Как сделать лабораторную по статистике
Лабораторная работа по статистике «Нахождение числовых характеристик выборки стандартными
1 Лабораторная работа по статистике «Нахождение числовых характеристик выборки стандартными средствами ЭТ MS Excel» Коваль О.В., Аверьянова С.Ю. Филиал Федерального государственного автономного образовательного учреждения высшего образования «Южный федеральный университет» в г. Новошахтинске Ростовской области (филиал ЮФУ в г. Новошахтинске) Новошахтинск, Россия Laboratory work on statistics «Finding the numerical characteristics of the sample standard means of THIS MS Excel» Koval O.V., Averyanova C.U. Branch of Southern Federal University in the town of Novoshakhtinsk, Rostov region Novoshakhtinsk, Russia Цель работы: овладеть навыками расчета числовых характеристик выборки с помощью Надстройки Пакет Анализа ЭТ MS Excel. Краткая теория В ЭТ MS Excel имеется набор мощных инструментов для работы с выборками и углубленного статистического анализа данных, называемый Пакет анализа, который может быть использован для решения задач статистической обработки выборочных данных. Надстройка Пакет анализа вызывается командой главного меню Данные Анализ данных. В появившемся окне Анализ данных выбираем пункт Описательная статистика.
2 Далее откроется окно Описательная статистика, в котором необходимо сделать нужные установки. Входной диапазон. Ссылка на диапазон, содержащий анализируемые данные. Ссылка должна состоять не менее чем из двух смежных диапазонов данных, данные в которых расположены по строкам или столбцам. Группирование. Установите переключатель в положение «По столбцам» или «По строкам» в зависимости от расположения данных во входном диапазоне. Метки в первой строке/метки в первом столбце. Если первая строка исходного диапазона содержит названия столбцов, установите
3 переключатель в положение Метки в первой строке. Если названия строк находятся в первом столбце входного диапазона, установите переключатель в положение Метки в первом столбце. Если входной диапазон не содержит меток, то необходимые заголовки в выходном диапазоне будут созданы автоматически. Уровень надежности. Установите флажок, если в выходную таблицу необходимо вывести границу доверительного интервала для среднего. В поле введите требуемое значение в процентах. Например, значение 95% вычисляет уровень надежности среднего с уровнем значимости 0,05. К-ый наибольший. Установите флажок, если в выходную таблицу необходимо включить строку для k-го наибольшего значения для каждого диапазона данных. В соответствующем окне введите число k. Если k равно 1, эта строка будет содержать максимальное значение выборки. К-ый наименьший. Установите флажок, если в выходную таблицу необходимо включить строку для k-го наименьшего значения для каждого диапазона данных. В соответствующем окне введите число k. Если k равно 1, эта строка будет содержать минимальное значение выборки. Выходной диапазон. Введите ссылку на левую верхнюю ячейку выходного диапазона. Этот инструмент анализа выводит два столбца сведений для каждого набора данных. Левый столбец содержит метки статистических данных; правый столбец содержит статистические данные. Состоящий их двух столбцов диапазон статистических данных будет выведен для каждого столбца или для каждой строки входного диапазона в зависимости от положения переключателя Группирование. Если хотим вывести результаты расчета на новый лист, то установите переключатель, чтобы открыть новый лист в книге и вставить результаты анализа, начиная с ячейки A1. Если в этом есть необходимость, введите имя нового листа в поле, расположенном напротив соответствующего положения переключателя.
4 Если хотим вывести результаты расчета в новой книге, то установите переключатель, чтобы открыть новую книгу и вставить результаты анализа в ячейку A1 на первом листе в этой книге. Итоговая статистика. Установите флажок, если в выходном диапазоне необходимо получить по одному полю для каждого из следующих видов статистических данных, представленных в таблице 2. Значение Среднее Стандартная ошибка Медиана Мода Стандартное отклонение Таблица 2. Примечания Выборочное среднее х =. Функция СРЗНАЧ. Оценка среднеквадратичного отклонения выборочного среднего. Вычисляется по формуле ( ( ) ) Число, которое является серединой множества чисел, то есть половина чисел имеют значения большие, чем медиана, а половина чисел имеют значения меньшие, чем медиана. Функция МЕДИАНА. Наиболее часто встречающееся значение в выборке. Если нет одинаковых значений, то возвращается значение ошибки #Н/Д. Функция МОДА.ОДН. Оценка среднеквадратичного отклонения генеральной совокупности = ( ). Функция СТАНДОТКЛОН.В. 2 ( xi x) Дисперсия i= 1 Оценка дисперсии генеральной совокупности D =. выборки n 1 Функция ДИСП.В. Эксцесс Выборочный эксцесс. Функция ЭКСЦЕСС. Асимметричность Коэффициент асимметрии. Функция СКОС. Интервал Размах варьирования R = x max x min. Минимум Минимальное значение в выборке. Функция МИН. Максимум Максимальное значение в выборке. Функция МАКС. Сумма Сумма всех значений в выборке. Функция СУММ. Счет Объем выборки. Функция СЧЕТ. k-тое наибольшее значение выборки. Если k=1, то выводится Наибольший максимальное значение. Функция НАИБОЛЬШИЙ. k-тое наименьшее значение выборки. Если k=1, то выводится Наименьший минимальное значение. Функция НАИМЕНЬШИЙ Уровень Параметр показывает возможность отклонения среднего по n
5 надежности выборке, от среднего для генеральной совокупности, при заданном уровне надежности. Замечание. Следует обратить внимание на то, что расчет параметров в режиме Описательная статистика имеет ряд важных особенностей: 1. В качестве значений параметров: Стандартное отклонение, Дисперсия выборки, Эксцесс, Асимметричность Excel генерирует оценки соответствующих параметров для генеральной совокупности, а не для выборки. 2. Для применения Описательной статистики предварительное ранжирование исходных данных не требуется: при вычислении показателей ранжирование выполняется автоматически. 3. Появление в ячейке Мода индикатора ошибки #Н/Д указывает на то, что в анализируемых данных нет одинаковых значений признака. В этом случае в качестве моды Мо выбирается то значение признака, которое соответствует максимальной ординате теоретической кривой распределения. 4. Индикатор ошибки #ДЕЛ/0! В ячейке Эксцесс и/или Асимметричность означает, что в результативной таблице стандартное отклонение является нулевым или же заданный входной диапазон данных содержит менее четырех элементов данных 5. Стандартная ошибка это разность между ожидаемыми и наблюдаемыми значениями исследуемого признака. Стандартная ошибка или ошибка среднего находится из выражения =. Стандартная ошибка это параметр, характеризующий степень возможного отклонения среднего значения, полученного на исследуемой ограниченной выборке, от истинного среднего значения, полученного на всей совокупности элементов. С помощью стандартной ошибки задается так называемый доверительный интервал. 95%-ый доверительный интервал, равный х ± 2т, обозначает диапазон, в который с вероятностью р = 0,95 (при
6 достаточно большом числе наблюдений п > 30) попадает среднее значение генеральной совокупности. Пример выполнения Постановка задачи. Приведены объемы дневной выручки (в тыс. руб.) 24 продавцов колбасных изделий, работающих в разных районах города (см. табл.1). Таблица 1. 20,2 19,3 19,9 23,1 18,8 17,4 19,9 18,3 16,4 17,3 18,3 15,8 20,5 20,6 19,4 18,7 16,3 18,4 21,6 21,2 19,3 19,1 19,3 18,8 Требуется: выполнить описательную статистику выборки с помощью Надстройки Пакет Анализа ЭТ MS Excel. Решение задачи в среде ЭТ MS Excel. Для решения задачи в среде ЭТ MS Excel необходимо выполнить следующие действия: 1. Идентифицируйте свою работу, переименовав Лист1 в Титульный лист и записав номер лабораторной работы, ее название, кто выполнил и проверил. 2. Переименуйте Лист 2 в Исходные данные и наберите столбец исходных данных. 3. Вычислите величины х max, х min, R, n, N, N округл., и округл., используя встроенные функции Excel МАКС, МИН, СЧЕТ, КОРЕНЬ и ОКРУГЛ. 4. Сформируйте столбец интервалов группировки. Наберите команду Данные Анализ данных Гистограмма и в появившемся диалоговом окне выполните нужные установки. Отформатируйте полученную таблицу и построенную гистограмму выборки.
7 5. Наберите команду Данные Анализ данных Описательная статистика и в появившемся диалоговом окне выполните нужные установки.
8 6. Щелчок по кнопке «ОК» приводит к появлению результирующей таблицы статистических характеристик выборки. 7. Повторно вычислим найденные характеристики с помощью встроенных функций MS Excel или формул. Сравним полученные результаты.
