Как сделать колеса для самолета
Самодельные колеса и шасси для авиамоделей
Любой модели самолета чтобы больше походить на настоящий самолет, а тем более для отработки взлета и посадки, – нужны шасси. Данная статья подробно описывает процесс изготовления легких колес, а так же различных видов шасси для моделей. Это наиболее бюджетные варианты, которые хорошо подойдут как начинающим моделистам (для экономии), так и более опытным (для изготовления более копийных колес).
Материалы:
— Пенорезина (из упаковок от планшетов или чехлов для телефонов)
— Пластиковые карты
— Потолочная плитка (обрезки)
— Стыковочная лента для линолеума
— Стержни от шариковых ручек
— Стальная проволока разного диаметра
— Фанера и линейки
— Жесть
— Шайбы, болты
— Нитки
— Клей ПВА, эпоксидный, для потолочной плитки
— Клеммники
Инструменты:
— Дрель или токарный станок
— Шуруповерт
— Сверла
— Пассатижи
— Ножницы
— Паяльник, припой, кислота
— Нож
— Наждачная бумага
— Лобзик
— Краска по металлу в баллончике
— Акриловые краски
Шаг 1. Изготовление колес
Берем пластины пенорезины и размечаем на квадраты, с учетом будущего диаметра колеса.
Шаг 2. Изготовление переднего шасси
Вариант 1: Из жести и проволоки
Вырезаем по ширине фюзеляжа две полоски жести из консервной банки. Из велосипедных спиц или толстой (2 мм) проволоки выгибаем детали в виде буквы «П». С помощью паяльной кислоты припаиваем их к жести (удобно это делать на куске фанеры, предварительно закрепив куски жести саморезами).
Вариант 2: Из толстого прута и фанеры
Из металлического прута (4 мм диаметром) выгибаем заготовку, основываясь на ширине фюзеляжа.
Хочу отметить, что хоть копийность и обязывала сделать на данной модели одно колесо в носовой части и два в средней, но оно себя в поле не оправдало – при малейшей неровности на ВПП модель кувыркается носом в землю. А потому я после пробного полета переделал шасси на более привычную схему, когда одиночное колесико сзади.
Вариант 3. Из стыковочной ленты
Данный вид шасси больше подходит для небольших пилотажных моделей, хотя и добавляет им веса.
Берем подходящую по ширине дюралевую стыковочную ленту, выгибаем из нее стойку шасси и сверлим крепежные отверстия и отверстия для болтов-осей.
Основание для такого шасси в фюзеляже лучше закреплять понадежней, иначе вырвет «с мясом» при жесткой посадке.
Шаг 3. Изготовление заднего шасси
Вариант 1. Не поворачивающееся заднее шасси
Колесо закрепляем на стальной спице нитками на эпоксидке или покупными фиксаторам.
Вариант 2. Поворачивающееся заднее шасси
Огибаем стальную проволоку вокруг отвертки (один-два оборота) и загибаем один конец вбок от плоскости получившейся пружинки – это будет ось колеса.
Конечно, это далеко не единственные варианты самостоятельного изготовления шасси, но это одни из самых экономичных. Кроме того, что видно на фото, их можно комбинировать, используя покупные колеса и самодельные стойки.
Легкие колеса для авиамоделей
«… А что тут думать! Трясти надо!»
Спустя тридцать лет, вспомнив «светлое пионерское» детство, вернулся к былому увлечению авиамоделями. После внимательного изучения данного сайта, форума (здесь и не только), взвешивания всех «за» и «против» решил – Р/У электричка! Так как по терминологии участников форума я не «теоретик», и не «пилот» (пока), а скорее «конструктор», то решил строить самостоятельно, и обязательно полу-копию!
Щечки
Сборка
Из голубого пенопласта толщиной 6-8 мм (при толщине шины в 12-16 мм) вырезаем круг диаметром меньше диаметра щечек на 6-8 мм, с отверстием 3 мм по центру. Он должен плотно вставляться внутрь шины. Тонким слоем намазываем пару щечек с выпуклой стороны пятиминутной эпоксидной смолой, складываем с заготовкой шины и стягиваем болтом с гайкой. Стягивать надо крепко, но так, чтобы щечки не изогнулись и не изменили форму. Они должны немного примять резину и голубой пенопласт внутри. Когда изделие высохнет, не разбирая его, зажимаем болт в дрель, и на высоких оборотах, с помощью «сухарика» доводим колесо до нужных размеров толщины, диаметра и радиуса скругления шины. Затем болт спокойно выкручиваем, а отверстие рассверливаем до диаметра втулки (см. ниже). Все просто, единственный недостаток – вездесущая черная «резиновая» пыль и, как следствие, ворчание жены…
Втулка
В качестве втулки я использовал кусочек трубки от большого Чупа-Чупса, с внутренним диаметром 2,5 мм и внешним 4,2 мм. Отрезаем, зашкуриваем и аккуратно вклеиваем в колесо на «пятиминутке». Для большей прочности я оплавил концы втулки с обеих сторон при помощи шляпки большого болта с вогнутой поверхностью, нагретого на плитке. Дальше рассверливаем втулку до диаметра оси (у меня он 3 мм), красим обод (если надо) и … вроде все! Для ЯК-12А размеры деталей передних колес оказались следующими: Диаметр колеса – 48 мм (с запасом 52 мм), толщина – 15 мм (с запасом 17 мм), дырка – 14 мм. Диаметр щечек – 24 мм. Диаметр диска из голубого пенопласта – 18 мм, при толщине в 7 мм. «Дутик» сделан по такой же технологи. В качестве втулки использован кусочек стержня от шариковой ручки.
Точно взвесить колеса не удалось, нечем. На бытовых весах (точность 20 грамм) вес двух передних колес – в пределах точности весов. Будем считать порядка 20-30 грамм.
Рекомендации
Если толщины резины не хватает, ее можно склеить в два слоя. Я использовал «супер-клей», нанося им частые радиальные полоски (спицы). Кстати, оказалось, что эта резина прекрасно режется раскаленной проволокой, как пенопласт, попахивает только.
Что внутри авиационной шины? Секрет «сосуда высокого давления» и современные технологии
Современная авиационная шина – сложная высокотехнологическая структура и один из наименее понимаемых и наиболее недооцененных элементов самолета. Авиашина – многоэлементный компонент, сконструированный из трех материалов: корд, резина, металл. В весовом соотношении шина самолета состоит на 50% из резины, на 45 % из корда и на 5% из металла.
При посадке самолета шасси испытывает колоссальные не только статические, но и и динамические нагрузки, воспринимаемые стойками и колесами. Прибавьте к этому, что при полете колеса были неподвижны, а при касании к ВПП должны быстро набрать обороты, соответствующие посадочной скорости. Таким образом, к шасси современных самолетов, предъявляются достаточно высокие и жесткие требования.
Авиационные шины и колеса в сборе могут работать под высоким давлением, чтобы нести налагаемую на них нагрузку, к ним следует относиться с той же осторожностью, что и к любому другому сосуду высокого давления. Множественные слои каркаса соединены вместе, образуя общий каркас, делая шину способной удерживать внутреннее давление.
Амортизационные стойки
Основными наиболее нагруженными элементами шасси летательного аппарата являются амортизационные стойки и колёса (пневматики).
Имеется также система раскосов, тяг и шарниров, воспринимающих реакции опорной поверхности и крепящих амортизационные стойки и колёса к крылу и фюзеляжу, которые служат одновременно механизмом уборки-выпуска.
Колеса шасси самолета поддерживают его на земле и обеспечивают средства мобильности для взлета, посадки и руления. А пневматические шины амортизируя, предохраняют самолет от ударных импульсов из-за неровностей поверхности и недостатков техники пилотирования при посадке.
Диски (барабаны) колёс часто изготавливаются из сплавов на основе магния. Обычно это магниево-цинковые сплавы, которые очень трудно обрабатывать либо титановые. В настоящее время только несколько промышленных держав в мире могут производить шины для истребителей с высокими эксплуатационными характеристиками.
Сложная высокотехнологическая структура
Колеса самолета разработаны таким образом, чтобы облегчить замену шин (пневматиков). Сами диски колес обычно изготавливаются разборными, из двух половинок, которые соединяются между собой болтами. Для увеличения герметичности колес перед сборкой обе половины диска и внешние стороны покрышки обрабатываются специальным клеевым составом, и только после этого производят сборку.
На современных скоростных самолётах пневматики бескамерные и накачиваются техническим азотом (использование последнего обусловлено предотвращением конденсации газа, и последующего его замёрзания на высоте, с образованием опасного льда и кроме того азот дешёв и не горит). Протекторы шин шасси самолётов не имеют никакого рисунка, кроме нескольких продольных кольцевых водоотводящих канавок для уменьшения эффекта аквапланирования, а также контрольных углублений для простоты определения степени износа. Форма шины в поперечном сечении близка до круглой, для обеспечения максимального контактного пятна колеса при посадке с креном. Пневматики снабжены дисковыми или колодочными тормозами с гидравлическим, пневматическим или электрическим приводом, для маневрирования при движении по аэродрому и уменьшения длины пробега после посадки.
В целом современная авиационная шина – сложная высокотехнологическая структура, которая работает с огромными скоростями, и нагрузками при минимально возможном весе и размерах.
Требования к шинам и колесам шасси самолетов в целом достаточно жесткие и порой противоречивые
Высокое давление
Именно авиационные колеса во многом и содержат сегодня большинство новейших изобретений, воплощенных на практике. По авиационным стандартам шина должна выдерживать давление в 4 раза выше, чем то, на которое она рассчитана, так что теоретически шины могут выдержать жесткое приземление на скорости свыше 450 км/ч.
Кроме того, что самолетные шины испытывают колоссальные статические и динамические нагрузки, они подвергаются и тепловым, когда длительное время находятся в условиях низких температур, а во время посадки быстро набирают скорость около 300 км/ч (некоторые до 460 км/ч). При соприкосновении с землей, температура шины поднимается до 260°С.
Шины стабильно выдерживают разность температур и нагрузку. Они сконструированы таким образом, чтобы максимально противостоять износу и разрыву. Они выполняются многослойными с прочным нейлоновым и арамидным шнуром, расположенным под каждым слоем. Каждый слой имеет свойство выдерживать колоссальную нагрузку и давление воздуха. Корд не переплетается, а располагается одинарными слоями параллельно и удерживается вместе тонкими пленками резины, которая защищает корд из смежных слоев от перетирания друг о друга при изгибании пневматика в процессе эксплуатации.
Во время изготовления шины, слои накладываются парами таким образом, что корды смежных слоев располагаются под углом 90° друг к другу в случае перекрещивающегося (диагонального) пневматика и от борта к борту с примерным углом 90° к центральной линии шины в радиальном пневматике.
Для поглощения и распределения динамических нагрузок и защиты корпуса от ударного повреждения между корпусом и протектором располагаются два узких слоя, запрессованных в толстые резиновые прослойки. Эти специальные слои называются брекерными поясами.
Индекс прочности шины
Изготовители шин присваивают каждому пневматику норму слойности. Эта норма напрямую не относится к количеству слоев в шине, а является индексом прочности шины.
Проволочная намотка делается жесткой с помощью скрепления резиной всей проволоки вместе, создавая крепкое соединение. Бортовая проволока (сердечник борта) также укреплен с помощью обмотки тканевыми полосками до применения основных и наполнительных лент. Основные ленты, изготовленные из резины и располагающиеся под прорезиненными тканевыми наполнительными лентами, обеспечивают большую жесткость и меньшую резкость изменений секции борта. Они также увеличивают зону контакта.
В условиях грубого торможения, нагрев колеса, шины и тормоза может быть достаточным, чтобы вызвать разрыв шины с возможными катастрофическими последствиями для самолета. Для предотвращения внезапного разрыва на некоторых бескамерных колесах устанавливаются термосвидетели. Эти заглушки устанавливаются в барабан колеса с помощью легкоплавкого сплава, который плавится в условиях перегрева и выталкивается повышенным давлением воздуха в пневматике. Это предотвращает чрезмерное повышение давления в пневматике путем контролируемого снижения давления в нем.
Особенностью колес самолета, как и всего, что связано с авиацией, является постоянный контроль технического состояния, поэтому проверка давления в шинах производится каждый раз после приземления и перед вылетом.
Но посадки и взлеты негативно отражаются на состоянии шин, поэтому авиационные колеса в отличие от автомобильных имеют относительно небольшой срок годности, и при малейших подозрениях механиков на наличие дефектов подлежат замене.
Статические и динамические тестовые проверки
Статические
Динамические
nauka_yaru
Наука и технология
Размещу-ка я свой постег про конструкцию основных колёс Airbus-320.
Колёса до установки на самолёт хранятся в ангаре закрытыми от (солнечного?) света.
Тут можно уже рассмотреть некоторые подробности их жизни:
Такое колесо весит примерно 130 кг.
Собственно колесо состоит из диска и шины.
Диски состоят из двух половин, разнимающихся в осевом направлении, и скреплённых по окружности колеса болтами. Гайки тех болтов видны на предыдущем фото по периметру диска ближе к его наружному краю.
Вот эти гайки крупнее:
Для закачки используется зарядный штуцер, ввёрнутый в наружную половинку диска:
Окончательную накачку до рабочего давления производители техники рекомендуют производить после установки колеса, уже на самолёте.
Внутри диска колеса находится (как мне кажется) теплозащитный экран, отделяющий тормозные диски от диска колеса и уменьшающий нагрев последнего:
Вот он в верхней части, весь такой зеркальный.
Стального цвета направляющие входят в пазы тормозных дисков при установке колеса.
Если его снять, мы видим завораживающее:
(Я аж балдею от этого вида )
Крышка находится на колесе и, разумеется, вращается вместе с ним. Вращая ротор датчика.
Сигналы ото всех датчиков поступают в систему антиюзовой автоматики, которая регулирует давление подводимой в тормоз каждого колеса гидрожидкости и подтормаживает колёса таким образом, чтобы они не проскальзывали. То есть пилот может нажимать тапку со всей дури, но работающая антиюзовая система не даст ему снести колёса, а будет обеспечивать максимально эффективное торможение.
Новая покрышка выглядит так:
Для примера несколько видов износа.
Если накачанное колесо изнашивается до дна канавок, его обычно пора менять.
Вообще, по моим подсчётам, колёса меняются довольно редко. В среднем по нескольким самолётам, на каждом из них менялось примерно по три колеса в месяц. Учитывая, что на 320-м колёс всего шесть, получается, что каждое колесо меняется в среднем раз в два месяца (если предположить, что у нас хромает отчётность, то можно увеличить ориентировочную интенсивность до одного раза в месяц на каждое колесо).
Разумеется, бывают и более частые замены по порезам.
После сдутия колесо выглядит так:
Что интересно, в документах такой вид износа определяется как «перенаддув», хотя нашей компании так и не удалось добиться равномерно прямолинейного профиля износа ни при каком давлении
(наверное, из-за тех техников, кто проявляет бдительность и докачивает «спущенные», по их мнению, колёса)
Так называемые «Chevron cutting» («Шевронообразные начёсы»):
Износ до первого нитяного корда:
Прокол/порез в канавке:
Что интересно, нигде в документах не указывают допустимую глубину пореза
Везде ориентируются на повреждённость нитяного и основного кордов.
Есть также допуски на ширину и длину порезов.
Два нитяных корда на колесе от Boeing-767:
Ну что же.
Пожалуй, это всё, что вспомнилось на данный момент про колёса.
Рассказ представил член клуба «Наука и технология» Lx