Как сделать космический шаттл

Спейс шаттл

Шаттл запускается в космос при помощи двух твердотопливных ракетных ускорителей и трёх

Как сделать космический шаттл

Данная многоразовая система состоит из трёх [4] основных компонентов (ступеней):

В НАСА космические челноки имеют обозначение OV-ххх (Orbiter Vehicle — ххх)

Содержание

Экипаж[править | править вики-текст] [ править | править код ]

Наименьший экипаж шаттла состоит из двух астронавтов — командира и пилота («Колумбия», запуски STS-1, STS-2, STS-3, STS-4). Наибольший экипаж шаттла — восемь астронавтов («Челленджер», STS-61A, 1985 год). Второй раз 8 астронавтов было на борту при посадке «Атлантиса» STS-71 в 1995 году. Чаще всего в экипаж входят от пяти до семи астронавтов. Беспилотных запусков не было.

Орбиты[править | править вики-текст] [ править | править код ]

Орбита шаттлов располагалась на высоте приблизительно в пределах от 185 до 643 км (115—400 миль).

Полезная нагрузка[править | править вики-текст] [ править | править код ]

Доставляемая в космос полезная нагрузка орбитальной ступени (орбитального ракетоплана) для низкой околоземной орбиты зависит, в первую очередь, от параметров целевой орбиты, на которую выводится челнок. Максимальная масса полезной нагрузки может быть доставлена в космос при запуске на низкую околоземную орбиту с наклонением порядка 28° (широта космодрома Канаверал) и составляет 24,4 тонны. При запуске на орбиты с наклонением бо́льшим, чем 28°, допустимая масса полезной нагрузки соответственно уменьшается (так, при запуске на полярную орбиту расчетная грузоподъёмность челнока падает до 12 т; в реальности, однако, челноки никогда не запускались на полярную орбиту).

Максимальная масса загруженного космического корабля на орбите — 120—130 т. С 1981 года с помощью шаттлов было доставлено на орбиту более 1370 т полезных грузов.

Проверить информацию.Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.

На странице обсуждения должны быть пояснения.

Максимальная масса груза, возвращаемого с орбиты — до 14,4 т.

Длительность полёта[править | править вики-текст] [ править | править код ]

Шаттл рассчитан на двухнедельное пребывание на орбите. Обычно полёты шаттлов продолжались от 5 до 16 суток.

Шаттл «Колумбия» совершил как самый короткий космический полёт в истории программы STS-2, в ноябре 1981 года, длительность — 2 дня 6 часов 13 минут, так и самый продолжительный STS-80, ноябре 1996 года, длительность — 17 суток 15 часов 53 минуты.

В общей сложности к дате закрытия программы в 2011 году шаттлы совершили 135 полётов, из них «Дискавери» — 39, «Атлантис» — 33, «Колумбия» — 28, «Индевор» — 25, «Челленджер» — 10.

История создания[править | править вики-текст] [ править | править код ]

История проекта «Космическая транспортная система» начинается в 1967 году, когда ещё до первого пилотируемого полёта по программе «Аполлон» (11 октября 1968 года — старт «Аполлон-7») оставалось больше года, как обзор перспектив пилотируемой космонавтики после завершения лунной программы NASA. [8]

30 октября 1968 года два головных центра NASA (Центр пилотируемых космических кораблей — MSC — в Хьюстоне и Космический центр имени Маршалла — MSFC — в Хантсвилле) обратились к американским космическим компаниям с предложением исследовать возможность создания многоразовой космической системы, что должно было снизить затраты космического агентства при условии интенсивного использования. [9]

Большой проект включал:

В качестве малого проекта предлагалось создать только большую орбитальную станцию на Земной орбите. Но в обоих проектах было определено, что орбитальные полёты: снабжение станции, доставку на орбиту грузов для дальних экспедиций или блоки кораблей для дальних полётов, смена экипажей и прочие задания на орбите Земли, должны осуществляться многоразовой системой, которая и получила тогда название Space Shuttle. [11]

Также существовали планы создания «атомного шаттла» — челнока с ядерной двигательной установкой NERVA, которая разрабатывалась и испытывалась в 1960-х годах. Атомный шаттл должен был осуществлять полёты между земной орбитой и орбитами Луны и Марса. Снабжение атомного челнока рабочим телом (жидкий водород) для ядерного двигателя возлагалось на обыкновенные шаттлы:

Однако президент США Ричард Никсон отверг все варианты, потому что даже самый дешёвый требовал 5 млрд долл. в год. NASA оказалось перед тяжёлым выбором: нужно было или начать новую крупную разработку, или объявить о прекращении пилотируемой программы.

Было решено настаивать на создании шаттла, но подать его не как транспортный корабль для сборки и обслуживания космической станции (держа, однако, это про запас), а как систему, способную приносить прибыль и окупить инвестиции за счёт выведения на орбиту спутников на коммерческой основе. Экономическая экспертиза подтвердила: теоретически при условии не менее 30 полётов в год и полном отказе от использования одноразовых носителей «Космическая транспортная система» может быть рентабельной. [12][13][14]

Проект создания шаттлов был принят Конгрессом США.

Одновременно, в связи с отказом от одноразовых ракет-носителей, определялось, что на шаттлы возлагается обязанность осуществлять вывод на земную орбиту и всех перспективных аппаратов Минобороны, ЦРУ и АНБ США.

Военные предъявили свои требования к системе:

Этим требования военного ведомства к проекту были ограничены. [9]

Использовать челноки в качестве «космических бомбардировщиков» не планировалось никогда. Во всяком случае, не существует никаких открытых документов NASA, Пентагона, или Конгресса США, свидетельствующих о таких намерениях. Не упоминаются «бомбардировочные» мотивы ни в мемуарах, ни в частной переписке участников создания шаттлов. [15]

Проект космического бомбардировщика «X-20 Dyna Soar» официально стартовал 24 октября 1957 года. Однако с развитием МБР шахтного базирования иатомного подводного флота, вооружённого баллистическими ракетами, создание орбитальных бомбардировщиков в США было признано нецелесообразным. Уже после 1961 года из проекта «X-20 Dyna Soar» исчезают упоминания о «бомбардировочных» задачах, но остаются разведывательные и «инспекционные». 23 февраля 1962 года министр обороны Р. Макнамара одобрил последнюю реструктуризацию программы. С этого момента «Dyna-Soar» официально называлась научно-исследовательской программой, имеющей целью исследовать и показать возможность выполнения пилотируемым орбитальным планёром маневрирования при входе в атмосферу и посадки на взлётно-посадочную полосу в заданном месте Земли с необходимой точностью.

К середине 1963 года министерство обороны серьёзно сомневалось относительно необходимости программы «Dyna-Soar».

10 декабря 1963 года министр обороны Макнамара отменил «Dyna-Soar». [16]

При принятии этого решения было учтено, что космические аппараты такого класса не могут «висеть» на орбите достаточно продолжительное время, чтобы считать их «орбитальными платформами», а запуск каждого корабля на орбиту занимает даже не часы, а сутки и требует применения ракет-носителей тяжёлого класса, что не позволяет их использовать ни для первого, ни для ответного ядерного удара. [17]

Многие технические и технологические наработки программы «Dyna-Soar» были впоследствии использованы при создании шаттлов.

Первоначально, в 1972 году, планировалось что шаттл станет основным средством доставки в космос, но в 1984 году ВВС США доказали что им необходимы дополнительные, резервные, средства доставки. В 1986 году, после катастрофы шаттла «Челленджер», была пересмотрена политика использования шаттла: шаттлы должны использоваться для миссий требующих взаимодействие с экипажем; так же коммерческие аппараты не могут запускаться на шаттле, за исключением аппаратов разработанных для запуска шаттлом или требующих взаимодействия с экипажем, или по соображениям внешней политики. [18]

Реакция СССР[править | править вики-текст] [ править | править код ]

Советское руководство внимательно наблюдало за развитием программы «Космическая транспортная система», но, предполагая худшее, искало скрытую военную угрозу. Таким образом, было сформировано два основных предположения:

В результате советская космическая отрасль получила задание создать многоразовую многоцелевую космическую систему с характеристиками, аналогичными шаттлу — «Буран и энергия». [19]

Источник

Журнал «Все о Космосе»

Как сделать космический шаттл

Как сделать космический шаттл

Как сделать космический шаттл

Программа «Space Shuttle»

Как сделать космический шаттл

Шаттл «Дискавери» на стартовом столе

«Спейс шаттл» или просто «Шаттл» ( Space Shuttle — «космический челнок») — американский многоразовый транспортный космический корабль. «Шаттлы» использовались в рамках осуществляемой НАСА государственной программы «Космическая транспортная система» ( Space Transportation System, STS ). Подразумевалось, что шаттлы будут «сновать, как челноки» между околоземной орбитой и Землёй, доставляя полезные грузы в обоих направлениях.

Программа по созданию космических челноков разрабатывалась компанией North American Rockwell и группой ассоциированных подрядчиков по поручению НАСА с 1971 года. Разработка и опытно-конструкторские работы велись в рамках совместной программы НАСА и ВВС. При создании системы использовался ряд технических решений для лунных модулей программы «Аполлон» 1960-х годов: эксперименты с твердотопливными ускорителями, системами их отделения и получения топлива из внешнего бака. Всего было построено пять шаттлов (два из них погибли в катастрофах) и один прототип. Полеты в космос осуществлялись с 12 апреля 1981 года по 21 июля 2011 года.

В 1985 году НАСА планировало, что к 1990 году будет совершаться по 24 старта в год, и каждый из кораблей совершит до 100 полётов в космос. На практике же они использовались значительно меньше — за 30 лет эксплуатации было произведено 135 пусков (в том числе две катастрофы). Больше всего полётов (39) совершил космический челнок «Дискавери».

Общее описание системы

Как сделать космический шаттл

Шаттл запускается в космос при помощи двух твердотопливных ракетных ускорителей и трёх собственных маршевых двигателей, которые получают топливо из огромного внешнего подвесного бака, на начальном участке траектории основную тягу создают отделяемые твердотопливные ускорители. На орбите шаттл осуществляет манёвры за счёт двигателей системы орбитального маневрирования, возвращаясь на Землю как планёр.

Данная многоразовая система состоит из трёх основных компонентов (ступеней):

В НАСА космические челноки имеют обозначение OV-ххх (Orbiter Vehicle — ххх)

Экипаж

Наименьший экипаж шаттла состоит из двух астронавтов — командира и пилота («Колумбия», запуски STS-1, STS-2, STS-3, STS-4). Наибольший экипаж шаттла — восемь астронавтов («Челленджер», STS-61A, 1985 год). Второй раз 8 астронавтов было на борту при посадке «Атлантиса» STS-71 в 1995 году. Чаще всего в экипаж входят от пяти до семи астронавтов. Беспилотных запусков не было.

Орбиты

Орбита шаттлов располагалась на высоте приблизительно в пределах от 185 до 643 км (115—400 миль).

Полезная нагрузка

Доставляемая в космос полезная нагрузка орбитальной ступени (орбитального ракетоплана) для низкой околоземной орбиты зависит, в первую очередь, от параметров целевой орбиты, на которую выводится челнок. Максимальная масса полезной нагрузки может быть доставлена в космос при запуске на низкую околоземную орбиту с наклонением порядка 28° (широта космодрома Канаверал) и составляет 24,4 тонны. При запуске на орбиты с наклонением бо́льшим, чем 28°, допустимая масса полезной нагрузки соответственно уменьшается (так, при запуске на полярную орбиту расчетная грузоподъёмность челнока падает до 12 т; в реальности, однако, челноки никогда не запускались на полярную орбиту).

Максимальная масса загруженного космического корабля на орбите — 120—130 т. С 1981 года с помощью шаттлов было доставлено на орбиту более 1370 т полезных грузов.

Максимальная масса груза, возвращаемого с орбиты — до 14,4 т.

Длительность полёта

Шаттл рассчитан на двухнедельное пребывание на орбите. Обычно полёты шаттлов продолжались от 5 до 16 суток.

Шаттл «Колумбия» совершил как самый короткий космический полёт в истории программы STS-2, в ноябре 1981 года, длительность — 2 дня 6 часов 13 минут, так и самый продолжительный STS-80, ноябре 1996 года, длительность — 17 суток 15 часов 53 минуты.

В общей сложности к дате закрытия программы в 2011 году шаттлы совершили 135 полётов, из них «Дискавери» — 39, «Атлантис» — 33, «Колумбия» — 28, «Индевор» — 25, «Челленджер» — 10.

История создания

История проекта «Космическая транспортная система» начинается в 1967 году, когда ещё до первого пилотируемого полёта по программе «Аполлон» (11 октября 1968 года — старт «Аполлон-7») оставалось больше года, как обзор перспектив пилотируемой космонавтики после завершения лунной программы NASA.

30 октября 1968 года два головных центра NASA (Центр пилотируемых космических кораблей — MSC — в Хьюстоне и Космический центр имени Маршалла — MSFC — в Хантсвилле) обратились к американским космическим компаниям с предложением исследовать возможность создания многоразовой космической системы, что должно было снизить затраты космического агентства при условии интенсивного использования.

В сентябре 1970 года Целевая космическая группа под руководством вице-президента США С. Агню, специально созданная для определения следующих шагов в освоении космического пространства, оформила два детально проработанных проекта вероятных программ.

Большой проект включал:

В качестве малого проекта предлагалось создать только большую орбитальную станцию на Земной орбите. Но в обоих проектах было определено, что орбитальные полёты: снабжение станции, доставку на орбиту грузов для дальних экспедиций или блоки кораблей для дальних полётов, смена экипажей и прочие задания на орбите Земли, должны осуществляться многоразовой системой, которая и получила тогда название Space Shuttle.

Командованием ВВС США были заключены контракты на проведение НИОКР и испытаний. Системное проектирование и системная интеграция были возложены на исследовательскую корпорацию Aerospace Corp. Кроме того, к работе над шаттлом подключились следующие коммерческие структуры: за разработку второй ступени отвечали General Dynamics Corp., McDonnell-Douglas Aircraft Corp., за разработку шаттла, организацию и проведение полётов — North American Rockwell Corp., TRW, Inc., полезной нагрузки — McDonnell-Douglas Aircraft Corp., TRW, Inc., Aerospace Corp. Курированием проекта от государственных структур занимался Космический центр им. Кеннеди.

В изготовлении узлов и агрегатов шаттла ( Space Shuttle Orbiter ) на конкурсной основе, пройдя отбор среди множества конкурентов, были задействованы следующие коммерческие структуры (о заключении контрактов было объявлено 29 марта 1973):

Также существовали планы создания «атомного шаттла» — челнока с ядерной двигательной установкой NERVA, которая разрабатывалась и испытывалась в 1960-х годах. Атомный шаттл должен был осуществлять полёты между земной орбитой и орбитами Луны и Марса. Снабжение атомного челнока рабочим телом (жидкий водород) для ядерного двигателя возлагалось на обыкновенные шаттлы:

Nuclear Shuttle: This reusable rocket would rely on the NERVA nuclear engine. It would operate between low earth orbit, lunar orbit, and geosynchronous orbit, with its exceptionally high performance enabling it to carry heavy payloads and to do considerable amounts of work with limited stores of liquid-hydrogen propellant. In turn, the nuclear shuttle would receive this propellant from the Space Shuttle.

— SP-4221 The Space Shuttle Decision

Однако президент США Ричард Никсон отверг все варианты, потому что даже самый дешёвый требовал 5 млрд долл. в год. NASA оказалось перед тяжёлым выбором: нужно было или начать новую крупную разработку, или объявить о прекращении пилотируемой программы.

Было решено настаивать на создании шаттла, но подать его не как транспортный корабль для сборки и обслуживания космической станции (держа, однако, это про запас), а как систему, способную приносить прибыль и окупить инвестиции за счёт выведения на орбиту спутников на коммерческой основе. Экономическая экспертиза подтвердила: теоретически при условии не менее 30 полётов в год и полном отказе от использования одноразовых носителей «Космическая транспортная система» может быть рентабельной.

Проект создания шаттлов был принят Конгрессом США.

Одновременно, в связи с отказом от одноразовых ракет-носителей, определялось, что на шаттлы возлагается обязанность осуществлять вывод на земную орбиту и всех перспективных аппаратов Минобороны, ЦРУ и АНБ США.

Военные предъявили свои требования к системе:

Этим требования военного ведомства к проекту были ограничены.

Использовать челноки в качестве «космических бомбардировщиков» не планировалось никогда. Во всяком случае, не существует никаких открытых документов NASA, Пентагона, или Конгресса США, свидетельствующих о таких намерениях. Не упоминаются «бомбардировочные» мотивы ни в мемуарах, ни в частной переписке участников создания шаттлов.

Проект космического бомбардировщика «X-20 Dyna Soar» официально стартовал 24 октября 1957 года. Однако с развитием МБР шахтного базирования и атомного подводного флота, вооружённого баллистическими ракетами, создание орбитальных бомбардировщиков в США было признано нецелесообразным. Уже после 1961 годаиз проекта «X-20 Dyna Soar» исчезают упоминания о «бомбардировочных» задачах, но остаются разведывательные и «инспекционные». 23 февраля 1962 года министр обороны Р. Макнамара одобрил последнюю реструктуризацию программы. С этого момента «Dyna-Soar» официально называлась научно-исследовательской программой, имеющей целью исследовать и показать возможность выполнения пилотируемым орбитальным планёром маневрирования при входе в атмосферу и посадки на взлётно-посадочную полосу в заданном месте Земли с необходимой точностью.

К середине 1963 года министерство обороны серьёзно сомневалось относительно необходимости программы «Dyna-Soar».

10 декабря 1963 года министр обороны Макнамара отменил «Dyna-Soar».

При принятии этого решения было учтено, что космические аппараты такого класса не могут «висеть» на орбите достаточно продолжительное время, чтобы считать их «орбитальными платформами», а запуск каждого корабля на орбиту занимает даже не часы, а сутки и требует применения ракет-носителей тяжёлого класса, что не позволяет их использовать ни для первого, ни для ответного ядерного удара.

Многие технические и технологические наработки программы «Dyna-Soar» были впоследствии использованы при создании шаттлов.

Первоначально, в 1972 году, планировалось что шаттл станет основным средством доставки в космос, но в 1984 году ВВС США доказали что им необходимы дополнительные, резервные, средства доставки. В 1986 году, после катастрофы шаттла «Челленджер», была пересмотрена политика использования шаттла: шаттлы должны использоваться для миссий требующих взаимодействие с экипажем; так же коммерческие аппараты не могут запускаться на шаттле, за исключением аппаратов разработанных для запуска шаттлом или требующих взаимодействия с экипажем, или по соображениям внешней политики.

Реакция СССР

Советское руководство внимательно наблюдало за развитием программы «Космическая транспортная система», но, предполагая худшее, искало скрытую военную угрозу. Таким образом, было сформировано два основных предположения:

В результате советская космическая отрасль получила задание создать многоразовую многоцелевую космическую систему с характеристиками, аналогичными шаттлу — «Буран».

Конструкция

Как сделать космический шаттл

Высота на стартовой позиции56,14 м
Масса при старте2045 т
Масса полезного груза29,5 т
Процент полезного груза от общего веса1,4 %
Подъёмная сила при старте30 806 кН (3141 тс)

Твердотопливный ускоритель

Длина50 м
Диаметр3,71 м
Общая масса двух ускорителей1180 т
Тяга двигателей двух ускорителей25 500 кН (2600 тс)
Удельный импульс269 с
Время работы123 с

Внешний топливный бак

Как сделать космический шаттл

Бак содержит горючее (водород) и окислитель (кислород) для трёх жидкостных ракетных двигателей (ЖРД) SSME (RS-25) на орбитальном аппарате и не снабжён собственными двигателями.

Внутри топливный бак разделён на три секции. Верхнюю треть бака занимает ёмкость, предназначенная для охлаждённого до температуры −183 °C (−298 °F) жидкого кислорода. Объём этой ёмкости составляет 650 тыс. литров (143 тыс. галлонов). Нижние две трети бака предназначены для охлаждённого до температуры −253 °C (−423 °F) жидкого водорода. Объём этой ёмкости составляет 1,752 млн литров (385 тыс. галлонов). Между ёмкостями для кислорода и водорода находится кольцевидный промежуточный отсек, который соединяет топливные секции, несёт в себе оборудование, и к которому крепятся верхние концы ракетных ускорителей.

Начиная с 1998 года баки изготавливались из алюминиево-литиевого сплава. Поверхность топливного бака покрыта термозащитной оболочкой из напылённой пены полиизоцианурата толщиной в 2,5 см. Задачи этой оболочки — защитить горючее и окислитель от перегрева и предотвратить образование льда на поверхности бака. В месте крепления ракетных ускорителей во избежание образования льда установлены дополнительные нагреватели. Для защиты водорода и кислорода от перегрева внутри бака также имеется система кондиционирования. Особая электрическая система встроена в бак для защиты от молний. За регулировку давления в топливных ёмкостях и за поддержание безопасных условий в промежуточном отсеке отвечает система клапанов. В баке находится множество датчиков, сообщающих о состоянии систем. Топливо и окислитель из бака подаются к трём маршевым ЖРД орбитального ракетоплана (орбитера) по магистралям питания диаметром 43 см каждая, которые затем разветвляются внутри ракетоплана и подводят реагенты к каждому двигателю. Баки изготавливались компанией «Lockheed Martin».

Длина47 м
Диаметр8,38 м
Масса при старте756 т
Тяга на уровне моря (104,5 %)5252 кН (535,5 тс)
Удельный импульс455 с
Время работы480 с
Горючеежидкий водород
Масса горючего при старте103 т
Окислительжидкий кислород
Масса окислителя при старте616 т

Орбитер (орбитальный ракетоплан)

Как сделать космический шаттл

Размеры орбитального корабля по сравнению с «Союзом»

Орбитальный ракетоплан оснащён тремя собственными (бортовыми) разгонными маршевыми двигателями RS-25 (SSME), начинавшими работу за 6,6 секунд до момента старта (отрыва от стартового стола), и выключавшимися незадолго до отделения внешнего топливного бака. Далее, на участке довыведения (в качестве доразгонных двигателей), а также для маневрирования на орбите и схода с неё использовались два двигателя системы орбитального маневрирования ( Orbital Maneuvering System, OMS ), каждый тягой 27 кН. Горючее и окислитель для OMS хранились на шаттле, использовались для орбитальных манёвров и при торможении космического челнока перед сходом с орбиты. Кроме того, OMS включает задний ряд двигателей реактивной системы управления ( Reaction Control System, RCS ), предназначенных для ориентации космического корабля на орбите, расположенных в его хвостовых мотогондолах. В носовой части ракетоплана располагается передний ряд двигателей RCS.

Длина37,24 м
Размах крыльев23,79 м
Масса (без полезного груза)68,5 тонн
Общая подъёмная сила при старте5306 кН (541 тс)
Удельный импульс316 с
Время работы1250 с
Горючееметилгидразин (MMH)
Окислительтетраоксид диазота (N2O4)

При посадке используется, для гашения горизонтальной скорости, тормозной парашют, и, в дополнение к нему, — аэродинамический тормоз (разделяющийся руль направления).

Профиль полёта

Запуск и выведение на орбиту

Старт системы выполняется вертикально, на полной тяге маршевых двигателей шаттла (SSME) и двух твердотопливных ускорителей, при этом последние создают около 80 % стартовой тяги системы. Зажигание трёх маршевых двигателей происходит за 6,6 секунд до назначенного времени старта (Т), двигатели включаются последовательно, с интервалом 120 миллисекунд. В течение трёх секунд двигатели выходят на стартовую мощность (100 %) тяги. Точно в момент старта (Т=0) производится одновременное зажигание боковых ускорителей и подрыв восьми пироболтов, обеспечивающих крепление системы к стартовому комплексу. Начинается подъём системы. Непосредственно после отхода от стартового комплекса начинается разворот системы по тангажу, вращению и рысканию для выхода на азимутцелевого наклонения орбиты. В ходе дальнейшего подъёма с постепенным уменьшением тангажа (траектория отклоняется от вертикали к горизонту, в конфигурации «спиной вниз») выполняется несколько кратковременных дросселирований маршевых двигателей с целью снижения динамических нагрузок на конструкцию. Так, на участке максимального аэродинамического сопротивления (Max Q) мощность маршевых двигателей дросселируется до 72 %. Перегрузки на этапе выведения системы на орбиту составляют до 3g.

Приблизительно через две минуты (126 секунд) после подъёма, на высоте 45 км, боковые ускорители отделяются от системы. Дальнейший подъём и разгон системы осуществляется маршевыми двигателями шаттла (SSME), питающимися из внешнего топливного бака. Их работа прекращается по достижении кораблём скорости 7,8 км/с на высоте несколько более 105 км ещё до полной выработки топлива; через 30 секунд после отключения двигателей (примерно через 8,5 минут после старта) на высоте около 113 км производится отделение внешнего топливного бака.

Существенно, что на данном этапе скорость орбитального корабля ещё недостаточна для выхода на устойчивую низкую круговую орбиту (по сути, челнок выходит на баллистическую траекторию) и требуется дополнительный разгонный импульс до выведения на орбиту. Этот импульс выдаётся через 90 секунд после отделения бака — в момент, когда челнок, продолжая движение по баллистической траектории, достигает её апогея; необходимый доразгон производится кратковременным включением двигателей системы орбитального маневрирования. В некоторых полётах для этой цели использовалось два последовательных включения двигателей на разгон (один импульс увеличивал высоту апогея, другой формировал круговую орбиту).

Такое решение профиля полёта позволяет избежать выведения топливного бака на ту же орбиту, что и челнок; продолжая снижение по баллистической траектории, бак падает в заданную точку Индийского океана. В случае, если импульс довыведения не удастся осуществить, челнок всё же может совершить одновитковый полёт по очень низкой орбите и вернуться на космодром.

На любом этапе выведения на орбиту предусмотрена возможность аварийного прекращения полёта с использованием соответствующих процедур.

Непосредственно после формирования низкой опорной орбиты (круговой орбиты с высотой порядка 250 км, хотя значение параметров орбиты зависело от конкретного полёта) производится сброс остатков топлива из системы маршевых двигателей SSME и вакуумирование их топливных магистралей. Кораблю придаётся необходимая осевая ориентация. Раскрываются створки грузового отсека, которые служат также и радиаторами системы терморегуляции корабля. Системы корабля приводятся в конфигурацию орбитального полёта.

Посадка

Как сделать космический шаттл

Посадка состоит из нескольких этапов. Вначале производится выдача тормозного импульса на сход с орбиты — приблизительно за половину витка до места посадки, при этом шаттл летит кормой вперёд в перевернутом положении. Продолжительность работы двигателей орбитального маневрирования составляет около 3 минут; характеристическая скорость, отнимаемая от орбитальной скорости шаттла — 322 км/ч; такого торможения достаточно для того, чтобы перигей орбиты оказался в пределах атмосферы. Затем челнок выполняет разворот по тангажу, принимая необходимую ориентацию для входа в атмосферу. Корабль входит в атмосферу с большим углом атаки (порядка 40°). Сохраняя данный угол тангажа, корабль выполняет несколько S-образных манёвров с креном до 70°, эффективно гася скорость в верхних слоях атмосферы (это также позволяет минимизировать подъёмную силу крыла, нежелательную на данном этапе). Температура отдельных участков теплозащиты корабля на этом этапе превышает 1500°. Максимальная перегрузка, испытываемая астронавтами на этапе атмосферного торможения — около 1,5 g.

После гашения основной части орбитальной скорости корабль продолжает снижаться как тяжёлый планёр с невысоким аэродинамическим качеством, постепенно уменьшая тангаж. Выполняется манёвр захода на посадочную полосу. Вертикальная скорость корабля на этапе снижения весьма высока — порядка 50 м/с. Угол посадочной глиссады также велик — порядка 17-19°. На высоте порядка 500 м и скорости около 430 км/ч начинается выравнивание корабля и производится выпуск шасси. Касание полосы происходит на скорости порядка 350 км/ч, после чего выпускается тормозной парашют диаметром 12 м; после торможения до скорости 110 км/ч парашют сбрасывается. Экипаж выходит из корабля через 30-40 минут после остановки.

История применения

Обозначения номеров полётов

Каждый пилотируемый полёт по программе «Космическая транспортная система» имел своё обозначение, которое состояло из сокращения STS ( Space Transportation System ) и порядкового номера полёта шаттла. Например, STS-4 означает четвёртый полёт по программе «Космическая транспортная система». Порядковые номера присваивались на стадии планирования для каждого полёта. Но в ходе подготовки многие полёты откладывались или переносились на другие сроки. Часто случалось так, что полёт, запланированный на более поздний срок и имеющий больший порядковый номер, оказывался готовым к полёту раньше, чем другой полёт, запланированный на более ранний срок. Раз присвоенные порядковые номера не изменялись, то и полёты с бо́льшим порядковым номером часто осуществлялись раньше, чем полёты с меньшим номером.

С 1984 года была введена новая система обозначений. Сокращение STS осталось, но порядковый номер был заменён кодовой комбинацией, которая состояла из двух цифр и одной буквы. Первая цифра в этой кодовой комбинации соответствовала последней цифре текущего года, но не календарного, а бюджетного года НАСА, который продолжался с октября по сентябрь. Например, если полёт происходит в 1984 году до октября, то берётся цифра 4, если в октябре и позже — цифра 5. Второй цифрой в кодовой комбинации всегда была 1. Обозначение 1 было принято для запусков шаттлов с мыса Канаверал. Ранее планировалось, что шаттлы будут также стартовать с военно-воздушной базы Ванденберг в Калифорнии; для этих стартов планировалась цифра 2. Но катастрофа «Челленджера» (STS-51L) прервала эти планы. Буква в кодовой комбинации соответствовала порядковому номера полёта шаттла в текущем году. Но и этот порядок не соблюдался, так, например, полёт STS-51D состоялся раньше, чем полёт STS-51B.

Пример: полёт STS-51A — состоялся в ноябре 1984 года (цифра 5), это был первый полёт в новом бюджетном году (буква А), шаттл стартовал с мыса Канаверал (цифра 1).

После катастрофы «Челленджера» произошедшей в январе 1986 года и отмены запусков с базы Ванденберг НАСА вернулось к старой системе обозначения.

Список полётов по программе «Спейс Шаттл»

Список полётов Spacelab и Spacehab
МиссияОрбитерЛабораторияНаправление исследований
STS-9ColumbiaSpacelab-1общенаучные
51-B (STS-24)ChallengerSpacelab-3микрогравитационные и биологические
51-F (STS-26)ChallengerSpacelab-2физика солнца
61-A (STS-30)ChallengerSpacelab-D1микрогравитационные и биологические
STS-35ColumbiaASTRO-1астрономические
STS-40ColumbiaSpacelab SLS-01космическая биология и медицина
STS-42DiscoverySpacelab IML-01микрогравитационные
STS-45AtlantisATLAS-1атмосферные
STS-50ColumbiaUSML-1микрогравитационные
STS-47EndeavourSpacelab-J1микрогравитационные и биологические
STS-56DiscoveryATLAS-2атмосферные
STS-55ColumbiaSpacelab-D2микрогравитационные
STS-57EndeavourSpacehab-1материаловедческие и биологические
STS-58ColumbiaSpacelab SLS-02биологические
STS-60DiscoverySpacehab-2материаловедческие
STS-65ColumbiaSpacelab IML-02микрогравитационные
STS-66AtlantisATLAS-3атмосферные
STS-63DiscoverySpacehab-3материаловедческие и биологические
STS-67DiscoveryASTRO-2астрономические
STS-71AtlantisSpceelab-Мирбиологические
STS-73ColumbiaUSML-2микрогравитационные
STS-77EndeavourSpacehab-4материаловедческие и биологические
STS-78ColumbiaLMS-1биологические и микрогравитационные
STS-83ColumbiaMSL-1материаловедческие
STS-94ColumbiaMSL-1Rматериаловедческие
STS-90ColumbiaNeurolabнейробиологические
STS-95DiscoverySpacehab-5биологические
Список полётов по программе «Шаттл-Мир» и МКС
МиссияОрбитерСтанцияПолётное и научное задание
STS-71AtlantisШаттл-Мир1-я стыковка
STS-74AtlantisШаттл-Мир2-я стыковка
STS-76AtlantisШаттл-Мир3-я стыковка
STS-79AtlantisШаттл-Мир4-я стыковка
STS-81AtlantisШаттл-Мир5-я стыковка
STS 84AtlantisШаттл-Мир6-я стыковка
STS-86AtlantisШаттл-Мир7-я стыковка
STS-89EndeavourШаттл-Мир8-я стыковка
STS-91DiscoveryШаттл-Мир9-я стыковка
совместные микрогравитационные исследования
STS-88EndeavourМКС1-й полёт по программе сборки
совместные микрогравитационные и биологические исследования
STS-96DiscoveryМКС2-й полёт по программе сборки
совместные атмосферные исследования
STS-101AtlantisМКС3-й полёт по программе сборки
STS-102AtlantisМКС4-й полёт по программе сборки
совместные микрогравитационные исследования

Катастрофы

Как сделать космический шаттл

За все время эксплуатации шаттлов было всего две аварии, в которых погибло в общей сложности 14 астронавтов:

Выполненные задачи

Шаттлы использовались для вывода грузов на орбиты высотой 200—500 км, проведения научных исследований, обслуживания орбитальных космических аппаратов (монтажные и ремонтные работы).

Шаттлом «Дискавери» в апреле 1990 года был доставлен на орбиту телескоп «Хаббл» (полёт STS-31). На шаттлах «Колумбия», «Дискавери», «Индевор» и «Атлантис» были осуществлены четыре экспедиции по обслуживанию телескопа «Хаббл». Последняя экспедиция шаттла к «Хабблу» состоялась в мае 2009 года. Так как с 2011 года полёты шаттлов были прекращены, это была последняя экспедиция человека к телескопу, и на текущий момент (август 2013) эти работы невозможно выполнить какими-либо другими имеющимися космическими аппаратами.

Как сделать космический шаттл

Шаттл «Индевор» с открытым грузовым отсеком

В 1990-е годы шаттлы принимали участие в совместной российско-американской программе «Мир — Шаттл». Было осуществлено девять стыковок со станцией «Мир».

В течение всех тридцати лет, когда шаттлы были в эксплуатации, они постоянно развивались и модифицировались. За всё время эксплуатации было произведено более тысячи модификаций к изначальному проекту шаттла.

Шаттлы играли важную роль в осуществлении проекта по созданию Международной космической станции (МКС). Так, например, некоторые модули МКС, в том числе российский модуль «Рассвет» (был доставлен шаттлом «Атлантис»), не имеют своих двигательных установок (ДУ) в отличие от российских «Заря», «Звезда», и модулей «Пирс», «Поиск» которые стыковались в составе грузового корабля-модуля «Прогресс М-СО1», а значит, не могут самостоятельно маневрировать на орбите для поиска, сближения и стыковки со станцией. Поэтому их нельзя просто «забрасывать» на орбиту ракетой-носителем типа «Протон». Существует несколько способов собирать станции из таких модулей — в составе грузового корабля, доставка в грузовом отсеке шаттла или, гипотетически, использовать орбитальные «буксиры», которые смогли бы подхватывать модуль, выведенный на орбиту ракетой-носителем, стыковаться с ним и подводить его к станции для стыковки.

Стоимость

В 2006 году общие расходы составили 160 млрд долл. США, к этому времени было выполнено 115 запусков. Средние расходы на каждый полёт составили 1,3 млрд долл. США, но основная часть расходов (проектирование, модернизация и др.) не зависит от числа запусков.

Несмотря на то, что стоимость каждого полёта шаттла составляла около 450 млн долл., на обеспечение 22 полётов шаттлов с середины 2005 года по 2010 год в бюджете NASA было заложено около 1 млрд 300 млн долл. прямых затрат.

За эти деньги орбитальный аппарат шаттла мог доставлять за один рейс к МКС 20-25 тонн груза, включая модули МКС, и плюс к этому 7-8 астронавтов.

Завершение программы «Космическая транспортная система»

Программа «Космическая транспортная система» была завершена в 2011 году. Все действующие шаттлы были списаны после их последнего полёта.

В пятницу, 8 июля 2011 года был осуществлён последний старт «Атлантиса» с сокращённым до четырёх астронавтов экипажем. Это был последний полёт по программе «Космическая транспортная система». Он завершился рано утром 21 июля 2011 года.

Последние полёты шаттлов

Код полётаДата стартаШаттлПрограмма полётаИтог
STS-13324 февраля 2011«Дискавери»Доставка оборудования и материалов на МКС и обратноЗавершено
STS-13416 мая 2011«Индевор»Сборка и снабжение МКС, доставка и установка на МКС магнитного альфа-спектрометра (Alpha Magnetic Spectrometer, AMS)Завершено
STS-1358 июля 2011«Атлантис»Сборка и снабжение МКСЗавершено

Итоги

За 30 лет эксплуатации пять шаттлов совершили 135 полётов. В общей сложности все шаттлы совершили 21 152 витка вокруг Земли и пролетели 872,7 млн км (542 398 878 миль). На шаттлах в космос было поднято 1,6 тыс. тонн (3,5 млн фунтов) полезных грузов. Совершили полёты 355 астронавтов и космонавтов; в общем 852 членов экипажей шаттлов за всю эксплуатацию.

После завершения эксплуатации все шаттлы отправлены в музеи: никогда не летавший в космос шаттл «Энтерпрайз», ранее находившийся в музее Смитсоновского института в районе вашингтонского аэропорта Даллеса, перемещён в Морской и аэрокосмический музей в Нью-Йорке. Его место в Смитсоновском институте занял шаттл «Дискавери». Шаттл «Индевор» встал на вечную стоянку в Калифорнийском научном центре в Лос-Анджелесе, а шаттл «Атлантис» был выставлен в Космическом центре имени Кеннеди во Флориде.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *