Как сделать крыло самолет
Авиамодель на радиоуправлении ч. 1. Проектирование крыльев
Одним из важных этапов строительства авиамодели является расчет и проектирование крыльев. Для того, чтобы правильно спроектировать крыло, необходимо учесть несколько моментов: правильно выбрать корневой и концевой профили, правильно их выбрать исходя из нагрузок, которые они обеспечивают, а также правильно спроектировать промежуточные аэродинамические профиля.
С чего начинается конструирование крыльев
В начале конструирования на кальке был сделан предварительный эскиз самолёта в натуральную величину. В ходе этого этапа я определился с масштабом модели и с размахом крыльев.
Определение размаха
Когда предварительный размах крыла был утвержден, наступило время для определения веса. Эта часть расчета имела особое значение. Первоначальный план включал в себя размах крыльев в 115 см, однако, предварительный расчет показал, что нагрузка на крыльях будет слишком высокой. Поэтому я масштабировал модель до размаха в 147 см без учета законцовок крыльев. Такая конструкция оказалась более подходящей с технической точки зрения. После расчета мне осталось сделать весовую таблицу со значениями весов. В свою таблицу я также добавил усредненные значения веса обшивок, например, вес бальзовой обшивки самолёта был определен мной, как произведение площади крыла на два (для низа и верха крыла) на вес квадратного метра бальзы. Тоже самое было сделано для хвостового оперения и рулей высоты. Вес фюзеляжа был получен путем умножения площади боковой стороны, а также верха фюзеляжа на два и на плотность квадратного метра бальзы.
В результате я получил следующие данные:
Устойчивость
После определения веса были рассчитаны параметры устойчивости для того, чтобы убедиться, что самолёт будет устойчивым и все детали будут адекватного размера.
Для устойчивого полёта необходимо было обеспечить несколько условий:
Выбор правильного аэродинамического профиля
Выбор правильного профиля определяет правильное поведение самолёта в воздухе. Ниже я привожу ссылку на простой и доступный инструмент для проверки аэродинамических профилей. В качестве основы для выбора профилей я выбрал концепцию, согласно которой длина хорды на законцовке крыла равна половине длины хорды в корневой части. Наилучшее решение того, чтобы не допустить срыв потока на крыле, которое я нашел, заключалось в резком сужении крыла на законцовке без возможности сохранения управления самолётом до набора достаточной скорости. Я добился этого с помощью разворота крыла вниз на конце и через тщательный подбор корневых и концевых профилей.
В корне я выбрал аэродинамический профиль S8036 с толщиной крыла в 16% от длины хорды. Такая толщина позволила заложить лонжерон достаточной прочности, а также выдвижные шасси внутри крыла. Для концевой части был выбран профиль – S8037, который также имеет толщину в 16% от толщины хорды. Такое крыло будет уходить в срыв при большом коэффициенте подъёмной силы, а также при большем угле атаки, чем S8036 при том же числе Рейнольдса (этот термин служит для сравнения профилей разного размера: чем больше число Рейнольдса, тем больше хорда). Это значит, что при том же числе Рейнольдса в корневой части крыла срыв произойдет быстрее, чем на законцовке, но контроль за управлением сохранится. Однако, даже если длина хорды корня в два раза больше длины хорды законцовки, она имеет число Рейнольдса в два раза большее, а увеличение числа приведет к задерживанию сваливания. Именно поэтому, я развернул законцовку крыла вниз, так что оно перейдет в сваливание только после корневой части.
Ресурс для определения аэродинамических профилей: airfoiltools.com
Теория по основам конструирования крыльев
Конструкция крыла должна обеспечивать достаточную подъёмную силу для веса самолёта и дополнительных нагрузок, связанных с маневрированием. В основном это достигается с помощью использования центрального лонжерона, который имеет два пояса, верхний и нижний, каркаса, а также тонкой обшивки. Несмотря на то, что каркас крыла тонкий он обеспечивает крылья достаточной прочностью на изгиб. Также в конструкцию часто входят дополнительные лонжероны для уменьшения лобового сопротивления в передней части задней кромки. Они способны воспринимать как изгибающие нагрузки, так и увеличивать жесткость при кручении. Наконец передняя кромка может быть отодвинута назад за лонжерон для получения закрытого поперечного каркаса, который называется D-образным и служит для восприятия крутильных нагрузок. На рисунке наиболее часто встречающиеся профиля.
Все эти конструкции крыльев являются типовыми для лонжеронов и для создания крепежных петель у радиоуправляемых самолётов. Эти конструкции без исключения являются единственным способом технической реализации закрылков и элеронов, а другие различные решения можно подогнать к ним же.
C – образный или коробчатый лонжерон?
Для своего самолёта я выбрал деревянный C – образный профиль лонжерона с прочной передней кромкой и простым вертикальным лонжероном. Полностью крыло обшито бальзой для создания жесткости при кручении и для эстетики.
Дерево было выбрано взамен пластиковой трубки поскольку самолёт спроектирован с 2 градусным внутренним углом, а соединение в виде пластиковой трубки в центре крыла не сможет долго сопротивляться изгибающим нагрузкам. C – образный профиль лонжерона является также более благоприятным по сравнению с двутавровым профилем, поскольку в лонжероне должен быть сделан слот на всю его длину для установки в решетку. Эта добавленная сложность не за счет заметного увеличения прочности и соотношения веса лонжерона. Коробчатый лонжерон также был отвергнут, поскольку он сильно увеличивает вес, однако, его не так сложно построить, а по прочности он один из лучших. Простой вертикальный лонжерон, совмещенный с петлевым обтекателем, вот таким был выбор конструкции крыла, когда остальная часть крыла обшита и достаточно прочна без каких либо дополнительных опор.
Проектирование нервюр с помощью AutoСAD
Оказывается, изготовление нервюр для трапециевидного крыла может стать вдохновляющим занятием. Есть несколько методов: первый метод основан на вырезании профиля крыла по трафарету сначала для корневой части, а потом для законцовки крыла. Он заключается в сочленении обоих профилей вместе с помощью болтов и вычерчивании по ним всех остальных. Этот метод особенно хорош для изготовления прямых крыльев. Основное ограничения метода – он подходит только для крыльев с незначительным сужением. Проблемы возникают из-за резкого роста угла между профилями при значительной разнице между хордой законцовки и хордой корня крыла. В этом случае во время сборки могут сложности из-за большого отхода дерева, острых углов и краёв нервюр, которые надо будет удалить. Поэтому я воспользовался своим методом: сделал свои собственные шаблоны для каждой нервюры, а затем обработал их так, чтобы получить идеальную форму крыла. Задача оказалась сложнее, чем я ожидал, поскольку шаблон корневой части отличался от законцовки кардинально, а все профиля между ними были комбинацией двух предыдущих, вместе с кручением и растяжением. В качестве программы проектирования я использовал Autodesk AutoCAD 2012 Student Addition, поскольку съел на этом собаку при моделировании RC моделей самолётов в прошлом. Проектирование нервюр происходит в несколько этапов.
Всё начинается с импорта данных. Самый быстрый способ для импорта аэродинамического профиля (профили можно найти в базах данных UIUC аэродинамических профилей) в AutoCAD, который я нашел, заключается в создании табличного файла в формате excel в виде таблицы с колонками координат точек профиля x и y. Единственное, что следует перепроверить — соответствуют ли первая и последняя точка друг другу: получается ли у вас замкнутый контур. Затем скопировать полученное назад в txt файл и сохранить его. После того, как это проделано, следует вернуться назад и выделить всю информацию на предмет, если вы случайно вставили заголовки. Затем в AutoCAD запускается команда «spline» и «paste» для обозначения первой точки эскиза. Жмем «enter» до конца выполнения процесса. Аэродинамический профиль в основном обрабатывается таким образом, что каждая хорда становится отдельным элементом, это весьма удобно для изменения масштаба и геометрии.
Рисование и взаимное расположение профилей в соответствие плану. Передняя кромка и лонжероны должны быть тщательно доведены до нужного размера, при этом надо помнить про толщину обшивки. На чертеже, следовательно, лонжероны должны быть нарисованы уже, чем они есть на самом деле. Желательно сделать лонжероны и переднюю кромку выше, чем они есть на самом деле, для того, чтобы рисунок лег ровнее. Также пазы на лонжеронах должны быть расположены таким образом, чтобы оставшаяся часть лонжерона уместилась в нервюрах, но осталась при этом квадратной.
На рисунке показаны основные аэродинамические профиля перед тем, как они будут разбиты на промежуточные.
Лонжерон и совместная с ним передняя кромка соединены вместе, чтобы потом их можно было исключить из построения.
Аэродинамические профили сопряжены вместе и образуют форму крыла при видимом лонжероне и передней кромке.
Лонжерон и передняя кромка удалены с помощью операции «subtract», остальные части крыла показаны.
