Как сделать левитирующий светильник

Левитрон своими руками: самодельная схема устройства для левитации в магнитном поле

Идея устройства очень проста, электромагнит поднимает в воздух магнит, а для создания эффекта левитации в магнитном поле, он подключен к высокочастотному источнику, который то поднимает, то опускает объект.

Как сделать левитирующий светильник

Шаг 1: Схема устройства

Как сделать левитирующий светильник Как сделать левитирующий светильник

Шаг 2: Сборка

Как сделать левитирующий светильник Как сделать левитирующий светильник

Приступим к сборке. Сперва нам нужно сделать рамку для электромагнита примерно таких размеров: диаметр 6 мм, высота мотка примерно 23 мм, и диаметр ушек около 25 мм. Как видите, изготовить её можно из обычного листа, картона и суперклея. теперь закрепим начало мотка на рамке и расслабимся — нам нужно будет сделать около 550 оборотов, неважно в каком набавлении. Я сделал 12 слоёв, что отняло у меня 1.5 часа.

Шаг 3: Спайка

Как сделать левитирующий светильник Как сделать левитирующий светильник Как сделать левитирующий светильник Как сделать левитирующий светильник

Спаиваем всё по схеме, без каких-либо нюансов. Датчик Холла припаян к проводам, т.к. он будет помещён в катушку. Когда всё спаяете, поместите датчик в катушку, закрепите его, подвесьте катушку и подайте ток. Поднеся магнит, вы почувствуете, что он притягивается или отталкивается, в зависимости от полюса, и пытается зависнуть в воздухе, но неудачно.

Шаг 4: Настройка

Как сделать левитирующий светильник Как сделать левитирующий светильник Как сделать левитирующий светильник Как сделать левитирующий светильник

После 30 минут, потраченных над разгадкой вопроса, «почему эта штука не работает?», я пришел в отчаяние и прибегнул к крайним мерам — начал читать спецификацию к датчику, которую создают для таких людей как я. В спецификации имелись картинки, на которых было изображено, какая из сторон чувствительная.

Вытащив датчик и согнув его таким образом, чтобы плоская сторона с надписями была параллельна земле, я вернул его на место — самодельное устройство стало работать заметно лучше, но магнит всё ещё не левитировал. Понять в чём проблема удалось достаточно быстро: магнит в форме таблетки — не самый лучший экземпляр для левитации. Было достаточно сместить центр тяжести к нижней части магнита (я сделал это при помощи куска толстой бумаги ). Кстати, не забудьте проверить, какая сторона магнита притягивается к катушке. Теперь всё работало более или менее нормально и осталось закрепить и защитить датчик.

Какие еще нюансы есть в этом проекте? Сначала я хотел использовать адаптер на 12V, но электромагнит быстро грелся, и мне пришлось переключить его на 5V, я не заметил никаких ухудшений в работе, а нагрев был практически устранён. Диод и ограничивающий резистор были практически сразу отключены. Также я снял с катушки синюю бумагу — мотки медной проволоки смотрятся гораздо красивее.

Источник

«Левитирующий» светодиодный светильник

Как сделать левитирующий светильник
Как сделать левитирующий светильник

Конечно ни куда он не левитирует, но при просмотре именно такое впечатление и создается. Иллюзию создает необычный корпус и бегущая светодиодная дорожка внутри корпуса светильника.

Давайте посмотрим видео с примером работы светильника.

Для изготовления такого светильника мастер использовал следующие

Инструменты и материалы:
-Arduino Nano;
-Перемычки;
-Неопиксельное светодиодное кольцо с 24-я светодиодами;
-Батарея 9В;
-Разъем батареи 9В;
-Мате;
-Леска;
-Клеевой пистолет;
-Паяльное оборудование;
-Доступ к лазерному резаку;

Как сделать левитирующий светильник
Как сделать левитирующий светильник
Как сделать левитирующий светильник
Как сделать левитирующий светильник
Как сделать левитирующий светильник
Как сделать левитирующий светильник
Как сделать левитирующий светильник
Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

*Тенсегрити — принцип построения конструкций из стержней и тросов, в которых стержни работают на сжатие, а тросы — на растяжение.

Шаг третий: сборка
Дальше мастер приступает к сборке светильника.
Собирает части корпуса. Закрепляет леску.

Источник

Светодиодная лампа – левитрон

Как сделать левитирующий светильник

Близятся новогодние праздники. А как прийти в Новый год без подарка, к родным, близким и друзьям. И в тоже время, еще не потеряла актуальности старая присказка, что лучший подарок – это подарок сделанный своими руками. А почему бы и нет, давайте попробуем сделать кому-либо оригинальный новогодний подарок.

