преобразователях, иногда нужны определенные условия для уменьшения погрешностей. С мультиметром ТП применяется для исследования нагрева электроники и прочих объектов. Рассмотрим что такое термопара, достоинства и недостатки, особенности, типы. Опишем, где термоэлектрические преобразователи более уместные, как их собрать самому.

Как работает термопара

Понятие термопары

Термопары (преобразователи термоэлектрические, ТП) — это сенсоры для измерения t°, базирующиеся на принципе трансформации тепла в электропроцессы.

Как работает термопара

Сама по себе термоэлектрический преобразователь не обрабатывает показания, а передает их на отдельный узел для этого, на микросхему приложения (обслуживаемого или специального измерительного оборудования).

Как работает термопара

Датчик-термопреобразователь обладает достаточной точностью, малой инерционностью. Диапазон рабочих температур шире, чем у сенсоров-термисторов, а также лучшая стойкость к механическим и прочим нагрузкам (это главные плюсы).

Как работает термопара

Где используются термопары

ТП чаще, чем другие датчики применяют для оборудования, связанного с высокими плюсовыми температурами: топливные котлы и плиты, иное оснащение с горелками, бойлеры, паяльники, пирометры, печи, металлургия.

Как работает термопара

Термин «термоэлектрический преобразователь» отображает природу сенсора — дифференциальный измеритель, который делает замеры, преобразовывая тепло в электричество.

Как работает термопара

Термопары — это простые и эффективные сенсоры для высокоточных термоэлектрических термометров, работающих в повышенных температурных рамках.

Как работает термопара

Яркий пример применения: в составах автоматики топливных котлов и отопления. Сработка оснащения инициируется электросигналом от сенсорного узла с ТП.

Как работает термопара

Термопары наряду с NTC и PTC термисторами — самые популярные измерители температуры для оборудования, последние имеют свои достоинства (считаются более точными в своих диапазонах), но не охватывают настолько широкие температурные рамки, как ТП.

Что такое термопара, ее устройство

ТП регламентируются ГОСТами 6616, Р 8.585 и МЭК 62460, 60584. Пункт 2.2 последнего дает определение сенсора: пара разносплавных проводников с соединением (спайкой) на одном конце для инициирования термоэлектрического эффекта для замеров t° этим сегментом. ТП измеряет точкой соединения (головкой) своих электродов, так называемой «горячей спайкой».

Как работает термопара

Надо понимать, что устройство термопары может представлять собой неприглядные отрезки спаянных на одном их окончании тоненьких проводков, но, несмотря на это, сенсор чрезвычайно эффективный. Часто содержит драгметаллы.

Как работает термопара

Как работает термопара

Создается замкнутая цепь, если в ее разрыв подсоединить гальванометр, микровольтметр, мультиметр, то они покажут возникшую там термоЭДС в несколько мили-, микровольт. Значение зависит от степени нагрева на соединении проволоки и от показателя температуры, на сегменте, где такового нет.

Как работает термопара

То есть величина ЭДС зависит от разности t° между спаями — холодным и горячим и от термоэлектросвойств сплавов самих проводников.

Как работает термопара

Если горячую точку соединения подогреть, то между их несоединенными (холодными) концами появится разность потенциалов.

Как работает термопара

Далее, преобразователь отдельный или на блоке контроля обслуживаемого приборе исчисляет температуру, так как сила ЭДС и она взаимозависимые, затем переводит полученные данные в цифры и/или в команды для управления.

Как работает термопара

Что такое КХС

Для особой точности замеров температура на холодном сегменте должна быть неизменной, но этого достичь в обычных условиях сложно, поэтому применяют спецсхемы компенсации. Напряжение, фиксируемое на указанном участке ТП зависит от разницы t° на нем же и на горячем сегменте. Поэтому надо знать уровень нагрева первого для исчисления такового на втором. Такие расчеты именуются компенсацией холодного спая — КХС и он часто применяется для аварийных отключений или для управления другими узлами формирования импульсов.

Как работает термопара

КХС всегда стремятся измерять (исчислять) ближе к точке предполагаемых замеров термопарой, так как удлиненные провода сенситивные к электропомехам (ухудшается сигнал). Данное обстоятельство значимо для производителей при конструировании термодатчиков.