9 8. Сделайте выводы и сохраните работу в вашем каталоге. Исходные данные для самостоятельного решения Задание. Имеется выборка объема n = 27 (табл. 2). Требуется: выполнить описательную статистику выборки с помощью Надстройки Пакет Анализа ЭТ MS Excel. варианта Выборка Таблица 2. 22,5 20,2 19,3 19,9 23,1 18,8 17,4 21,6 19,1 21,6 19,9 18,3 16,4 17,3 18,3 15,8 21,2 19,3 17,8 20,5 20,6 19,4 18,7 16,3 18,4 19,3 18,8 18,8 20,2 19,3 19,9 23,2 22,5 17,4 21,8 19,2 19,4 18,7 16,3 18,4 19,3 18,8 19,4 18,7 16,3 20,5 20,6 19,4 18,7 16,3 18,4 19,3 18,8 17,8 20,2 19,3 19,9 23,1 18,8 17,4 21,6 19,1 22,4 18,7 20,2 19,3 19,9 23,2 22,5 17,4 21,8 19,2 18,1 19,8 18,2 16,4 17,2 21,8 15,8 21,2 19,2
Лабораторная работа: Статистические методы обработки данных
Название: Статистические методы обработки данных Раздел: Рефераты по экономико-математическому моделированию Тип: лабораторная работа Добавлен 05:33:25 04 марта 2010 Похожие работы Просмотров: 2931 Комментариев: 9 Оценило: 3 человек Средний балл: 4.3 Оценка: неизвестно Скачать | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
72 | 74 | 69 | 71 | 73 | 68 | 73 | 77 | 76 | 77 | 76 | 76 | 76 | 64 | 65 |
75 | 70 | 75 | 71 | 69 | 72 | 69 | 78 | 72 | 67 | 72 | 81 | 75 | 72 | 69 |
Построим статистический ряд, полигон, гистограмму и кумулятивную кривую.
Откроем книгу программы EXCEL. Введем в первый столбец (ячейки А1-А30) исходные данные. Определим область чисел, на какой лежат данные. Для этого найдем максимальный и минимальный элементы выборки. Введем в В1 «Максимум», а в В2 «Минимум», а в соседних ячейках С1 и С2 определим функции «МАХ» и «МIN», в качестве аргументов которых (в графе «число») обведем область данных (ячейки А1-А30). Результатом будут 64 и 81. видно, что все данные укладываются на отрезке [64;81]. Разделим его на 9 (выбирается произвольно от 5 до 10) интервалов:
64-66; 66-68: 68-70: 70-72: 72-74, 74-76, 76-78, 78-80, 80-82. в ячейке D1-D10 вводим верхние границы интегралов группировки – числа 66, 68, 70, 72, 74, 76, 78, 80, 82. Для вычисления частот n1 используют функцию ЧАСТОТА, находящуюся в категории «Статистические». Введем ее в ячейку Е1. в строке «Массив данных» введем диапазон выборки (ячейки А1-А30). В строке «Двоичный массив» введем диапазон верхних границ интервалов группировки (ячейки D1-D9). Результат функции является массивом и выводится в ячейках Е1-Е9. для полного выбора (не только первого числа в Е1) нужно выделить ячейки Е1-Е9, обведя их мышью, и нажать F2, а далее одновременно CTRL+SHIFT+ENTER. Результат – частоты интервалов 2,2,5,7,3,7,3,0,1.
Для построения гистограммы нужно выбрать ВСТАВКА/ДИАГРАММА или нажать на соответствующий значок на основной панели (при этом курсор должен стоять в свободной ячейке) далее выбрать тип: ГИСТОГРАММА, вид по выборке, нажать «ДАЛЕЕ», в строке «ПОДПИСИ ОСИ Х» ввести интервалы ячейках D1-D5, нажать «ДАЛЕЕ» ввести название «ГИСТОГРАММА», подписи осей «ИНТЕВАЛЫ» и «ЧАСТОТА», нажать «ГОТОВО». Для создания полигона сделать то же самое, только вместо типа диаграммы «ГИСТОГРАММА», выбрать «ГРАФИК». Для построения кумулятивной кривой нужно посчитать накопленные частоты. Для этого в ячейку F1 вводим «=Е1», в F2 – вводим «=F1+Е2» и автозаполнением перетаскиваем эту ячейку до F9. далее строим график как и в случае полигона, но в строке «ДИАПАЗОН» вводим накопленные частоты, ссылаясь на F1- F9, а на вкладке «РЯД», в строке «ПОДПИСИ ОСИ Х» вводим интервалы в ячейках D1-D9.
Находим основные числовые характеристики выборки. Для их ввода выделяем два столбца, например G и H, в первом вводим название характеристики, во втором – функцию, в которой в качестве массива данных (строка»ЧИСЛО1»), указать ссылку на А1-А30
Характеристика | Функция |
Объем выборки | 30 |
Выборочное среднее | 72,46666667 |
Дисперсия | 15,63678161 |
Стандартное отклонение | 3,954337063 |
Медиана | 72 |
Мода | 72 |
Коэффициент эксцесса | -0,214617804 |
Коэффициент асимметрии | -0,154098799 |
Персентиль 40% | 72 |
Персентиль 80% | 76 |
Существует другой способ вычисления числовых характеристик выборки. Для этого ставим курсор в свободную ячейку (например D11). Затем вызываем в меню «Сервис» подменю «Анализ данных». Если в меню «Сервис» отсутствует этот пункт, то в меню «Сервис» нужно выбрать пункт «Надстройки» м в нем поставить флажок напротив пункта «Пакет анализа». В окне «Анализ данных» нужно выбрать пункт «Описательная статистика». В появившемся окне в поле «Входной интервал» делаем ссылку на выборку А1-А23. Оставляем группирование «По столбцам» в разделе «Параметры вывода» ставим флажок на «Выходной интервал» и в соседнем поле создаем ссылку на верхнюю левую ячейку области вывода (например D11), ставим флажок напротив «Описательная статистика», нажимаем «ОК». результат – основные характеристики выборки (сделайте шире столбцов D, переместив его границу в заголовок).
Лабораторная работа № 2
ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ
Цель : Ознакомиться с методом проверки основных статистических гипотез, используемых в экономике, с помощью ЭВМ.
1. ПРОВЕРКА ГИПОТЕЗЫ О СООТВЕТСТВИИ (КРИТЕРИЙ СОГЛАСИЯ)
Используется для проверки предположения о том, что полученные в результате наблюдений данные соответствуют нормам. Рассматривается гипотеза о том, что отклонения от норм невелики, и ими можно пренебречь. При этом задается доверительная вероятность p которая имеет смысл вероятности не ошибиться при принятии гипотезы. Рассмотрим проверку на примере.
Норма | Наблюдения | Критерий | Критическое значение | 13,27670414 |
500 | 516 | 0,512 | ||
150 | 148 | 0,026666667 | ||
130 | 131 | 0,007692308 | ||
120 | 110 | 0,833333333 | ||
100 | 95 | 0,25 | ||
1000 | 1,629692308 |
2. ПРОВЕРКА ГИПОТЕЗЫ О РАВЕНСТВЕ ДИСПЕРСИЙ
Используется в случае, если нужно проверить различается ли разброс данных (дисперсии) у двух выборов. Это может использоваться при сравнении точностей обработки деталей на двух станках, равномерности продаж товара в течении некоторого периода в двух городах и т.д. Для проверки статистической гипотезы, о равенстве дисперсий служит F – критерий Фишера. Основной характеристикой критерия является уровень значимости α, которой имеет смысла вероятности ошибиться, предполагая, что дисперсии и, следовательно, точность, различаются. Вместо α в задачах так же иногда задают доверительную вероятность p=1- α, имеющую смысл вероятности того, что дисперсии и в самом деле равны. Обычно выбирают критическое значение уровня значимости, например 0,05 или 0,1, и если α больше критического значения, то дисперсии считаются равными, в противном случае, различны. При этом критерий может быть односторонним, когда нужно проверить, что дисперсия конкретной выделенной выборки больше, чем у другой, и двусторонним, когда просто нужно показать, что дисперсии не равны. Существует два способа проверки таких гипотез. Рассмотрим их на примерах.
ПРИМЕР 2. четыре станка в цеху обрабатывают детали. Для проверки точности обработки, взяли выборку размеров деталей у каждого станка. Необходимо сравнить с помощью F-теста попарно точности обработки всех станков (рассмотреть пары 1-2, 1-3, 1-4, 2-3, 2-4, 3-4) и сделать вывод, для каких станков точности обработки (дисперсии) равны, для каких нет. Взять уровень значимости α=0,02.
1 станок | 29,1 | 26,2 | 30,7 | 33,8 | 33,6 | 35,2 | 23,4 | 29,3 | 33,3 | 26,7 |
2 станок | 29,0 | 28,9 | 34,0 | 29,7 | 39,4 | 28,5 | 35,9 | 32,6 | 37,1 | 28,0 |
3 станок | 25,7 | 27,5 | 25,4 | 28,9 | 29,9 | 30,1 | 29,0 | 36,6 | 24,8 | 27,8 |
4 станок | 32,1 | 31,0 | 27,2 | 29,3 | 30,4 | 31,7 | 30,4 | 27,3 | 35,7 | 31,5 |
Уровень значимости α=0,02. вводим данные выборок (без подписей) в 4 строчки в ячейки А1-J1 и А2-J2 и т.д. соответственно. Для вычисления ФТЕСТ (массив1;массив2). Вводим А5 подпись А5 «Уровень значимости», а в В5 функцию, ФТЕСТ, аргументами которой должны быть ссылки на ячейку А1-J1 и А2-J2 соответственно. Результат 0,873340161 говорит о том, что вероятность ошибиться, приняв гипотезу о различии дисперсий, около 0,9, что больше критического значения, заданного в условии задачи 0,02. следовательно, можно говорить что опытные данные с большей вероятностью подтверждают предположения о том, что дисперсии одинаковы и точность обработки станков одинакова, такие же результаты показало сравнение остальных пар. Следует отметить, что функции ФТЕСТ выходит уровень значимости двустороннего критерия и если нужно использовать односторонний, то результат необходимо уменьшить вдвое.
3. ПРОВЕРКА ГИПОТЕЗЫ О РАВЕНСТВЕ СРЕДНИХ
Используется для проверки предложения о том, что среднее значения двух показателей, представленных выборками, значимо различаются. Существует три разновидности критерия: один – для связанных выборок, и два для несвязных выборок (с одинаковыми и разными дисперсиями). Если выборки не связны, то предварительно нужно проверить гипотезу о равенстве дисперсий, чтобы определить, какой из критериев использовать. Так же как и в случае сравнения дисперсий имеются 2 способа решения задачи, которые рассмотрим на примере.
ПРИМЕР 3. имеются данные о количестве продаж товара в двух городах. Проверить на уровне значимости 0,01 статистическую гипотезу о том, что среднее число продаж товара в городах различно.
23 | 25 | 23 | 22 | 23 | 24 | 28 | 16 | 18 | 23 | 29 | 26 | 31 | 19 |
22 | 28 | 26 | 26 | 35 | 20 | 27 | 28 | 28 | 26 | 22 | 29 |
Анализ результата: в первой строчке – коэффициенты уравнения регрессии, сравните их с рассчитанными функциями НАКЛОН и ОТРЕЗОК. Вторая строчка – стандартные ошибки коэффициентов. Если одна из них по модулю больше, чем сам коэффициент, то коэффициент считается нулевым. Коэффициент детерминации характеризует качество связи между факторами. Полученное значение 0,070335 говорит об очень хорошей связи факторов, F – статистика проверяет гипотезу о адекватности регрессионной модели. Данное число нужно сравнить с критическим значением, для его получения вводим в Е33 подпись «F-критическое», а в F33 функцию FРАСПОБР, аргументами которой вводим соответственно «0,05» (уровень значимости), «1» (число факторов Х) и «8» (степени свободы).
F-критическое | 5,317655 |
Видно, что F-статистика меньше, чем F-критическое, значит, регрессионная модель не адекватна. В последней строке приведены регрессионная сумма квадратов и остаточные суммы квадратов
. Важно, чтобы регрессионная сумма (объясненная регрессией) была намного больше остаточной (не объясненная регрессией, вызванная случайными факторами). В нашем случае это условие не выполняется, что говорит о плохой регрессии.
Вывод: В ходе работы я освоил методы построения линейного уравнения парной регрессии с помощью ЭВМ, научился получать и анализировать основные характеристики регрессионного уравнения.
Лабораторная работа № 4
Цель: освоить методы построения основных видов нелинейных уравнений парной регрессии с помощью с помощью ЭВМ (внутренне линейные модели), научиться получать и анализировать показатели качества регрессионных уравнений.
Рассмотрим случай, когда нелинейные модели с помощью преобразования данных можно свести к линейным (внутренне линейные модели).