В качестве такого подарка предлагается изготовить простейший левитрон. Магнитная левитация всегда выглядит впечатляюще и завораживающе. С помощью невидимой электромагнитной силы поднимем и удержим в воздухе небольшой неодимовый магнит. Создание парящего эффекта осуществляется поднятием и опусканием магнита в очень небольшом диапазоне высот, но с высокой частотой. Такое устройство сегодня можно сделать самому. И для этого не обязательно тратить много денег и времени.

В данной статье рассмотрим схему и технологию изготовления магнитного левитрона из простых и дешевых компонентов.

Схема устройства для магнитной левитации представлена ниже.

Как сделать левитирующий светильник

Принцип работы устройства
С помощью данной схемы, катушка L1 создает определенное электромагнитное поле, которое удерживает на весу постоянный магнит. Так как равновесное положение крайне не стабильно, для удержания магнита в схеме используется система автоматического контроля и управления. Датчиком контроля положения, служит магнитоуправляемый датчик MD1, на основе эффекта Холла. Он расположен и закреплен в центре катушки, со стороны рабочего торца.

Работа датчика Холла (MD1) заключается в понижении выходного сигнала (выв.3), вплоть до отключения, при нарастании статического или динамического магнитного поля. При понижении магнитного поля, все наоборот. Датчик Холла работает при небольшом напряжении питания (4…20 V) и малом токе (3…20 mA), управляя при этом силовым транзистором VT1.

Светодиод LED1 служит для визуального контроля над работой устройства.
Диод VD2 обеспечивает быстродействие работы катушки.

Схема работает следующим образом.
При включении устройства, ток проходит через катушку L1 и открытый транзистор VT1.
При этом катушка создает магнитное поле и начинает притягивать постоянный магнит. Магнит притягивается к электромагниту, но поднимаясь, он попадает в зону действия датчика положения (МD1) и своим магнитным полем переключает его. При этом подается сигнал на транзистор VT1, который отключает электромагнит. Тогда постоянный магнит начинает падать, но выйдя из зоны чувствительности датчика, вновь включает электромагнит. При этом магнит вновь вынужден двигаться к электромагниту. Таким образом, постоянный магнит непрерывно колеблется около определенной системой точки.

Для того, чтобы постоянный магнит в процессе колебаний не перевернулся, его положение стабилизируют, например, закрепив к нему что либо снизу. При перевороте магнита, меняется его полюс, обращенный к датчику положения МD1 и схема перестает работать, так как датчик управляется только южным полюсом магнита.

Возможен вариант использования имеющейся промышленной катушки. При этом желательно знать ее номинальное напряжение питания и подобрать в дальнейшем соответствующий источник питания.

В нашем случае, для оригинального подарка, требуется компактное исполнение устройства, поэтому была выбрана катушка малогабаритного реле.

Как сделать левитирующий светильник

2. Кроме катушки нам потребуется полевой транзистор, например, IRFZ44N или другой подобный MOSFET, опять же в зависимости от параметров применяемой катушки. В нашем случае задействован транзистор IRF630, оставшийся на кусочке платы, после утилизации видеоаппаратуры.

Также нужен датчик Холла, например, типа A3144, AH443 или другой, работающий на аналогичных режимах. В данном случае использован дешевый датчик, найденный в магазине, модели HAL 508 UA-A-2-B-1-00.

Доукомплектуем устройство остальными покупными радиодеталями согласно приведенной схеме.

Как сделать левитирующий светильник

3. Для проверки и настройки работы левитрона, собираем левую часть вышеприведенной схемы, за исключением резистора R2 и с изменением номинала R3 на 330 Ом. Правая часть схемы представляет собой источник питания устройства, и в этом варианте она не нужна. Сборку и отработку схемы удобнее выполнить на универсальной монтажной плате, но так как имеющийся транзистор уже был впаян вместе с радиатором на кусочке платы, подходящего размера, распаял схему рядом с ним.

Как сделать левитирующий светильник

4. Собираем катушку. Датчик Холла помещаем и временно закрепляем по центру отверстия, в самом низу катушки.

Как сделать левитирующий светильник

5. Испытание устройства. Зафиксируем катушку на некотором расстоянии от поверхности стола. После этого на устройство магнитной левитации можно подать питание. Так как катушка указанного ранее реле имеет сопротивление обмотки 210 Ом и рассчитана на постоянный ток напряжением 12В, подключаем ее к соответствующему источнику питания.

Примечание. Первые испытания с этой катушкой прошли не удачно. Сердечник катушки реле усиливал магнитное поле, но и оказывал свое влияние при отключении катушки. В процессе наладки, положение магнита было не стабильно или магнит притягивался к сердечнику при выключенной катушке. При удалении сердечника из катушки процесс стабилизировался, что видно на фото.

Как сделать левитирующий светильник

6. Модернизация устройства. Дальнейшие испытания показали некоторые недостатки. Во-первых, необходимость дополнительного источника питания, что увеличивает сложность и размеры и не добавляет оригинальности подарку. Во-вторых, при увеличении дальности полета (расстоянии от катушки), нужно увеличивать напряжение питания, а это ведет к нежелательному нагреву катушки.

Возможно, конечно, остановиться и на этом варианте, используя полученные возможности. Осталось всего лишь «упаковать» устройство в достойный корпус.

7. Можно изготовить второй вариант устройства, заменив катушку на более высоковольтную (но с меньшим током потребления) и изготовить дополнительно встроенный бестрансформаторный блок питания. Полная схема этого устройства приведена в начале статьи.
Второй вариант катушки от импортного реле рассчитан на напряжение 110 вольт и имеет сопротивление обмотки 4700 Ом. Комплектуем устройство деталями согласно схеме.

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

В данном случае использовался кольцевой неодимовый магнит диаметром 10 мм и толщиной 3 мм. Датчик MD1 установим по центру катушки и предварительно зафиксируем кусочком поролона. Перемещая датчик Холла, добиваемся стабильного зависания магнита на максимальном расстоянии от катушки. Закрепляем положение датчика относительно катушки.

11. После настройки левитрона собираем и склеиваем устройство. Для придания устройству большего эффекта светодиодной лампы, можно добавить внутрь плафона 2-3 постоянно включенных светодиода с ограничительными резисторами. Для обеспечения теплоотвода, предусмотреть в патроне вентиляционные отверстия, если они не были предусмотрены конструкцией бывшей лампы.

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Для создания заворачивающего парящего эффекта, магнит можно завуалировать какой либо легкой фигуркой, например, контуром мотылька.

Источник

Создаем эффект левитации с помощью Ардуино

На идею этого урока натолкнул проект краудфандинговой платформы Kickstarter под названием «Air Bonsai», действительно красивый и загадочный, который сделали японцы.

Как сделать левитирующий светильник

Но любая загадка может быть объяснена, если посмотреть внутрь. Фактически это магнитная левитация, когда есть объект, левитирующий сверху, и электромагнит, контролируемый схемой. Давайте попробуем вместе реализовать этот загадочный проект.

Шаг 1: Как это работает

Как сделать левитирующий светильник

Мы выяснили, что схема устройства на Кикстартере была довольно сложной, без какого-либо микроконтроллера. Не было возможности найти её аналоговую схему. На самом деле, если посмотреть более внимательно, принцип левитации довольно прост. Нужно сделать магнитную деталь, «плавающую» над другой магнитной деталью. Основная дальнейшая работа заключалась в том, чтобы левитирующий магнит не падал.

Было также предположение, что сделать это с Arduino на самом деле намного проще, чем пытаться понять схему японского устройства. На самом деле всё оказалось намного проще.

Магнитная левитация состоит из двух частей: базовой части и плавающей (левитирующей) части.

Основание

Эта часть находится внизу, которая состоит из магнита для создания круглого магнитного поля и электромагнитов для управления этим магнитным полем.

Каждый магнит имеет два полюса: север и юг. Эксперименты показывают, что противоположности притягиваются и одинаковые полюса отталкиваются. Четыре цилиндрических магнита помещаются в квадрат и имеют одинаковую полярность, образуя круглое магнитное поле вверх, чтобы вытолкнуть любой магнит, который имеет один и тот же полюс между ними.

Плавающая деталь

Деталь включает в себя магнит, плавающий над основанием, который может нести небольшой горшок с растением или другие предметы.

Магнит сверху поднимается магнитным полем нижних магнитов, потому что они с одинаковыми полюсами. Однако, как правило, он склоняется к падению и притягиванию друг к другу. Чтобы предотвратить переворот и падение верхней части магнита, электромагниты создадут магнитные поля, чтобы толкать или тянуть, дабы сбалансировать плавающую часть, благодаря датчику Холла. Электромагниты управляются двумя осями X и Y, в результате чего верхний магнит поддерживается сбалансированным и плавающим.

Контролировать электромагниты нелегко, требуется ПИД-регулятор, который подробно обсуждается на следующем шаге.

Шаг 2: ПИД-регулятор (PID)

Как сделать левитирующий светильник

Из Википедии: «Пропорционально-интегрально-дифференцирующий (ПИД) регулятор — устройство в управляющем контуре с обратной связью. Используется в системах автоматического управления для формирования управляющего сигнала с целью получения необходимых точности и качества переходного процесса. ПИД-регулятор формирует управляющий сигнал, являющийся суммой трёх слагаемых, первое из которых пропорционально разности входного сигнала и сигнала обратной связи (сигнал рассогласования), второе — интеграл сигнала рассогласования, третье — производная сигнала рассогласования.»

В простом понимании: «ПИД-регулятор вычисляет значение «ошибки» как разность между измеренным [Входом] и желаемой установкой. Контроллер пытается свести к минимуму ошибку, отрегулировав [выход]».

Итак, вы указываете PID, что измерить (Вход), какое значение вы хотите и переменную, которая поможет иметь это значение на выходе. Далее ПИД-регулятор настраивает выходной сигнал, чтобы сделать вход равным установке.

Стоит поблагодарить сообщество любителей Arduino, которое написало PID-библиотеку и которая очень проста в использовании. Дополнительная информация об Arduino PID есть на официальном сайте Arduino. Нам нужно использовать пару ПИД-регуляторов под Arduino, один для оси X и другой для оси Y.

Шаг 3: Комплектующие

Как сделать левитирующий светильник

Список комплектующих для урока получается приличным. Ниже приведен список компонентов, которые вы должны купить для этого проекта, убедитесь, что у вас есть все перед запуском. Некоторые из компонентов очень популярны, и, вероятно, вы найдете их на своем собственном складе или дома.

Шаг 4: Инструменты

Вот список инструментов, наиболее часто используемых:

Шаг 5: LM324 Op-amp, L298N драйвер и SS495a

Как сделать левитирующий светильник

LM324 Op-amp

Операционные усилители (op-amp) являются одними из наиболее важных, широко используемых и универсальных схем, используемых сегодня.

Обычным операционным усилителем, который мы выбрали, является LM324, это дешево, и вы можете купить его в любом магазине электроники. LM324 имеет 4 внутренних усилителя, которые позволяют гибко его использовать, однако в этом проекте нужны только два усилителя: один для оси X, а другой для оси Y.

Модуль L298N

Двойной H-мост L298N обычно используется для управления скоростью и направлением двух двигателей постоянного тока или с легкостью управляет одним биполярным шаговым двигателем. L298N может использоваться с двигателями с напряжением от 5 до 35 В постоянного тока.

Существует также встроенный регулятор 5V, поэтому, если напряжение питания до 12 В, вы также можете подключить источник питания 5 В от платы.

В этом проекте использован L298N для управления двумя парами катушек электромагнита и использован выход 5 В для питания Arduino и датчика холла.

Подключение к Arduino: нам нужно удалить 2 перемычки в контактах EnA и EnB, затем подключить 6 контактов In1, In2, In3, In4, EnA, EnB к Arduino.

SS495a Датчик Холла

Аналоговый датчик приведет к диапазону напряжений от 250 до Vcc, который вы можете прочитать с помощью аналогового входа Arduino. Для измерения магнитного поля в обеих осях X и Y требуются два датчика холла.

Шаг 6: Неодимовые магниты NdFeB (неодим-железо-бор)

Как сделать левитирующий светильник

Из Википедии: «Неодим — химический элемент, редкоземельный металл серебристо-белого цвета с золотистым оттенком. Относится к группе лантаноидов. Легко окисляется на воздухе. Открыт в 1885 году австрийским химиком Карлом Ауэром фон Вельсбахом. Используется как компонент сплавов с алюминием и магнием для самолёто- и ракетостроения.»

Шаг 7: Готовим основание

Как сделать левитирующий светильник

Использовали небольшой терракотовый горшок, который обычно используется для выращивания суккулента или кактуса. Вы также можете использовать керамический горшок или деревянный горшок, если они подходят. Используйте сверло диаметром 8 мм, чтобы создать отверстие в нижней части горшка, которое используется для удерживания гнезда постоянного тока.

Шаг 8: 3D-печать плавающей части

Как сделать левитирующий светильник

Шаг 9: Подготовка SS495a модуля датчика Холла

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Шаг 10: Цепь Op-amp

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Припаяйте гнездо и резисторы к печатной плате, следуя схеме, обратив внимание на то, чтобы поместить два потенциометра в одном направлении для более легкой калибровки позже. Присоедините LM324 к гнезду, затем подключите два выхода модуля датчиков холла к цепи op-amp.

Два выходных провода LM324 подключите к Arduino. Вход 12 В с входом 12 В модуля L298N, выход 5 В модуля L298N к 5V потенциометра.

Шаг 11: Сборка электромагнитов

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Соберите электромагниты на акриловый лист, они закреплены в четырех отверстиях вблизи центра. Затяните винты, чтобы избежать движения. Поскольку электромагниты симметричны по центру, они всегда находятся на полюсах напротив, так что провода на внутренней стороне электромагнитов соединены вместе, а провода на внешней стороне электромагнитов подключены к L298N.

Протяните провода под акриловым листом через соседние отверстия, чтобы подключиться к L298N. Медный провод покрыт изолированным слоем, поэтому вы должны удалить его ножом, прежде чем вы сможете припаять их вместе.

Шаг 12: Сенсорный модуль и магниты

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Используйте горячий клей для фиксации модуля датчика между электромагнитами, обратите внимание, что каждый датчик должен быть квадратным с двумя электромагнитами, один на передней и другой на задней панели. Попробуйте выполнить калибровку двух датчиков как можно более централизованно, чтобы они не перекрывались, что сделает датчик наиболее эффективным.

Шаг 13: Разъем питания постоянного тока и выход L298N 5V

Как сделать левитирующий светильник

Припаяйте гнездо питания постоянного тока двумя проводами и используйте термоусадочную трубку. Подключенный разъем питания постоянного тока к входу модуля L298N, его выход 5 В будет подавать питание на Arduino.

Шаг 14: L298N и Arduino

Как сделать левитирующий светильник

Подключите модуль L298N к Arduino, следуя приведенной выше схеме:

L298N → Ардуино
5V → VCC
GND → GND
EnA → 7
В1 → 6
В2 → 5
В3 → 4
В4 → 3
EnB → 2

Как сделать левитирующий светильник

Шаг 15: Arduino Pro Mini программер

Как сделать левитирующий светильник

Поскольку у Arduino pro mini нет USB-порта для последовательного порта, вам необходимо подключить внешний программатор. FTDI Basic будет использоваться для программирования (и питания) Pro Mini.

Шаг 16: Подготовка плавающей части

Как сделать левитирующий светильник

Соедините два магнита D35*5 для увеличения магнетизма.

Шаг 17: Калибровка

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Загрузите программу ReadSetpoint.ino в Arduino, которую можно скачать выше. Эта программа будет считывать значения датчика Холла и отправлять их на компьютер через последовательный порт. Откройте COM-порт, чтобы увидеть его. Подключите 12 В постоянного тока к гнезду питания постоянного тока, вы также используете осциллограф для считывания значения датчика.

Шаг 18: Загрузка основной программы

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

После калибровки значения установки (Setpoint) самое время получить результаты. Загрузите основную программу Levitation.ino, которая приведена выше.

Используйте супер клей для фиксации магнита и держателя магнита, который ранее был напечатан на 3D-принтере. После загрузки основной программы вы можете внести небольшие корректировки на потенциометры, чтобы плавающая деталь была зафиксирована в центре.

Шаг 19: Собираем всё вместе

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Сначала прикрепите гнездо питания постоянного тока к горшку, затем поместите оставшиеся части в горшок. Наконец, используйте оставшийся акриловый лист, чтобы сделать поверхность горшка.

Шаг 20: Подготовка растения

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Прикрепите деревянный горшок к плавающей части магнита. Мы использовали маленький кактус для посадки. Вы можете использовать кактус или суккулент или любой мини-бонсай, который является маленьким и легким.

Шаг 21: Финальный результат

Как сделать левитирующий светильник

Как сделать левитирующий светильник

Наслаждайтесь своим результатом, благодаря вашим усилиям вы сделали отличный проект, который теперь будет радовать вас и ваших друзей.

Добавить комментарий Отменить ответ

В соответствии со ст. 1259 ГК РФ все материалы данного сайта являются объектом авторского права. Исключительные права на его использование принадлеждат владельцу данного сайта, согласно п.1 ст.1229 ГК РФ. Любое копирование материалов данного сайта без разрешения владельца сайта запрещено законом.

© АрдуиноПлюс.ру, 2017—2021 ( 49–0,141 )

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *