Как сделать конденсатор малой емкости
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
Делаем простой настроечный конденсатор для УКВ своими руками
Если вы заядлый радиолюбитель и любите собирать радиоприемники, то, наверное, могли заметить, что у поставщиков электронных компонентов ассортимент настроечных конденсаторов переменной емкости несколько поубавился. Было время, когда почти в каждом радиоприемнике имелся хотя бы один подстроечный конденсатор, но теперь с появлением варикапа и синтезатора частот такой конденсатор настройки антенного контура является редкостью. Они все еще производятся, но стоят не дешево, и они не будут появляться в вашем ящике для компонентов также быстро, как это было раньше.
К счастью, конденсатор переменной емкости представляет собой удивительно простое устройство. Причем вы можете сделать его самостоятельно, по крайней мере, конденсатор емкостью в несколько десятков пикофарад собирается из подручных материалов.
Для сборки самодельного конденсатора вам понадобятся болт, пара гаек, кусок медной проволоки с покрытием (длина 30 см, калибр AWG22, т.е. диаметр 0.64 мм) и маленький кусочек текстолита.
Для начала накрутите гайки на болт и нанесите на одну из граней каждой гайки олово, затем припаяйте данный болт с гайками к куску медного текстолита, как показано на рисунках ниже.
Болт желательно брать длиной 16 мм. Если такового под рукой не оказалось, то можно взять длиннее, но придется обрезать его до длины. Теперь обмотайте край болта медной проволокой. Сделайте 12 колец, после двенадцатого оборота отрежьте лишние концы проволоки, оставив примерно по 12-15 мм с каждой стороны.
На рисунке ниже показан предпоследний шаг. На этом этапе нужно сделать меленькую пластмассовую прокладку и поместить ее между гайками. Это необходимо для надежной фиксации конструкции при вращении болта во время настройки такого самодельного конденсатора. Кусок такой пластмассы может быть от чего угодно и любого типа пластика. В данном случае использовался кусок пластиковой трубы.
Провод, припаянный к печатной плате, действует в качестве ротора, а провод, идущий от катушки, действует в качестве статора. С помощью такого конденсатора можно получать емкость от 5 до 27 пФ.
ortodox69 › Блог › Конденсатор в параллель аккумулятору (конспектная запись)
конденсатор( супер конденсаторили оно же ионистор) MAXWELL 2.7V 1200F 800 рублей
сборка из 6 шт (последовательно 6 кондёров в сборке до 12 вольт)
сборка втыкается как доп аккумулятор
первичная информация взята для конспекта отсюда,все авторские права соблюдены ))))
как + огромная токоотдача, мгновенная зарядка и безумное число циклов зарядки разрядки.
Теоретически при любом состоянии разряженности аккумулятора зимой эта сборка прокрутит стартёр.
Прикинул емкость моей сборки, 140 Вт лампочек прогорели 63 сек при напряжении с 14.6 до 11в
емкость примерно 191 Фарад. токи утечки у Хомяка с сигнализацией 40мА, значит эта сборка может продержать заряд около 3-4 часов без использования Аккумулятора.
При напряжении 12 вольт бодрый запуск двигателя, за несколько секунд напряжение подымается до 14.5-14.8 вольт, после глушения двигателя малый АКБ продалжает заряжаться некоторое время, пока напряжение АКБ и конденсаторов не уровняется… при 13-14 вольтах запуск очень бодрый…
Отъездив на гибридной сборке половину зимы, впечатления только положительные, машина с таким запасом по току ведет себя более стабильно, один раз пришлось подзарядить маленький АКБ, так как поездки были в основном не продолжительные. Есть небольшой минус, несколько секунд после запуска двигателя идет высокая нагрузка на двигатель, выпрямительные диоды, генератор и ремень генератора. На лето поставил назад большой АКБ…
Вторая зима, аккумулятор подключил тонкими проводами, акб нужна только чтобы поддерживать заряд 3-8mA на конденсаторах и питать сигналку с мозгами 38mA, если надо подзарядить малого, ни каких проблем, снимается за 30 сек, дома заряжается, машина остается с конденсаторами и полностью питается от них.