Принцип действия

Если кратко, то ТП состоит из проводков из 2 разных сплавов со своими электрохарактеристиками при термических влияниях: создается определенная разность потенциалов и слабый ток, что фиксирует приемник таких показаний.

Как работает термопара

Но если углубиться в изучение термопары, то надо сказать о значительных особых нюансах как она работает.

Как работает термопара

Принцип работы термопары использует термоэлектрическое реагирование, впервые описанной ученым Т. Зеебеком. Соединенные проводники имеют контактную разность потенциалов. Конструктивно сенсор состоит из 2 жил из разных сплавов.

Как работает термопара

Концы образуют головку — контакт, так называемый горячий спай (красный на схеме ниже), созданный скручиванием, а чаще сваркой (швом, встык). Свободные окончания идут на обрабатывающие данные, управляющие узлы обслуживаемого оснащения, они замкнутые компенсационными проводками на контакты таких приборов, а в точках соединения с ТП находится холодный спай (синий на рис. ниже).

Как работает термопара

Электроды из разных металлов, условно А и B, на чертеже выше тоже изображены разными оттенками. Они защищены герметичной капсулой (может быть с инертным газом, жидкостью), керамическими цилиндриками (на изобр. ниже).

Как работает термопара

Объяснение из Википедии:

Как работает термопара

Действие основывается на эффекте с термоэлектрическими свойствами (назван на честь ученого Т. Зеебека). Если цепь замыкается, например, милливольтметром, на точках спаек появляется термо-ЭДС (электродвижущая сила). Если применить электроды с одних и тех же сплавов, то они бы нагревались одинаково (равнозначно), ЭДС взаимно бы компенсировалась, ток бы не возник.

Как работает термопара

Термопара, как она работает, что это такое простым языком: разные же проводники нагреваются по-разному, их спаи обладают неидентичными температурами, поэтому между ними возникает разность потенциалов, инициирующая термо ЭДС, которая и поддерживает слабый ток на такой цепи. Величина пропорциональная разности t° спаев. Надо акцентировать, что принимать во внимание надо именно ее, а не другие показатели.

Как работает термопара

Еще одно простое объяснение, как работает термопара: если соединить 2 разных металлических проводника, создав замкнутую электроцепь, и нагреть точку данного соединения, то появится электродвижущая сила (термоЭДС) и малый электроток. ТП передает эти данные на микросхему обслуживаемого или измерительного прибора, который и обрабатывает их, вычисляя t°.

Как работает термопара

Особенности, нюансы по точности

Напряжение на холодных кончиках пропорционально зависимое от t° в районе горячей спайки. В определенном температурном диапазоне наблюдается линейное термоэлектрическое свойство, показывающее собой зависимость напряжения от уровня разности t° между точками теплым и холодным элементом ТП. Линейность условная — о ней можно говорить, лишь когда t° на последнем постоянная. Данный нюанс надо учитывать, если делается градуировка: при изменении нагрева на холодных окончаниях есть вероятность значительной погрешности

Как работает термопара

Когда требуется высокая точность замеров, холодные концы помещают в специальные капсулы, где стабильность одного выбранного уровня температуры поддерживается специальными электронными приборами, обрабатывающими показатели термометра сопротивления. При таком подходе добиваются точности до ±0.01. Но это затребовано лишь для немногих технологических процессов. В большинстве случаев, например, при работе термопары в холодильниках, водонагревателях и прочих бытовых приборах требования менее жесткие, допускают отклонения на порядок ниже.

Как работает термопара

Отличия термопар от терморезисторов (NTC PTC)

Отличия термоэлектрических преобразователей от термисторов (датчиков сопротивления):

Как работает термопара

Термопара имеет такие преимущества:

Как работает термопара

Итак, измерение температуры терморезистором и термопарой отличается основательно, хоть и в обоих случаях базируется на электропараметрах: вторая создает и меняет ЭДС, первый — свое сопротивление.