ПРИМЕР. Построить уравнение регрессии у = f (х ) для выборки хп уп (f = 1,2,…,10). В качестве f (х ) рассмотреть четыре типа функций – линейная, степенная, показательная и гиперболу:
у = Ах + В; у = Ах В ; у = Ае Вх ; у = А/х + В.
Прибыль Y | 0,3 | 1,2 | 2,8 | 5,2 | 8,1 | 11,0 | 16,8 | 16,9 | 24,7 | 29,4 |
Прибыль X | 0,25 | 0,50 | 0,75 | 1,00 | 1,25 | 1,50 | 1,75 | 2,00 | 2,25 | 2,50 |
(четвертая строка, первый столбец). Уравнение регрессии равно
y = 12,96x +6,18 (коэффициенты a и b приведены в ячейках B6 и C6).
Линейная | 12,96 | -6,18 |
1,037152 | 1,60884 | |
0,951262 | 2,355101 | |
156,1439 | 8 | |
866,052 | 44,372 |
Гипербола | -6,25453 | 18,96772 |
2,321705 | 3,655951 | |
0,475661 | 7,724727 | |
7,257293 | 8 | |
433,0528 | 477,3712 |
Экспонента | 1,824212 | -0,67 | a= | 0,511707 |
0,225827 | 0,350304 | b= | 6,197909 | |
0,89079 | 0,512793 | |||
65,25304 | 8 | |||
17,15871 | 2,103652 |
Степенная | 1,993512 | 1,590799 | a= | 4,90767 |
0,033725 | 0,023823 | b= | 7,341268 | |
0,997716 | 0,074163 | |||
3494,117 | 8 | |||
19,21836 | 0,044002 |
Вывод: В ходе работы я освоил методы построения основных видов нелинейных уравнений парной регрессии с помощью с помощью ЭВМ (внутренне линейные модели), научился получать и анализировать показатели качества регрессионных уравнений.
Лабораторная работа № 5
Цель: По опытным данным построить уравнение регрессии вида у = ах 2 + b х + с.
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 29,8 | 58,8 | 72,2 | 101,5 | 141 | 135,1 | 156,6 | 181,7 | 216,6 | 208,2 |
Рассчитаем суммы. Для этого в ячейку А3 вводим подпись «Х^2», а в В3 вводим формулу «= В1*В1» и Автозаполнением переносим ее на всю строку В3-K3. В ячейку А4 вводим подпись «Х^3», а в В4 формулу «=В1*В3» и Автозаполнением переносим ее на всю строку В4-K4. В ячейку А5 вводим «Х^4», а в В5 формулу «=В4*В1», автозаполняем строку. В ячейку А6 вводим «Х*Y», а в В8 формулу «=В2*В1», автозаполняем строку. В ячейку А7 вводим «Х^2*Y», а в В9 формулу «=В3*В2», автозаполняем строку. Теперь считаем суммы. Выделяем другим цветом столбец L, щелкнув по заголовку и выбрав цвет. В ячейку L1 помещаем курсор и щелкнув по кнопке автосуммы со значком ∑, вычисляем сумму первой строки. Автозаполнением переносим формулу на ячейки L1-710.
Решаем теперь систему уравнений. Для этого вводим основную матрицу системы. В ячейку А13 вводим подпись «А=», а в ячейки матрицы В13-D15 вводим ссылки, отраженные в таблице
B | C | D | |
13 | =L5 | =L4 | =L3 |
14 | =L3 | =L2 | =L1 |
15 | =L2 | =L1 | =9 |
Построим графики исходных данных и полученных на основе уравнения регрессии. Для этого в ячейку А8 вводим подпись «Регрессия» и в В8 вводим формулу «=$В$18*В3+$В$19*В1+$В$20». Автозаполнением переносим формулу в ячейки В8-K8. Для построения графика выделяем ячейки В8-K8 и, удерживая клавишу Ctrl, выделяем также ячейки В2-М2. Вызываем мастера диаграмм, выбираем тип диаграммы «График», вид диаграммы – график с точками (второй сверху левый), нажимаем «Далее», переходим на закладку «Ряд» и в поле «Подписи оси Х» делаем ссылку на В2-М2, нажимаем «Готово». Видно, что кривые почти совпадают.
ВЫВОД: в процессе работы я по опытным данным научился строить уравнение регрессии вида у = ах 2 + bх + с.
- Как сделать лабораторную по информатике
- Как сделать лабораторную по физике