сборка конденсаторов заряжаяется мгновенно от бесперебойного аккумулятора
«С конденсаторами такой ёмкости просто нужно подзарядить их напряжением выше 13в, что я и сделал повышающим преобразователем подключил его к акб от бесперебойника, 3 минуты и конденсаторы подзарядились до 12.8в.».Это вместо прикуривателя.Тупо заряжаем до 13 вольт мгновенно и к запуску всё готово.
В паре с аккумулятором интересное решение. Большой пусковой ток конденсаторов и буфер аккумулятора.
—>>> таки очень хогошая тема из Изгаиля www.drive2.ru/l/6354502
Box77 › Блог › Основы автоэлектрики. Часть5. Электрическая ёмкость и конденсаторы
Сегодня мы коснёмся темы накопителей заряда, именуемых конденсаторами.
Конденсатор — пассивный электронный компонент, состоящий из двух полюсов, накапливающий заряд.
Электрическая ёмкость — это отношение электрического заряда к разности потенциалов между полюсами конденсатора (или иного другого электронного компонента). Единица измерения — Фарад и его производные (пикоФарад, наноФарад, микроФарад). Обозначается ёмкость латинской буквой С.
Мы уже обсуждали, что ток — это есть скорость перемещения заряда, а напряжение — это разность потенциалов. Мы всегда удобно проводить некие параллели, поэтому напряжение ассоциируется с разницей давления в жидкости или газе, а ток — с объёмной скоростью жидкости или газа. Поэтому конденсатор можно представить себе как некий сосуд, который наполняют жидкостью или газом давлением, которое выше чем в сосуде. Наполнение сосуда будет происходить до тех пор, пока давление подачи не уровняется с давлением в сосуде. Так и работает конденсатор: по мере наполнения зарядом растет напряжение. Чем ближе будет напряжение в конденсаторе к напряжению заряжающего источника, тем меньше будет скорость заряда. Это аналогично тому, как наполняется сосуд. Если мы заполнили сосуд, затем открыли кран у него — ток начинает утекать, тем самым снижая количество заряда и понижая напряжение.
Если рассматривать провод или резистор как трубу, а конденсатор — как сосуд, многое становится понятно на интуитивном уровне. Ну, и проще понять реактивные сопротивления, о которых мы говорили ранее. Но надо понимать, что сосуд — это сосуд, а конденсатор — это конденсатор=)
Итак, в простейшем виде конденсатор представляет собой две параллельные пластины, между которыми находится некий диэлектрик. Самый простой диэлектрик — это воздух. Конечно, сегодня воздушные конденсаторы уже и не встретить, но я ещё несколько лет назад использовал переменный воздушный конденсатор для сборки радиоприёмника=) Правда, в этом конденсаторе пластин было гораздо больше двух, и выглядел примерно вот так:
Вращая ручку, можно было изменять значение электрической ёмкости.
На, а вот так обычно представляют простейший конденсатор:
В случае такого конденсатора ёмкость вычисляется следующим образом:
Сегодня конденсаторов огромное множество. Наиболее популярные — керамические, электролитические и танталовые. Отличие последних двух в том, что они полярны, и крайне не рекомендую включать их в схему обратной полярностью=)
Основными параметрами конденсатора являются:
— Электрическая ёмкость,
— Максимально допустимое напряжение на его обкладках (немаловажный параметр, при подачи бОльшего напряжения можно увидеть много весёлых, но крайне не безопасных эффектов:-), особенно на конденсаторах большой ёмкости),
— Полярность (т.е. полярный или неполярный),
— Допустимые отклонения от номинального значения ёмкости (обычно в процентах),
— Диапазон рабочих температур,
— Тип корпуса.
Полярность, допустимые отклонения и диапазон температур напрямую зависят от применяемого диэлектрика. Как правило, конденсаторы большой ёмкости — электролитические, т.е. в качестве диэлектрика — электролит. А электролитические конденсаторы по физике процессов сильно напоминают всем знакомые свинцово-кислотные аккумуляторы и аналогично им имеют полярность, что приводит к некоторым ограничениям. Кроме того, они имеют свойство высыхать. И именно они являются частой причиной выхода из строя бытовой и промышленной электроники, в результате чего страдают и иные компоненты. Выглядят электролитические конденсаторы так:
Танталовые конденсаторы были некогда призваны заменить электролитические, но и те имеют ряд ограничений и так и не достигли приличных ёмкостей. Кроме того, взрываются они не менее весело=) Выглядят они вот так:
Спешу обрадовать, что развитие электроники не стоит на месте и сегодня вполне можно приобрести обычные керамические конденсаторы с ёмкостью, сравнимой с танталовыми, а некоторые достигают ёмкости 330 мкФ при допустимом напряжении в 4 В. И это всё в малом чип-корпусе 1206!
Кстати, размеры основных корпусов чип-конденсаторов:
Ну, и не все конденсаторы в чипах, поэтому существуют и выводные конденсаторы:
Причина такому прорыву — отличный диэлектрик под кодовым названием X5R. 330 мкФ при 4В — не густо конечно. Но на большие напряжения ёмкости также достигли впечатляющих значений — на те же 16В найти 100 мкФ не проблема, на 25 В — на 22 мкФ, на 35-50 В пока не больше 10 мкФ. Тем не менее, во многих и многих приложениях электроники появляется возможность отказаться от электролитов и танталов.
Вернемся к основным свойствам. Если рассматривать глубже, то параметров конденсаторов гораздо больше:
— Температурная зависимость параметров,
— Входное сопротивление (ESR),
— Внутреннее сопротивление,
— Время наработки на отказ (очень интересный параметр, которому реально посвятить целую статью),
— многие другие.
Расписывать здесь все детали не вижу смысла, так эти параметры важны тем, кто глубоко занимается электроникой. Тем не менее счел важным упомянуть о них. Кому захочется капнуть — можно порыться в сети.
Помимо указанных выше конденсаторов следует немного сказать о плёночных конденсаторах. Выглядят они вот так:
Их основное отличие от предыдущих — это поражающая надежность и способность работать в силовых цепях, особенно в цепях с высоким напряжением.
Наверное, сегодня краткого обзора будет достаточно. О применении конденсаторов поговорим в следующих статьях.
В прошлой статье писал, но и здесь напомню, что конденсаторы на схемах обозначаются так:
На сим всё;)
Продолжение следует=)
___________________________________________________________________________
Записки программиста
Самодельные КПЕ из фольгированного стеклотекстолита
Переменные конденсаторы, они же конденсаторы переменное емкости или КПЕ, используется во множестве устройств. Они нужны в генераторах, антенных тюнерах, некоторых видах антенн, и много где еще. Обратим внимание на тот факт, что в любительской радиосвязи, к примеру, трансивер может с легкостью выдавать 25 Вт или 100 Вт, максимально же разрешенная мощность составляет 1000 Вт. Понятно, что общедоступные маленькие КПЕ тут совершенно не годятся, а нужных для таких мощностей КПЕ в магазине вы попросту не найдете.
Подходящие большие КПЕ из старой радиоаппаратуры можно приобрести на Авито и досках объявлений радиолюбителей. Но цены там зачастую не низкие, к конденсаторам редко указывается их емкость, не представляется возможным найти два или более одинаковых конденсатора, плюс есть риски и неудобства, сопряженные с покупкой с рук. А между тем, изготовить переменный конденсатор в домашних условиях не так уж и трудно.
Идею я подсмотрел в статье Build Your Own Transmitting Air Variable Capacitors 2003-го года за авторством David Hammack, N4DFP. В своей статье Дэвид использует медные листы, которых у меня не оказалось. Но я прикинул, что с тем же успехом подойдет и медь на одностороннем фольгированном текстолите, которого у меня как раз в избытке. Почему бы не попробовать?
Сразу покажу, что у меня в итоге получилось. Вид спереди:
Конденсатор имеет пять прямоугольных пластин размером 20 x 50 x 1 мм, зафиксированных двумя длинными болтами M3. Пластины разделены гайками. Еще четыре пластины в форме полукруга с радиусом 25 мм крепятся на одном болте M3. Этот болт можно вращать при помощи ручки от потенциометра, которую я приклеил к болту при помощи эпоксидного клея. Все это хозяйство держится на каркасе из двух прямоугольных кусков листового пластика размером 30 x 50 мм. Для соединения с подвижными пластинами я использовал толстый медный провод, изогнутый в форме петли. Провод плотно прилегает к вращающемуся болту и закреплен на каркасе конденсатора с помощью термоклея. Капля припоя, которую можно видеть на втором фото, служит для ограничения углов поворота ручки. Понятно, что все работало бы и без нее. Но мне хотелось, чтобы ручка имела какие-то крайние полажения, а не просто крутилась во все стороны.
Fun fact! Текстолит толщиной 1 мм можно резать обычными ножницами для бумаги. А стоящая у меня на столе катушка припоя очень удачно оказалась диаметром именно 25 мм — по ней и обводил.
Емкость такой поделки меняется от 13 до 53 пФ. Увеличивая площадь пластин или их количество, можно получить хоть 1000 пФ. Не думаю, что кому-то могут понадобится подстроечные конденсаторы большей емкости. Но такой конденсатор будет не очень удобен, как из-за больших размеров, так и того факта, что небольшой поворот ручки будет приводить к сильному изменению емкости.
Возможное решение заключается в том, чтобы использовать описанный выше конденсатор только для точной подстройки, а для грубой подстройки использовать конденсаторы фиксированной емкости. Последние можно соединять параллельно при помощи переключения тумблеров с двумя контактными группами.
Пример самодельного конденсатора фиксированной емкости:
Конденсатор состоит из шести пластин 25 x 50 мм. Пластины были склеены при помощи эпоксидного клея. Все четные пластины соединены между собой, и аналогично соединены все нечетные. Емкость конденсатора составляет 270 пФ. Практическая ценность таких конденсаторов, по-видимому, не очень высока, поскольку высоковольтные керамические конденсаторы фиксированной емкости легко доступны и стоят недорого. Тем не менее, давайте рассмотрим и их тоже, на случай, если когда-нибудь понадобится работать с очень высокими напряжениями.
Fun fact! Альтернативный способ изготовления конденсатора фиксированной емкости заключается в том, чтобы просто взять кусок коаксиального кабеля. Типичный кабель RG58 обладает погонной емкостью около 100 пФ на один метр.
Зависимость емкости конденсатора от числа пластин выглядит следующим образом:
Можно заметить, что емкость растет пропорционально количеству слоев диэлектрика с точностью до ошибки измерения, что соответствует теории. Используя первую строчку, ради интереса можно посчитать диэлектрическую проницаемость используемого текстолита:
Это сходится с ожидаемым значением от 4.4 до 4.7.
На StackExchange подсказывают, что чтобы пробить подобные конденсаторы, нужно по крайней мере 3 кВ на 1 мм расстояния между пластинами — это в предположении, что ток пойдет по воздуху. Для надежности, рекомендуется использовать в качестве максимального напряжения половину от этого значения. Напряжение пробоя можно увеличить, увеличивая расстояние между пластинами. Но, как видно из приведенной выше формулы, в этом случае пострадает емкость, и придется увеличивать площадь и/или количество пластин. Более практичное решение заключается в том, чтобы вытравить 3 мм меди по границе пластин. Тогда напряжение пробоя составит порядка 20 кВ — напряжение пробоя 1 мм текстолита или 7 мм воздуха.
Каково будет максимальное напряжение на конденсаторе зависит от цепи, в которой планируется его использовать. Это нужно каждый раз моделировать или считать. Но чтобы оно превысило безопасные 10-15 кВ, придется постараться. В этом случае всегда можно просто увеличить расстояние между пластинами и использовать более толстый текстолит.
Fun fact! Само собой разумеется, ничто не мешает делегировать изготовление компонентов конденсатора вашему любимому производителю печатных плат.
Как видите, все оказалось достаточно просто. Очевидные плюсы самодельных КПЕ — низкая стоимость и доступность. Можно сделать сколько угодно ровно таких конденсаторов, каких нужно. Что же до времени, которое потребуется на изготовление конденсатора, я думаю, оно сопоставимо со временем, которое вы потратите на поиск готового, а также на переговоры с его продавцом.
Дополнение: Листовой алюминий, вероятно, будет более подходящим материалом для самодельных КПЕ, чем стеклотектолит.
Как сделать конденсатор малой емкости
Конденсатор – детям не игрушка
(Архив пионерской мудрости)
Страшная история из нефильма ужасов
Конденсатор является одним из главных элементов в блоке питания импульсных лазеров. Высоковольтный конденсатор используется для питания импульсных ламп-вспышек, а также для накачки импульсных газоразрядных лазеров. Параметры конденсатора выбираются в зависимости от конкретного типа лазера. Определяющими являются такие величины как емкость, рабочее напряжение, волновое сопротивление и собственная индуктивность конденсатора. От емкости и рабочего напряжения конденсатора зависит энергия накачки. Энергия конденсатора рассчитывается по простой формуле
Е = СU 2 /2, где Е – энергия конденсатора
С – емкость конденсатора
U – напряжение зарядки конденсатора
Lк – индуктивность конденсатора
Это классический колебательный контур с активным сопротивлением R, которое зависит от диэлектрика между обкладками конденсатора и удельного сопротивления всех токоведущих элементов конденсатора. Таким образом, заряд и разряд конденсатора происходит не мгновенно, а имеет колебательный характер. Частота колебаний определяется формулой Томпсона, из которой и вычисляется собственная индуктивность конденсатора.
, где Lк – собственная индуктивность конденсатора
fp – основная резонансная частота
Разумеется, чем выше энергия конденсатора, тем больше мощность накачки. Однако с увеличением емкости конденсатора возрастает и время импульса накачки. Если длительность накачки не имеет принципиального значения, то для работы лазера подойдут высоковольтные электролитические конденсаторы. Такие конденсаторы можно использовать, например, для накачки рубинового или неодимового лазера. Конечно, проблематично раздобыть кондер, имеющий 1000 мкФ при рабочем напряжении 3 кВ. Но эта проблема легко решается, если использовать банк конденсаторов. При последовательном соединении отдельных конденсаторов суммарное напряжение зарядки возрастает, а емкость можно увеличить параллельным подключением конденсаторов. В радиотехнических магазинах можно купить электролитические конденсаторы, имеющие, например, 150 мкФ х 450 В.
Из таких конденсаторов можно составить банк на любую емкость и рабочее напряжение.
На рисунке ниже показан пример банка конденсаторов, эквивалентный одному конденсатору на 30 мкФ х 2 кВ.
Если длительность накачки должна быть как можно меньше, то для работы лазера электролитические конденсаторы уже не подходят, и нужно приобретать импульсные конденсаторы. К сожалению, в радиотехнических магазинах импульсные высоковольтные конденсаторы – товар редкий. В магазине «Чип и Дип» можно затариться высоковольтными конденсаторами фирмы « MURATA ».
Однако максимальное напряжение таких конденсаторов ограничено на уровне 15 кВ при емкости 1 нФ. Такие конденсаторы можно использовать для накачки самодельных азотных лазеров или лазеров на парах металлов.
Для накачки лазеров на красителях потребуется 100 – 1000 штук таких конденсаторов, соединенных параллельно. Учитывая стоимость одного такого кондера на уровне
80 руб/шт, все удовольствие обойдется любителю минимум 8 000 руб. Так еще нужно спаять из кучи конденсаторов единый банк.
Через Интернет можно приобрести конденсаторы типа КВИ-3, которые также подходят для накачки лазеров, но их цена будет еще дороже (
Также через Интернет приобретаются конденсаторы типа КПИМ, которые вполне подойдут для накачки лазера на красителе.
Эти конденсаторы имеют впечатляющие характеристики. Рабочее напряжение может быть в пределах 5 – 100 кВ при емкости конденсатора 0,1 – 240 мкФ. Но вот частота импульсов будет
Самодельный высоковольтный конденсатор
Схема конденсатора проста, но вот трудности реализации этой схемы в виде готовой конструкции возрастают с ростом рабочего напряжения конденсатора. Для начала разберем возможные варианты простого конденсатора из двух обкладок, разделенных воздухом. На рисунке 1 показаны пластины заряженного конденсатора. Если нужно изготовить конденсатор с низкой индуктивностью, то следует стремиться укорачивать все токоведущие элементы. Причем направление токов в обкладках конденсатора при разрядке должно быть противоположным, дабы снизить магнитное поле. Направление токов зависит от места подключения электродов конденсатора. Индуктивность конденсатора будет самой наименьшей, если электроды конденсатора соединены с обкладками по центру, как показано на рисунке 2.
Собственно по этой схеме изготавливаются коммерческие керамические конденсаторы. Только у высоковольтных конденсаторов обкладки имеют форму круга во избежание возникновения коронных разрядов. Возможные варианты подключения электродов к обкладкам конденсатора, а также направления токов при разрядке показаны на рисунке ниже.