Как сделать лестницу якова
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
Простая лестница Иакова своими руками
Лестница Иакова (или лестница Якова) представляет собой два, расположенных друг от друга на небольшом расстоянии, оголенных проводника, между которыми проходит снизу вверх электрическая дуга большого разряда.
Лестница Иакова представляет собой чарующее зрелище, как и катушка Тесла. Но в отличие от катушки Теслы для создания лестницы Иакова требуется меньше компонентов, и собирается она проще.
В этом материале будет показано, как собрать лестницу Иакова самостоятельно. Но перед началом работы нужно помнить о том, что эта установка в рабочем режиме представляет опасность для человека, который может коснуться как проводников, по которым проходит высокий разряд, так и электрической дуги, какой бы красивой она ни была. Поэтому пайку и сборку осуществляйте только при выключенном напряжении. При необходимости что-то сделать около работающей лестнице Иакова пользуйтесь только одной рукой и инструментами с изолированной ручкой. Также желательно, чтобы ваша обувь была с прорезиненной подошвой, чтобы изолировать вас от земли.
Итак, помимо проводников вам потребуется источник питания (в данном случае использовался источник на 12 В) и трансформатор строчной развертки с драйвером как у катушек Тесла. В данном случае использовался набор «SainSmart Zero Voltage Switching Tesla Coil Flyback Driver for Sgtc /Marx Generator/jacob’s Ladder + Ignition Coil», поставляемый с катушкой. Вот так выглядит данный силовой модуль:
Он поддерживает входное напряжение от 12 В до 36 В. При напряжении 12 В достигается мощность 50-100 Вт.
Для изоляции силового модуля от внешнего мира желательно поместить его в какой-нибудь пластмассовый ящик, и проделать в этом ящике небольшое отверстие для вывода проводов.
На изображениях ниже показано соединение силового блока.
Провода питания (черный – земля, красный – питающее напряжение) подключаются к двум контактам разъема J1 и выходят из ящика через отверстие. Провода катушки (синие) подключаются к разъему J2, как показано на изображении. Красные провода выходят из ящика сверху для подключения к ним проводников, по которым будет проходить дуга. На крышке ящика нужно сделать такие болтовые крепления для фиксации проводов:
Проводники в данном примере имеют немного выгнутую форму, благодаря которой они расходятся к верху, что позволяет делать разряд визуально эффектнее. В самом низу у крышки пластикового ящика проводники расположены друг от друга примерно на 1 см, сверху расстояние между ними составляет около 9 см.
Такая лестница Иакова может стать отличным элементом домашнего декора или быть в качестве эффектного подарка. Но стоит еще раз напомнить о том, что нельзя прикасаться к работающей лестнице Иакова, поскольку напряжение дуги может быть очень опасным!
Как сделать Лестницу Иакова.
Дубликаты не найдены
Кошмар электрика
Фазный провод разорван, собран в скрутку и подключён к выходу автомата, ноль и заземление скручены и без какой либо изоляции торчат по бокам. Не знаю кто это делал, но надеюсь, что он хорош в какой-то другой сфере деятельности, но не в электромонтаже. Сам я тоже не электрик, прошу не закидывать ссаными тряпками, если термины какие перепутал и за мою переделку. Получилось вот так:
Эл. щиток!
Дёшево и сердито, электрический щит у знакомого в квартире.
Плазменная рогатка. Лестница Иакова
Хомяки приветствуют вас друзья!
Сегодняшний пост будет посвящен высокому напряжению. Наша задача собрать так называемую лестницу Иакова, по электродам которой снизу-вверх будут бегать разряды. Посмотрим из чего состоит такое устройство, как его правильно настроить чтобы ничего не спалить, а также узнаем способ как можно обесточить собственную квартиру.
Эта история началась с простого знакомства на радио рынке. Витя, местный мастер на все руки показал свою лестницу Иакова, которая состоит из двух строчных трансформаторов от телевизоров и питается от сети 220 вольт. Дуга тут настолько мощная, что порой висит в воздухе даже не думая обрываться. Вернувшись домой мои руки сразу полезли шерстить коробки в которых находится старое, никому ненужное барахло.
Это строчники от отечественных черно-белых телевизоров. Модель ТВС-110ЛА. Объекты достались из увлекательного детства, когда в один прекрасный момент все начали выбрасывать свои зомбоящики на помойки. Наша задача разобрать две такие конструкции и достать из них высоковольтные обмотки.
Если распилить одну из них, то можно увидеть из чего состоят такие артефакты. Внутри герметичного пластикового контейнера находится обмотка из тонкого провода. Ряды её переложены электроизоляционной бумагой, которая пропитана парафином. Им тут залит весь внутренний объем.
На одной из ферритовых половинок намотаем первичную обмотку. Состоит она из пятидесяти витков многожильного провода типа литцендрат толщиной 1 мм. У него каждая жила покрыта изолирующим лаком. Перематываем все скотчем, вставляем в половинки феррита высоковольтные обмотки и собственно все. Так выглядит сердце наших высоковольтных разрядов. Оно конечно не идеально, так как в дальнейшем при длительной работе, железная скоба которая стягивает феррит будет нагреваться.
В конструкции, высоковольтные обмотки смотрят на встречу друг другу, а их тонкие «земляные» провода соединены вместе. Высоковольтные концы тут наращены высоковольтным проводом, чтобы оттуда не выбрался «Зевс» и не пробил в плату управления или еще куда. Это был мануал как правильно собирать высоковольтный трансформатор для лестницы Иакова.
Теперь рассмотрим как делать не нужно. Не нужно мотать двадцать витков, что есть крайне мало на алюминиевую планку стягивающую каркас. Алюминий вроде как не магнитный материал, но на высоких частотах с ним что-то не так. В результате такого подхода при первом же включении у меня сгорел предохранитель в плате управления. Естественно он сдох потому что прогорели два мосфета которые раскачивали высоковольтный трансформатор. Транзисторы деликатные ребята, им что не так, сразу в брак.
С высоковольтным трансформатором разобрались. Едем дальше.
Сейчас нам нужно сделать рогатку, по которой разряды будут бегать снизу-вверх вызывая тот самый «ВАУ» эффект. Электроды в лестнице Иакова должны быть жесткими, в противном случае рогатка будет болтаться как дерево на ветру. В качестве электродов можно использовать 5 мм алюминиевый швеллер из ближайшего строительного магазина. Одного погонного метра хватит с избытком. Отпиливает ножовкой по металлу два одинаковых куска по сорок сантиметров. В определенных местах делаем несколько надпилов под углом 45 градусов. В результате процедур выгибаем метал в нужную нам форму.
Электроды устанавливаем на керамическую основу. Она когда-то была мощным заводским предохранителем на сотню ампер. Верхние концы разводим на расстояние примерно восьми сантиметров. Этот промежуток должен быть достаточным чтобы рвать дугу у вершины (подбирается индивидуально). Крепление проводов к рогатке должно быть надежным, если они отвалятся на полной мощности установки, то с большой вероятностью прошьют высоковольтные обмотки. Оно вам надо?
Теперь кто-то может задать вопрос, зачем питать схему от сети 220, если можно собрать простой ZVS автогенератор, которому нужно всего 12 вольт. Да в принципе можно! Только жрёт какой генератор порядка 10 ампер и для нормально работы требует напряжение порядка 30-40 вольт. Один только блок питания займет места больше чем весь мой балкон в хрущёвке. И это уже молчу про адский перегрев ферритового сердечника после нескольких минут работы.
Генератор работающий от сети 220 позволяет разместить на одной плате все, от сетевого фильтра до силовых ключей. Все компоненты тут не являются дефицитными и легко помещаются в одной руке.
Давайте взглянем на принципиальную схему устройства. По входу питания тут предусмотрено несколько защит: предохранитель, варистор который ограничивает возможные высоковольтные выбросы в сеть и термистор ограничивающий ток заряда довольно мощного конденсатора, он нужен чтобs предохранитель не выгорал при включении схемы в розетку. Генератор тут построен на базе микросхемы драйвера IR2153, который управляет силовыми транзисторами.
Изначально планировалось использовать в схеме высоковольтные пленочные конденсаторы. Но затем выбор пал на безындукционные конденсаторы марки MKPH емкостью в 0.33 микрофарада. Их используют в индукционных плитах. Силовые ключи рассчитаны на напряжение 600 вольт и ток порядка 20 ампер. Маркировка 20N60.
Сейчас наша задача соединить все детали согласно схемы. Несколько часов работы в программе трассировщике и на выходе мы получаем довольно мощный компактный генератор. Плату к нему можно вытравить самому, либо обратится с этой задачей к специалистам.
Для сборки этого генератора схема не нужна, так как тут указано где и какой элемент должен находится. Устанавливаем транзисторы на радиатор. На плате предусмотрены посадочные места под разные конденсаторы. Термистор в процессе работы греется, его нужно размещать как можно выше.
В общем припаиваем все на свои места и работу по сборке генератора можно считать исчерпывающей. Обратим внимание на отсутствующий резистор возле микросхемы IR2153. Место него нужно установить построечный резистор на 50 кОм. Это нужно для дальнейшей настройки резонанса.
Включать генератор напрямую в розетку недопустимо! Рекомендую использовать балласт в виде лампочки включенный последовательно со схемой. Если в процессе настройки пробьет ключи, а на линии появится короткое замыкание, лампочка ярко вспыхнет и не даст выбить пробки в квартире. Типа безопасность и все такое.
Прежде чем запускать схему на всю катушку, ее нужно настроить. Вначале нужно запитать драйвер IR2153 и убедится что на ключи поступают управляющие сигналы. С внешнего блока питания подаем на него 15 вольт. Подключаем щупы цифрового осциллографа к затворам силовых транзисторов. Амплитуда управляющих импульсов будет равна напряжению питания микросхемы драйвера. У нее внутри стоит стабилитрон по питанию на 15 вольт, потому данная амплитуда это край.
Микросхема IR2153 управляет ключами довольно хитро. Между открытием первого и второго транзистора существует пауза в 1.2 мкс, называется она «Dead Time». Дело в то том, что ключи должны работать на нагрузку по очереди. Если через оба ключа одновременно пойдет ток, они довольно эффектно взорвутся, так как окажут короткое замыкание для сети. Такие дела.
Включим на мультиметре режим измерения напряжения и посмотрим что у нас происходит на большом электролитическом конденсаторе. Поднимаем напряжение на лабораторном автотрансформаторе, и видим что конденсатор прекрасно заряжается. При этом ничего не должно греться, дымить, шипеть и прочее. Перекинем щуп мультиметра на нижний вывод 5 Вт резистора и посмотрим появляется ли необходимое напряжение для питания драйвера.
Как видно, необходимые 15 вольт присутствуют. Это означит что генератор собран правильно и теперь его можно смело запускать.
Регулировка частоты тут осуществляется подстрочным резистором. Диапазон регулировки частот начинается от 20 килогерц и заканчивается примерно на 220 килогерцах. Довольно широкий диапазон для наших целей.
Подключаем высоковольтный трансформатор, не стесняйтесь хорошо зажимать провода.
Важный момент, во время работы подобных устройств высоковольтные провода не должны висеть в воздухе и не дай бог как то прикасаться к элементам платы генератора. Рекомендую для этих целей использовать простой разрядник. Так вы защитите высоковольтный трансформатор от внутреннего пробоя, глобальных катаклизмов, армагеддона и прочего.
Теперь переходим к настройке резонанса. Для оценки уровня сигнала на высоковольтных проводах, покладём рядом с разрядником щуп от осциллографа. Он не должен касаться электродов, иначе спалите чего-нибудь. ЛАТР-ом поднимаем входное напряжение и видим как растет амплитуда сигнала на высоковольтных проводах. Замечательно.
Сейчас изменяя сопротивление подстроечного резистора мы изменяет частоту работы генератора. Резонанс можно считать достигнутым тогда, когда амплитуда напряжения на высоковольтной части будет максимальна. Тут нужно учесть важный момент. Если вы настроите резонанс на одном разряднике, а затем вместо него поставите другой, работать в итоге ничего не будет.
Рекомендую делать настройку при наименьшем напряжении на входе генератора. Удивительно, но схема при этом нормально работает. В общем добиваемся наибольших разрядов, поднимаем напряжение и отключаем балласт в виде лампочки. Разряд пошел. Если у вас нет под рукой осциллографа для оценки уровня сигнала, то о резонансе системы можно судить по лампочке.
Спираль при этом будет светить ярче всего из-за увеличения потребления тока генератором. На этой прекрасной ноте настройку устройства можно считать исчерпывающей. Теперь постепенно поднимаем напряжение и смотрим как ползет дуга по концам рогатки.
Некоторые характеристики лестницы Иакова. Максимальная потребляемая мощность установки составляет почти 400 Вт. Резонанс генератора с моим конкретным высоковольтным трансформатором и разрядником составил 71 кГц. У вас значения будут другие. При минимальном входном напряжении на схеме, высоковольтные провода имеют такую напряженность, чтобы светится прямо через изоляцию провода. Пальцы при этом сильно воняют озоном. Мелкие вылетающие разряды с провода легко способны оставлять ожоги на коже. В общем интересно.
Всё собрано и настроено. Пора поместить потроха в какой-нибудь красивый корпус. Для этого был использован прозрачный контейнер для еды от предыдущего фильма про Камеру Вильсона. Напомню, что он тогда не подошел по причине чувствительного к царапинам пластика. Там это недопустимо, а тут на это можно класть. Включаем лестницу Иакова через 100 Вт балласт и видим что дуга еле доползает до средины рогатки. Отключаем балласт и видим что мощность дуги увеличилась, и она с легкостью доползает до самого верха.
Иногда в процессе работы установки приходится наблюдать момент, когда дуга на концах электродов не хочет обрываться. Это выглядит красиво, но нужно иметь в виду, что в таком режиме схема работает на максимальной мощности. Чтобы такого не было, можно сильней развести электроды друг от друга.
В общем не смотря на довольно простую настройку данного девайса, дальше произошло то, чего никто не мог ожидать. Включив установку напрямую в розетку, в схеме пыхнул предохранитель, и одновременно с ним пропал свет в квартире. Самое интересное, это произошло ночью. Ничего не видно. Подойдя с фонариком к счетчику электроэнергии, первое что бросилось в глаза это отсутствие каких либо цифр на индикаторе и не сработавшие сверху автоматические выключатели. «Вот это прикол» подумал я, и бросил взгляд в нижнюю часть электрощита. На лицо явно произошел какой-то прогар. Повезло так повезло.
Звоню в службу поддержки, говорю беда, в квартире пропал свет. Чё делать? Они говорят не паникуй, передаем заявку на обработку. Через 2 часа в домофон позвонили парни в костюмах супергероев и говорят рассказывай, доставай показывай!
Оценив ситуацию они незамедлительно начали устранять неисправность.
Электрики поковырялись в электрощитовой и на скорую руку восстановили электроснабжение в квартире. Времени на это ушло минут 20. Заглянув туда и оценив их работу, я ох. ел. Превосходный шедевр из рубрики «Я его слепила из того что было». На утро пришлось долбить стену и прокладывать к щитку нормальный медный провод в 6 квадратов. Такое приключение еще не скоро забудется.
Ну а что же произошло на самом деле. Давайте разберемся. При включении лестницы Иакова в розетку, номинальная мощность схемы превысила предельные возможности полевых транзисторов. Их пробивает, в цепи возникает короткое замыкание. Ток, идущий через предохранитель становится больше допустимого и волосок внутри перегорает. Перегорает он не мгновенно как многие думают, а с некоторой задержкой, так как внутри еще тянется мощная дуга. Этой микросекунды хватило, чтоб сжечь старую алюминиевую проводку в квартире.
Ремонтируем схему. Тут и драйвер сгорел, и стабилитрон на верхнем ключе, и сами ключи. Чтобы не расстраиваться каждый раз когда что то идет не по плану, рекомендую завести баночку и коллекционировать спаленные радио детали. Моя уже заполнена до краев, пора брать трехлитровую банку.
После продолжительной работы лестницы Иакова был выявлен один довольно существенный недостаток в разводке платы генератора. Площади радиаторов на транзисторах недостаточно для отвода выделяемого тепла. Пришлось нарастить их по высоте. Нагрев при этом составил 90 градусов. Можно поставить небольшой вентилятор для обдува. Назовем это расплатой за компактность.
Для справки. Съемка этого выпуска заняла порядка двух месяцев. Я старался изложить материал последовательно, в начале настройка схемы, а затем ее запуск на полную мощь. В противном случае вы спалите десяток довольно дорогих ключей, предохранителей и возможно обесточите квартиру. Еще и щупы мультиметра могут взорваться.
Как гласит Японская мудрость:
Не бойся, что не знаешь — бойся, что не учишься.
Удлинители: паранойя, ремонт, изготовление
Продолжаем (и завершаем) тему удлинителей. В прошлом посте не уместилась информация по ремонту и изготовлению.
Дополнение к предыдущей публикации.
Нагрев бухты удлинителя связан ТОЛЬКО с потерями на нагрев из-за сопротивления провода.
Почему я разбираю все новые удлинители
Об этом я писал почти 7 лет назад. Типичный дефект пайки называется «холодная пайка», это когда предмет, который припаивают, не прогрелся до температуры плавления припоя. В результате припой как бы «намазывается» на поверхность, но нормального смачивания не происходит. Контакт вроде как есть, но при небольшой вибрации может отвалиться. Вот так это выглядело в китайском удлинителе, новом, только с завода:
Вот здесь явный непропай
При массовом производстве пайку избегают, она нетехнологична (но можно делать в любом гараже). Чаще инвестируют в покупку станков, например сварки, и жилы приваривают к токоведущим элементам. Причем наиболее правильным будет оконцевать провод гильзой, и приваривать именно гильзу. На фото проволочки жилы приварены к тоководу:
Как ломаются удлинители
1. При включении вызывает короткое замыкание и вышибает пробки (отключает автоматы в щитке).
2. Расплавление пластика вокруг контактной группы из-за чрезмерного нагрева.
3. Переламываются жилы в месте изгиба
4. Выход из строя выключателя
Ремонт в таком случае сводится просто к замене выключателя (или вообще его обходе, если он не нужен).
Как сделать удлинитель самому.
Это не сложно, справится даже четвероклассник. Идем в строительный магазин и покупаем вилку, блок розеток и необходимое количество гибкого кабеля сечением 1,5 мм2 или даже 2,5 мм2. С двумя проводниками если хотим сделать удлинитель без заземления, и с тремя, если с заземлением.
С вилкой проделываем тот же порядок действий:
Закрываем крышку и готово!) ничего сложного.
ИК паяльная станция, ПИД регулятор, фазовое управление, stm32
Захотелось мне как то сделать инфракрасную паяльную станцию. Начал я смотреть разные сайты с готовыми схемами и решил сделать по-своему. Так же среди этих сайтов был и Пикабу, человек очень хорошо описал фазовое управление и алгоритм Брейзенхейма (тут ссылка на статью )Ардуино и управление мощной нагрузкой переменного тока или самогонный аппарат 2. но мне не понравилась идея использовать 2 контроллера.
Задание для себя было таким:
• Два ПИД регулятора для верхнего и нижнего нагревателей;
• Соответственно 2 датчика температуры (для каждого регулятора свой);
• Управление с энкодера и встроенной в него кнопки;
• Отображение на дисплей SSD1306 (128×64 т.к. был)
• Отсылка данных в ПК через USB-CDC;
• Фазовое регулирование (алгоритм Брейзенхейма)
• Малошумящее управление тиристорами (MOC3063)
Мозгом паяльника стал STM32f103 или в народе BluePill. Сконфигурировал его в CubeMX и понеслось.
Так же есть подменю с настройками ПИД регуляторов, тут перемещение нажатием кнопки на энкодере а поворот устанавливает значение.
ПИД регулятор получился не такой как все =). Его интегральная часть это единица времени, а не просто безразмерный коэффициент как в других цифровых регуляторах. Все цифровые регуляторы дискретны (мои срабатывают каждые 500мс(можно сделать быстрее если нужно)), за это время интегральная часть закидывает в буфер текущее значение ошибки регулирования. Дальше берется сумма этого буфера и вот мы получаем интеграл. Вот тут то и отличие, те регуляторы, что я видел, берут сумму всего буфера и умножают на безразмерный коэффициент. У моего регулятора интегратор это и есть число выборок, которое нужно взять. Допустим, время интегрирования установлено 10 т.к. частота дискретизации регулятора 0,5 с 10*0,5=5 секунд. Следовательно, регулятор будет использовать интеграл изменения ошибки за последние 5 секунд. Максимум 256 выборок. Хотел сделать, что то похожее с дифференциальным звеном, но чет забил. Там можно было бы уменьшать время для следующего отчета ошибки для диф. звена, но тогда придется слишком часто дергать АЦП, а нам еще данные по ЮСБ отправлять и на экран.
Чтобы получать данные по USB нужно установить драйвер от STM usb-cdc. Потом у Вас появится ком порт, куда каждые 500мс будут отправляться данные. Можно не использовать эту функцию, ну а если решите написать ГУИ, то в коде вся строка отправления лежит за sprintf. Так же можно отправлять команды на управление. Например, чтобы установить температуру верха нужно закинуть строковые “Ch5”+ 2 байта значение температуры (0x01ff-511 градусов).
Использован широко известный экран i2c на контроллере ssd1306 (128×64), я использую свою библиотеку к нему (урезанный adafruit).
В силовой части использовал тиристоры BTA41-600. Они на 40А, но т.к. китайские, для нагрузки в 2кВт поставил 2 штуки параллельно (говорят так нельзя делать, но я надеюсь, Вы никому не скажете). Чтобы ими управлять и использую внешние прерывания при переходе синуса сети через 0. Сделано на самой обычной оптопаре, диодном мосте и паре резисторов (на схеме d1-4, u5). На печатной плате разделил силовую часть от слаботочной. Предохранителей никаких не ставил, потому что думаю запитать от автомата.
С силовой частью все. Вот такое получилось устройство в сборе (пока без радиаторов). Нагружал силовую часть лампочками по 100Вт, все работает.