Как сделать кислородный конус
Высокоэффективные устройства
для обогащения воды чистым кислородом
На основе почти 80-ти летнего личного опыта в аквакультуре созданы совершенные системы OXYPLUS. Благодаря очень эффективному насыщению воды чистым кислородом эти системы широко распространились в рыбоводных хозяйствах Европы и совершили революцию в рыборазведении во всем мире.
Все больше хозяйств использует системы обогащения воды техническим кислородом! Это сразу повышает экономические показатели!
Системы OXYPLUS обеспечивают стабильное высокоэффективное использование корма, снижают риск заболевания рыб, оптимизируют среду обитания. Более прогрессивные методы ввода кислорода в воду существенно повышают результаты производства, в разы повышают плотность посадки рыбы, существенно снижают расход воды, улучшают среду обитания рыбы и чистоту воды.
Сегодня ни одно современное рыбоводное хозяйство не может успешно конкурировать без использования чистого кислорода.
Использование небольших емкостей с жидким кислородом, позволит Вам убедится в эффективности чистого кислорода при инкубации, подращивании мальков, критических ситуациях при заморе рыбы.
Чистый кислород позволяет в разы повысить производительность, в разы снизить расход воды, в разы увеличить плотность посадки рыбы, существенно увеличить эффективность корма, снизить риск гибели рыбы при высоких температурах, снизить заболеваемость рыб и т.д.
В этом бассейне находится 30 тонн форели, благодаря использованию чистого кислорода.
Подача кислорода | Объем газа/жидкости | Эффективность переноса кислорода |
> 8 мг/л | 0,01:1 | 60-90% |
15 мг/л | 0,02:1 | 50% |
Эффективность абсорбции в зависимости от числа камер и соотношения площади раздела фаз (экспериментальная модель имела следующие вводные данные: диаметр отверстий перфорированной разделительной пластины = 9,5 мм; высота водоприемника = 13 см; высота водопада до водоприемника = 61 см; давление водяного столба над распределительной пластиной = 7,5 см; температура = 20,0°C; площадь верхней части = 0,1 м 2 ; активная площадь камеры = 10,0%; камер = переменная; соотношение газа и жидкости (G/L) = переменная; концентрация входящего кислорода (DOin) = 6,0 мг/л; концентрация входящего азота (DNin) = 14,0 мг/л; концентрация входящего углекислого газа (DCO2) = 0.0; давление = 760,0 мм.рт.ст.; фракция кислорода в поступающей смеси = 0,99).
Представленная модель оксигенатора использована для демонстрации влияния числа камер и площади поверхности раздела фаз «газ/жидкость» на эффективность абсорбции кислорода. Как можно видеть, даже модель с 4-5 камерами уже оказывается очень эффективной. Это обусловлено существованием коммерческих моделей с числом камер, равным семи. На графике видно, что при соотношении G/L = 2% эффективность переноса газа несколько падает. Таким образом, увеличение соотношения G/L экономически не оправдано.
Обратный выход растворенного кислорода из воды в зависимости от числа камер и соотношения площади раздела фаз (экспериментальная модель имела следующие вводные данные: диаметр отверстий перфорированной разделительной пластины = 9,5 мм; высота водоприемника = 13 см; высота водопада до водоприемника = 61 см; давление водяного столба над распределительной пластиной = 7,5 см; температура = 20,0°C; площадь верхней части = 0,1 м 2 ; активная площадь камеры = 10,0%; камер = переменная; соотношение газа и жидкости (G/L) = переменная; концентрация входящего кислорода (DOin) = 6,0 мг/л; концентрация входящего азота (DNin) = 14,0 мг/л; концентрация входящего углекислого газа (DCO2) = 0.0; давление = 760,0 мм.рт.ст.; фракция кислорода в поступающей смеси = 0,99).
На данном графике показано, что соотношение газа и жидкости 1,4% характеризует наибольший объем подачи кислорода, когда наблюдается минимальная эффективность абсорбции кислорода 70%; это связано с повышением выделения растворенного кислорода из воды при объеме его подачи в концентрации 12 мг/л по сравнению с 6 мг/л. Отсюда вытекает эмпирическое правило, что дельта растворенного кислорода при 10-12 мг/л является целевым значением при проектировании многоуровневых низконапорных оксигенаторов. Быстрое падение эффективности абсорбции при повышении соотношения газа и жидкости создает опасность для рыбоводов, которые пытаются увеличить соотношение G/L и, тем самым, лишь повышают уход кислорода из раствора.
CO2-дегазационная колонна над многоуровневым низконапорным оксигенатором.
Часто непосредственно над многоуровневым низконапорным оксигенатором располагают CO2-дегазационную колонну. U-образная труба для аэрации функционирует по принципу повышения давления газа, что приводит к возрастанию растворения кислорода. Она состоит из двух концентрических трубок, либо из двух трубок в вертикальной шахте глубиной 9-45 метров. Кислород подается в верхний конец перевернутой U-образной трубы, по которой вниз к изгибу спускается смесь воды с газом. Эффективность растворения кислорода определяется высотой U-трубы, скоростью подачи газа, скоростью водного потока, глубиной диффузора и концентрацией поступающего кислорода. Концентрация растворенного кислорода варьирует от 20 до 40 мг/л, однако эффективность его переноса составляет всего 30-50%. Установка узла вторичного использования отработанного газа повышает эффективность переноса до 55-80%. У U-образной трубы имеется два преимущества, одно из которых заключается в низком гидравлическом напоре, что при наличии достаточной высоты жидкости исключает необходимость во внешнем источнике электропитания. Данный тип оксигенатора может использовать воду, содержащую большое количество загрязнений. Его единственным недостатком является плохая экстракция углекислого газа и азота, а также высокая стоимость строительства, особенно в присутствии коренной породы.
Вода движется со скоростью 1,8-3 м/сек и увлекает за собой пузырьки кислорода, плавучесть которых составляет 0,3 м/сек. Растворение кислорода повышается при достижении глубины 10-45 метров. Одной из проблем эксплуатации U-трубы может стать блокада канала слишком большим объемом пузырьков кислорода, которые ломают водный поток (при соотношении газа и жидкости более 25%). Для работы оксигенатора необходим гидравлический напор 1-6 метров. Для больших труб с большим потоком требуется низкий столб воды, для маленьких труб – высокий.
Кислородные конусы
Кислородные или оксигенационные конусы состоят из конусовидного цилиндра или серии труб с постепенно увеличивающимся диаметром. Вода и кислород входят в верхнюю часть конуса, направляются вниз к выходному патрубку. С возрастанием диаметра конуса по ходу вниз, скорость воды снижается, вплоть до момента, когда она становится равна скорости всплытия пузырьков кислорода. Таким образом, пузырьки находятся во взвешенном состоянии и постепенно растворяются в воде. Эффективность данного процесса определяется скоростью поступления воды и кислорода, концентрацией вводимого кислорода, геометрией конуса и создаваемым давлением. Эффективность абсорбции варьирует от 95 до 100% с концентрацией на выходе 30-90 мг/л. Коммерческие модели рассчитаны на растворение 0,2-4,9 кг кислорода в литре при скорости водного потока 170-2300 л/мин. Стоит отметить, что кислородные конусы плохо удаляют азот из воды.
Кислородный конус
Кислородный конус (слева); другая конструкция использующая принцип противотока газовой и жидкой фаз (справа).
Контроль O2 и CO2
Необходимо удалять углекислый газ из воды после достижения им максимального уровня, перед сверхнасыщением воды кислородом. Этот процесс осуществляется после биофильтрации.
Воду необходимо очистить от летучих компонентов перед её поступлением в аппарат оксигенации. Предварительная фильтрация газообразных продуктов поднимает концентрацию растворенного кислорода до 90% уровня насыщения. Только чистый кислород должен поступать на сверхнасыщение.
Состояния сверхнасыщения растворенного кислорода необходимо достигать непосредственно перед поступлением воды в емкость культивирования. При этом вода должна быть изолирована от атмосферного воздуха.
——