Крыло вытягивается с помощью функции «solidedit» и «shell». Далее выделяются поочередно плоскости корневой части крыла и законцовки, удаляются, а то, что получается и есть обшивка крыла. Поэтому внутренняя часть обшивки крыла является основой для нервюр.
С помощью функции «плоскость сечения» формируются эскизы каждого профиля.
После этого под командой «плоскость сечения» выбирается создание раздела. С помощью этой команды созданные профили во всех точках профиля могут быть отображены. Для помощи в выравнивании нервюр крыльев я строго рекомендую создать на каждом сечении горизонтальную линию от задней кромки крыла до передней. Это позволит правильно выровнять крыло, если оно построено с кручением, а также сделать его прямым.
Поскольку эти шаблоны на самом деле созданы с учетом обшивки крыльев, внутренняя линия профилей является правильной линией для построения нервюр.
Теперь, когда все нервюры промаркированы с помощью команды «text», они готовы к печати. На каждой странице с нервюрами я разместил схематически коробку с площадкой, доступной для печати на принтере. Маленькие нервюры можно печатать на толстой бумаге, а для крупных аэродинамических профилей подойдет обычная бумага, которая затем усиливается перед вырезанием.
Комплектация деталей
После конструирования крыла, анализа и подбора всех необходимых для изготовления авиамодели деталей, был сделан список всего необходимого для постройки.
Делаем авиамодель летающее крыло «Вжик»
Эта модель летающего крыла довольно быстро и просто собирается. По словам автора, на ее сборку уйдет всего пару вечеров в неспешном режиме сборки. Модель отлично летает и слабо чувствительна к порывам ветра в пределах до 4-ех метров в секунду. Еще уникальна модель тем, что умеет планировать. Впечатляет и скорость передвижения летающего крыла, при установке рекомендуемой электроники самоделка разгоняется до целых 80-ти км/ч.
Характеристики модели:
Полетный вес модели находится в пределах до 550 грамм.
Размах крыльев составляет 980 мм.
Длина судна 460 мм.
Материалы и инструменты для модели:
Процесс изготовления модели:
Шаг первый. Разметка
Чертить придется с нуля, но не стоит пугаться, так как здесь все очень просто. В первую очередь с краев листа необходимо срезать по 3-5 мм, тем самым мы уберем округлые края, которые для самоделки не понадобятся. Далее нужно разметить нижнюю обшивку крыла, как видно на фото. Также необходимо вынести и вырезать разметку для установки лонжеронов.
Лонжероны необходимо приклеить к нижней обшивки консолей, а затем происходит разметка задней части крыла для стачивания на «ус».
Шаг четвертый. Верхняя обшивка
Верхняя обшивка делается точно так, как и нижняя, но она больше по размерам. Чтобы обшивку было проще приклеить к лонжеронам, ее следует изогнуть.
Делаем авиамодель летающее крыло «Вжик»
Эта модель летающего крыла довольно быстро и просто собирается. По словам автора, на ее сборку уйдет всего пару вечеров в неспешном режиме сборки. Модель отлично летает и слабо чувствительна к порывам ветра в пределах до 4-ех метров в секунду. Еще уникальна модель тем, что умеет планировать. Впечатляет и скорость передвижения летающего крыла, при установке рекомендуемой электроники самоделка разгоняется до целых 80-ти км/ч.
Характеристики модели:
Полетный вес модели находится в пределах до 550 грамм.
Размах крыльев составляет 980 мм.
Длина судна 460 мм.
Материалы и инструменты для модели:
Процесс изготовления модели:
Шаг первый. Разметка
Чертить придется с нуля, но не стоит пугаться, так как здесь все очень просто. В первую очередь с краев листа необходимо срезать по 3-5 мм, тем самым мы уберем округлые края, которые для самоделки не понадобятся. Далее нужно разметить нижнюю обшивку крыла, как видно на фото. Также необходимо вынести и вырезать разметку для установки лонжеронов.
Лонжероны необходимо приклеить к нижней обшивки консолей, а затем происходит разметка задней части крыла для стачивания на «ус».
Шаг четвертый. Верхняя обшивка
Верхняя обшивка делается точно так, как и нижняя, но она больше по размерам. Чтобы обшивку было проще приклеить к лонжеронам, ее следует изогнуть.
Как делают крылья для самолёта
3 месяца назад, 28 мая 2017 года, совершил свой первый полёт российский ближне-среднемагистральный среднефюзеляжный пассажирский самолёт МС-21 «Иркут». Он успешно отлетал полчаса и на этот год уже запланировано начало серийного производства. Вроде бы всё обычно, но только с первого взгляда. МС-21 не зря расшифровывается как «Магистральный самолёт XXI века».
Сейчас я вам расскажу, что необычного в этом самолёте.
Ноги, крылья. Главное — хвост!
1. Самое необычное в МС-21 — крылья и несколько других деталей силовой конструкции. Они изготовлены из полимерных композитных материалов (ПКМ). В мире сегодня существует только три самолёта с такими крыльями: Boeing 787 Dreamliner, Airbus A350 XWB и Bombardier CSeries.
2. ПКМ — это несколько слоёв углеволокна, скреплённого между собой специальной смолой. Чем же так хорош этот материал? Во-первых, прочность углепластиков выше чем у алюминия в 6-8 раз, а удельный вес — ниже в 1,5 раза. Использование ПКМ при производстве космической и авиационной техники позволяет сэкономить от 5 до 30% веса летательного аппарата. Во-вторых, крыло самолёта из ПКМ условно состоит из 10 элементов, а из металла — из 100. Можно понять, монтаж какого крыла обходится дороже.
Производят такие крепкие и ультрасовременные крылья для МС-21 в Ульяновске. Завод называется «АэроКомпозит» и находится на территории «Авиастара». Давайте заглянем за проходные и посмотрим, как выглядит это производство.
Первое, что поражает — это огромные и стерильно чистые цеха! Производство углепластика не терпит грязи, ведь попадание инородных включений в массу грозит снижением прочности всей конструкции крыла.
3. Процесс изготовления кессона крыла состоит из нескольких этапов. Сначала подготавливается поверхность нужной формы, на которую будет выложено углеволокно. На «АэроКомпозите» из ПКМ могут сделать элероны, спойлеры, закрылки, рули высоты и направления, лонжероны и обшивку крыла со стрингерами, секции панелей центроплана, силовые элементы, обшивку киля и хвостового оперения.
4. Вот так выглядит оснастка для выкладки одной из деталей силовой конструкции МС-21:
5. Тяжёлые конструкции оснастки транспортируются к месту выкладки на специальных платформах. К примеру, для перевозки оснастки для будущего стрингера задействуют две таких тележки.
6. Следующий этап — выкладка сухой углеродной ленты и предварительное формование детали в автоматическом режиме на выкладочной оснастке. Для выкладки используется роботизированный испанский комплекс MTorres.
7. Он немного напоминает GLaDOS из компьютерных игр Portal и Portal 2.
8. Этот робот с высокой точностью укладывает волокно к волокну, формируя слои будущей конструкции.
9. Автоматическую выкладку сухого углеволокна для изготовления крупных интегральных конструкций никто никогда в авиапромышленности не применял. Такое крупное и сложное изделие, как крыло самолёта, по этой технологии впервые сделали в Ульяновске.
Собранная преформа уезжает в термоинфузионную установку TIAC (Франция). Это большая камера, в которой углеволокно пропитывается эпоксидной смолой и запекается. Установка контролирует температуру, количество смолы и скорость заполнения вакуумного мешка, в который помещается углеволокно.
10. Этот процесс может занимать от 5 до 30 часов в зависимости от типа, размера и сложности изготавливаемой детали. Процесс полимеризации смолы и волокна проходит при температуре 180°С.
На выходе из TIAC получается монолитная деталь.
11. Её необходимо механически обработать.
12. Но до начала обработки нужно убедиться, что деталь действительно является монолитной и не содержит в себе пустоты и дефекты. Для этого она отправляется на пункт неразрушающего ультразвукового контроля Technatom.
13. Крыло получилось качественным — отправляем его на механическую обработку в 5-координатный фрезерный центр MTorres.
16. После обработки готовая деталь поступает на участок итоговой сборки кессона крыла.
17. В этой части завода используется больше ручной труд, чем автоматический. Здесь гораздо больше людей, тогда как на других участках их почти нет — вся работа выполняется роботами. А всего на заводе работает около 500 человек. Несмотря на постоянно открытые вакансии, устроиться сюда не очень просто — каждый кандидат проходит тщательную проверку.
Летаем на композите
18. Композитные крылья будут использоваться не только на МС-21. Планируется, что новые модификации SSJ-100 так же будут оснащаться силовыми деталями из ПКМ. Мощности завода рассчитаны на выпуск до 100 комплектов композитных крыльев в год, но на текущий момент загружены не полностью.