Есть правило: если t° выше +300° C, то следует применять термопару. На более простых и дешевых приборах чаще встречается терморезисторы. На дорогом и сложном оборудовании — термопары, они же более распространенные при работе с высокими температурами. У термисторов в таких условиях погрешности могут быть такие же, как у ТП, но в типичных диапазонах (−50…+300° C) они имеют превосходство по точности.

Как работает термопара

Если говорить о специальных узконаправленных сферах — лаборатории, специсследования, промышленность — то там чаще используют ТП.

Отдельно выделим безусловный плюс: только термопары используются как измерители температуры исследуемых объектов (радиодеталей и пр.) вместе с мультиметром. Также надо сказать, что неподходящие диапазоны t° всегда повышают погрешности и вероятность отказа, но ТП стойче к таким условиям.

Как работает термопара

Разновидности преобразователей термоэлектрического типа

Как работает термопара

Виды термопар чрезвычайно обширные. Есть два основных фактора разделения: по разновидности сплавов и по варианту спайки. А также отдельным типом являются многоточечные ТП.

Как работает термопара

Тип электропар в зависимости от сплавов проводников

Термопара создает ЭДС, принцип всегда аналогичный, но сплавы нагреваются по-разному, поэтому рабочие диапазоны, скорость срабатывания, погрешности могут колебаться.

Как работает термопара

Разные сочетания металлов обладают своими параметрами, определяющими выходной импульс напряжения, но главное — температурный диапазон, в котором допускается использовать ту или иную разновидность сенсора

Как работает термопара

При росте амплитуды выходного напряжения улучшается разрешение измерений. Растет повторяемость, соответственно, и точность.

Как работает термопара

Есть разные соотношения разрешения и диапазона t° у конкретных типов ТП, что делает их подходящими для определенных условий.

Как работает термопара

Есть 9 типов термопар по составу сплавов проводников:

Как работает термопара

Разновидности обозначаются буквами. (J, K, T, E, N, R, S, B, C).

Как работает термопара

Для нас важна термопара типа К (другое обозначение — ТХА): она наиболее распространенная, подходит для применения в бытовых, других приборах и для задач, не имеющих каких-либо особых требований.

Как работает термопара

Традиционно ТХА рекомендована всегда, если только нет обоснований для использования иных видов. Ниже приведем описание термопары типа К из узкопрофилированного сайта по электронике:

Как работает термопара

Варианты спаев

Спаи создаются с разными определёнными конфигурациями под конкретные назначения термопар. Есть 1 и 2-элементные варианты, с заземлением на корпус защитной капсулы или без такового.

Как работает термопара

Заземление на корпус (не всегда оно есть) уменьшает инерционность термопары, а это улучшает быстродействие сенсора и точность в реальном времени. Также для достижения лучшей эффективности некоторые модели имеют горячий спай снаружи защитной колбы (кожуха, корпуса).

Как работает термопара

Многоточечные термоэлектрические преобразователи

Иногда требуется замерить t° на разных точках одновременно. Решает данную проблему многоточечный тип термопары. Такие сенсоры фиксируют данные вдоль оси преобразователя. Для стандартных, бытовых задач подобные изделия редкость — они применяются в химической, нефтехимической отраслях, где надо исследовать, как распределена температура в емкостях, реакторах и пр. Количество точек может достигать 60. Такая термопара не требует сложного обслуживания, используется одна капсула и один ввод в установку.

Другие варианты по конструкции

Разные конструктивные решения отображены ниже:

Как работает термопара

Ниже несколько вариантов термопреобразователей с кабельными выводами:

Как работает термопара

Роль удлиняющих (компенсационных) проводов

Удлиняющий, он же компенсационный провод или кабель для термопары нужен, чтобы она могла соединяться с отдаленными микросхемами оборудования, с вторичным или обслуживаемым прибором, приемником, обрабатывающим данные, а также для исследования удаленных областей.

Как работает термопара

Любые провода для удлинения не используют (исключение укажем ниже). Это еще одно отличие от термисторов. Надо применять тот же материал, что и в термопаре. Например, для сенсора типа К с жилами из хромель-алюмеля берут такие же проводки с маркировкой ХА.

Как работает термопара

Компенсационный кабель можно не применять, только когда у ТП есть преобразователь, который вычисляет и удаляет погрешность. Наиболее распространенная форма такового — «таблетка» внутри клеммного сегмента детектора с сигналом 4–20 мА унифицированного типа.

Как работает термопара

Как подключаются термоэлектрические преобразователи

На каждой новой отметке соединения разносплавных жил образуется холодный спай, а это, как мы уж описали, влияет на корректность замеров. Подключение желательно делать проводами по составу аналогичными с электродами.

Как работает термопара

Как правило, производители изначально комплектуют сенсоры такими компенсационными кабелями, их также можно докупить в спецмагазинах. Но, как мы отметили выше, это не актуально, если есть нормирующий преобразователь, схема корректировки, базирующаяся на термисторе. Провода ТП просто втыкаются в гнезда таких узлов согласно полярности.

Как работает термопара

Измерительные системы желательно размещать ближе при подключении ТП, чтобы длину кабеля сократить до самого возможного минимума. На любом проводе есть риск возникновения помех, а чем он длиннее, тем значительнее отклонения. Если радиопомехи можно устранить экранированием, наводки нивелировать сложнее.

Как работает термопара

Схема подключения термопары может включать терморезистор компенсации между контактами приемника и точкой холодного сегмента. Внешняя t° на эти элементы влияет аналогично, поэтому такая деталь будет исправлять погрешности:

Как работает термопара

Подключив ТП к измерителю, надо выполнить градуировку, в сети есть специальные таблицы.

Обозначение термопар на схемах:

Как работает термопара

Обозначения из ГОСТов:

Как работает термопара

Как работает термопара

Изготовление термопары для мультиметра самостоятельно

Термопара, созданная своими руками, это сенсор в своей основе конструктивно аналогичный заводскому: два спаянные разные по составу электроды.

Как работает термопара

Перечень материалов, инструментов:

Как работает термопара

Приемником данных может быть любой цифровой или аналоговый тестер. С помощью такой ТП для мультиметра можно замерять температуру исследуемых объектов.

Как работает термопара

Где взять проволоку

Как работает термопара

Чем меньше сечение проволоки, тем ниже погрешности ТП, поскольку понижается само влияние массива жил на теплообмен.

В нашем примере взяты 2 проводка из таких сплавов:

Скрутка, сварка

Делаем скрутку из 2 проводков. Затем свариваем этот конец: так как жилы тонкие, то подойдет зажигалка турбо, в народе «печка». Должна получиться круглая головка-капелька. Оставшиеся витки затем надо раскрутить, чтобы не было замыкания.

Принцип работы мы уже описали: при нагревании в месте горячего спая, то есть головки-капельки возникает разница потенциалов, инициирующая малый ток, который будет течь по проводкам к приемнику (мультиметру). Значения такого электричества будут характеризовать определенную температуру.

Как работает термопара

Другие способы сварки

Спаять проводки можно и кустарной сваркой, например, применив лабораторные автотрансформаторы, автомобильный аккумулятор. К одному полюсу («+») такого источника подсоединяем оба конца термопары, скрученные или соединенные механически проволокой. К другому подключаем вывод («−»), присоединенный к куску графита. Возникнет электродуга, произойдет сварка.

Как работает термопара

Напряжение для сварки подбирают экспериментально: начинают с малых значений 3–5 В и постепенно увеличивают до нужного результата. Оптимальное значение зависит от металла проволоки, ее сечения, длины — оно обычно не превышает 40–50 В. Соблюдают безопасность: не касаются к оголенным участкам, не подают слишком большое напряжение. Для удобства опасные сегменты изолируют изолентой, кембриком, керамическими трубками.

Хорошее соединение получают, разогревая проводки дуговым разрядом, зажигая его между ними и крепким (ропа) раствором поваренной соли.

Другие сплавы для электродов

Выше мы показали пример с электродами константин-медь. Термопара для измерения температуры своими руками может быть создана и с проволоки с иных материалов (сплавы см. выше в табл.). Такие материалы продаются на узкоспециализированных торговых площадках, но все-таки достать их сложнее, наиболее доступный из них хромель и алюмель.

Как работает термопара

Проверка самодельной термопары для мультиметра

Электроды собранного датчика подсоединяем к мультиметру аналогично как щупы. Затем измеряете среду: нагреваете головку зажигалкой, наблюдаете табло тестера. В нашем случае мультиметр показал напряжение 50 мВ и ток в 5 мкА, это максимальное значение для данной самоделки.

Как работает термопара

Калибровка

Откалибровать самодельную термопару и создать базу данных какое значение какой температуре соответствует, можно, опуская ТП в жидкость с заранее известной температурой (надо будет значительно ее нагреть). Останется сопоставить t° с показаниями мультиметра и записать цифровые соответствия.

Другие самоделки

Нами описан способ создания «голого» датчика, обрабатывающее устройство было уже готово — мультиметр. Своими руками для такой термопары можно создать и иные приемники на микроконтроллерах Arduino, ATmega, а также, и усилители на подобных микросхемах — они потребуются, так как ЭДС очень низкая.

Как работает термопара

Для самоделок популярный усилитель микроконтроллер для термопары LM358P/LM358D для диапазона 0…+70° C.

Как работает термопара

В сети есть много чертежей, как сделать термопару для различных задач с микроконтроллерами Arduino, ATmega и с цифровым дисплеем.

Как работает термопара

Проверка, ремонт и замена термопары

Рассмотрим неисправности на примере термопары датчика газового котла, в таких приборах она также называется сенсором пламени. По ходу раскроем некоторые нюансы по эксплуатации термоэлектрических детекторов, как они устроены, из чего состоит такой прибор.

Как работает термопара

Как работает термопара

Как работает термопара

Починка, восстановление

Термопары чувствительные к любым повреждениям и загрязнениям: эти факторы могут уменьшить выдаваемое датчиком напряжение ниже критической границы. Характерная частая причина плохой работы — нагар, сажа на рабочем (нагреваемом) сегменте. Для восстановления достаточно произвести чистку мягкой щеткой, ваткой со спиртом. Важно не допустить царапин, механических повреждений. После очистки надо провести проверку мультиметром.

Как работает термопара

Часто причиной неисправностей являются окислившиеся контакты, их можно зачистить мелкозернистой (нулевкой) наждачкой, но без чрезмерных усилий

Как работает термопара

Таким образом, если есть нагар, сажа, окисления, отошедшие или оборванные контакты, крепежи и подобное, то ТП возможно отремонтировать. Но если обнаружены глубокие черные вмятины, прогары (дыры), то такой элемент обычно не восстанавливается. Теоретически можно соорудить новый защитный кожух, попробовать наново спаять концы, если они разошлись, но нет гарантии, что такая починка будет качественная. А от неэффективной работы есть риск значительного ухудшения ресурса обслуживаемого прибора, вероятность аварийных ситуаций увеличивается. Почти всегда сенсоры с такими критическими перечисленными поломками заменяют на новые без раздумий.

Как работает термопара

Запасные элементы продаются в спецмагазинах, точках сервисного обслуживания. Подобрать не составит труда — достаточно выбрать аналогичный или подходящий по параметрам детектор для конкретной модели оборудования. Замена элементарная — отщелкнуть старую ТП и подключить (воткнуть) в посадочные места новую.

Как работает термопара

Сложность может быть лишь в том, что прибор придется разбирать, снимать крышки, узлы с горелками и так далее.

Как работает термопара

Какой термометр выбрать: с термопарой или с терморезистором

Как работает термопара

Устройство и принцип действия термопары в термоэлектрическом измерителе и терморезистора в термометре сопротивления:

Как работает термопара

Нельзя однозначно для всех ситуаций рекомендовать, какие детекторы лучшие: термометр с термопарой или с термистором (ТС, он же термометр сопротивления), так как надо учитывать среду и сопоставлять со свойствами этих типов термодатчиков — каждый имеет свои плюсы и минусы. Подробно мы их рассмотрели. Теперь опишем пример выбора.

Как работает термопара

Первым делом сравнивают характеристики, сопоставляют:

Как работает термопара

Определить лучший вариант прибора надо с учетом всех нюансов и поставленных целей. Опишем это в примере:

Как работает термопара

Как работает термопара

Видео по теме

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *