Как высчитать среднее значение

Как высчитать среднее значение

Как правильно вычислить среднее значение?

Как высчитать среднее значение

Средняя зарплата… Средняя продолжительность жизни… Практически каждый день мы с вами слышим эти словосочетания, используемые для описания множества одним единственным числом. Но как ни странно, «среднее значение» — достаточно коварное понятие, часто вводящее в заблуждение обычного, неискушенного в математической статистике, человека.

В чем проблема?

Под средним значением чаще всего подразумевается среднее арифметическое, которое очень сильно варьируется под воздействием единичных фактов или событий. И вы не получите реального представления о том, как именно распределены значения, которые вы изучаете.

Давайте обратимся к классическому примеру со средней зарплатой.

В какой-то абстрактной компании работает десять сотрудников. Девять из них получают зарплату около 50 000 рублей, а один 1 500 000 рублей (по странному совпадению он же является генеральным директором этой компании).

Как высчитать среднее значение

Средним значением в данном случае будет 195 150 рублей, что согласитесь, неправильно.

Какие способы вычисления среднего бывают?

Первым способом является вычисление уже упомянутого среднего арифметического, являющегося суммой всех значений, деленной на их количество.

Как высчитать среднее значение

Вторым способом является вычисление моды, то есть наиболее часто встречающегося значения.

Как высчитать среднее значение

Третий способ — это вычисление медианы, то есть значения, которое делит упорядоченную выборку на две половины и находится между ними. А если такого значения нет, то за медиану принимается среднее арифметическое между границами половин выборки.

Как высчитать среднее значение

Мы рассмотрели основные методы нахождения среднего значения, называющиеся мерами центральной тенденции (на самом деле их больше, но это наиболее популярные).

А теперь давайте вернемся к нашему примеру и посчитаем все три варианта среднего при помощи специальных функций Excel:

И вот какие значения у нас получились:

Как высчитать среднее значение

В данном случае мода и медиана гораздо лучше характеризуют среднюю зарплату в компании.

Но что делать, когда в выборке не 10 значений, как в примере, а миллионы? В Excel это не посчитать, а вот в базе данных где хранятся ваши данные, без проблем.

Вычисляем среднее арифметическое на SQL

И чтобы ее использовать достаточно написать вот такой запрос:

Вычисляем моду на SQL

В SQL нет отдельной функции для нахождения моды, но ее легко и быстро можно написать самостоятельно. Для этого нам необходимо узнать, какая из зарплат чаще всего повторяется и выбрать наиболее популярную.

Вычисляем медиану на SQL

Выглядит все это так:

Подробнее о работе функции PERCENTILE_CONT лучше почитать в справке Microsoft и Google BigQuery.

Какой способ все-таки использовать?

Из сказанного выше следует, что медиана лучший способ для вычисления среднего значения.

Но это не всегда так. Если вы работаете со средним, то остерегайтесь многомодального распределения:

Как высчитать среднее значение

На графике представлено бимодальное распределение с двумя пиками. Такая ситуация может возникнуть, например, при голосовании на выборах.

В данном случае среднее арифметическое и медиана — это значения, находящиеся где-то посередине и они ничего не скажут о том, что происходит на самом деле и лучше сразу признать, что вы имеете дело с бимодальным распределением, сообщив о двух модах.

А еще лучше разделить выборку на две группы и собрать статистические данные для каждой.

Вывод:

При выборе метода нахождения среднего нужно учитывать наличие выбросов, а также нормальность распределения значений в выборке.

Окончательный выбор меры центральной тенденции всегда лежит на аналитике.

Источник

Среднее арифметическое

Онлайн калькулятор поможет найти среднее арифметическое чисел. Среднее арифметическое множества чисел (ряда чисел) — число, равное сумме всех чисел множества, делённой на их количество.

Программа вычисляет среднее арифметическое элементов массива, среднее арифметическое натуральных чисел, целых чисел, набора дробных чисел.

Формула которая используется для расчета среднего арифметического значения:
Как высчитать среднее значение
Приведём примеры нахождения среднего арифметического ряда чисел:
Среднее арифметическое двух чисел: (2+5)/2=3.5;
Среднее арифметическое трёх чисел: (2+5+7)/3=4.66667;
Среднее арифметическое 4 чисел: (2+5+7+2)/4=4;

Найти выборочное среднее (математические ожидание):
Среднее арифметическое 5 чисел: (2+5+7+2+3)/5=3.8;
Среднее арифметическое 6 чисел: (2+5+7+2+3+4)/6=3.833;
Среднее арифметическое 7 чисел: (2+5+7+2+3+4+8)/7=4.42857;
Среднее арифметическое 8 чисел: (2+5+7+2+3+4+8+5)/8=4.5;
Среднее арифметическое 10 чисел: (2+5+7+2+3+4+8+5+9+1)/10=4.6;

Источник

Как вычислить среднее арифметическое

Среднее арифметическое — статистический показатель, который демонстрирует среднее значение заданного массива данных. Такой показатель рассчитывается как дробь, в числителе которой стоит сумма всех значений массива, а в знаменателе — их количество. Среднее арифметическое — важный коэффициент, который находит применение в бытовых расчетах.

Смысл коэффициента

Среднее арифметическое — элементарный показатель для сравнения данных и подсчета приемлемого значения. К примеру, в разных магазинах продается банка пива конкретного производителя. Но в одном магазине она стоит 67 рублей, в другом — 70 рублей, в третьем — 65 рублей, а в последнем — 62 рубля. Довольно большой разбег цен, поэтому покупателю будет интересна средняя стоимость банки, чтобы при покупке товара он мог сравнить свои расходы. В среднем банка пива по городу имеет цену:

Средняя цена = (67 + 70 + 65 + 62) / 4 = 66 рублей.

Зная среднюю цену, легко определить где выгодно покупать товар, а где придется переплатить.

Среднее арифметические постоянно используется в статистических расчетах в случаях, если анализируется однородный набор данных. В примере выше — это цена банки пива одной марки. Однако мы не можем сравнить цену на пиво разных производителей или цены на пиво и лимонад, так как в этом случае разброс значений будет больше, средняя цена будет смазана и недостоверна, а сам смысл расчетов исказится до карикатурного «средняя температура по больнице». Для расчета разнородных массивов данных используется среднее арифметическое взвешенное, когда каждое значение получает свой весовой коэффициент.

Подсчет среднего арифметического

Формула для вычислений предельно проста:

P = (a1 + a2 + … an) / n,

где an – значение величины, n – общее количество значений.

Для чего может использоваться данный показатель? Первое и очевидное его применение — это статистика. Практически в каждом статистическом исследовании используется показатель среднего арифметического. Это может быть средний возраст вступления в брак в России, средняя оценка по предмету у школьника или средние траты на продукты в день. Как уже говорилось выше, без учета весов подсчет средних значений может давать странные или абсурдные значения.

К примеру, президент Российской Федерации сделал заявление, что по статистике, средняя зарплата россиянина составляет 27 000 рублей. Для большинства жителей России такой уровень зарплаты показался абсурдным. Не мудрено, если при расчете учитывать размер доходов олигархов, руководителей промышленных предприятий, крупных банкиров с одной стороны и зарплаты учителей, уборщиков и продавцов с другой. Даже средние зарплаты по одной специальности, например, бухгалтера, будут иметь серьезные отличия в Москве, Костроме и Екатеринбурге.

Как считать средние для разнородных данных

В ситуациях с подсчетом заработной платы важно учитывать вес каждого значения. Это означает, что зарплаты олигархов и банкиров получили бы вес, например, 0,00001, а зарплаты продавцов — 0,12. Это цифры с потолка, но они приблизительно иллюстрируют распространенность олигархов и продавцов в российском обществе.

Таким образом, для подсчета среднего средних или среднего значения в разнородном массиве данных, требуется использовать среднее арифметическое взвешенное. Иначе вы получите среднюю зарплату по России на уровне 27 000 рублей. Если же вы хотите узнать свою среднюю оценку по математике или среднее количество забитых шайб выбранного хоккеиста, то вам подойдет калькулятор среднего арифметического.

Наша программа представляет собой простой и удобный калькулятор для расчета среднего арифметического. Для выполнения расчетов вам понадобится ввести только значения параметров.

Рассмотрим пару примеров

Расчет средней оценки

Многие учителя используют метод среднего арифметического для определения годовой оценки по предмету. Давайте представим, что ребенок получил следующие четвертные отметки по математике: 3, 3, 5, 4. Какую годовую оценку ему поставит учитель? Воспользуемся калькулятором и посчитаем среднее арифметическое. Для начала выберете соответствующее количество полей и введите значения оценок в появившиеся ячейки:

(3 + 3 + 5 + 4) / 4 = 3,75

Учитель округлит значение в пользу ученика, и школьник получит за год твердую четверку.

Расчет съеденных конфет

Давайте проиллюстрируем некоторую абсурдность среднего арифметического. Представим, что у Маши и Вовы было 10 конфет. Маша съела 8 конфет, а Вова — всего 2. Сколько конфет в среднем съел каждый ребенок? При помощи калькулятора легко вычислить, что в среднем дети съели по 5 конфет, что совершенно не соответствует действительности и здравому смыслу. Этот пример показывает, что показатель среднего арифметического важно считать для осмысленных наборов данных.

Заключение

Расчет среднего арифметического широко используется во многих научных сферах. Этот показатель популярен не только в статистических расчетах, но и в физике, механике, экономике, медицине или финансах. Используйте наши калькуляторы в качестве помощника для решения задач на вычисление среднего арифметического.

Источник

Простая формула, чтобы подсчитать среднее арифметическое

Как высчитать среднее значение

Понятие среднего арифметического

Среднее арифметическое нескольких чисел — это сумма этих чисел, которую разделили на количество слагаемых. Формула среднего арифметического, которую обычно проходят в 5 классе, выглядит так:

Как высчитать среднее значение

Потренируемся использовать формулу среднего арифметического.

Например, найдем среднее арифметическое чисел 2, 3 и 4. Обозначим среднее значение латинской буквой «m» и посчитаем сумму этих чисел.

Разделим результат на количество чисел в задании, то есть на 3, и получим ответ — 3.

Как высчитать среднее значение

Применить эти знания можно в любой сфере жизни, где нужно обобщить и дать среднюю оценку: узнать среднюю цену товара в разных магазинах, вычислить среднюю зарплату сотрудников компании, сравнить среднюю посещаемость занятий учениками 5А и 5Б.

Средняя скорость движения — это весь пройденный путь, поделенный на время движения. Формула:

Как высчитать среднее значение

Так мы рассмотрели самые основные методы нахождения среднего значения. Теперь осталось попрактиковаться на примерах, чтобы быстро решать задачки на контрольной.

Примеры расчета среднего арифметического

Пример 1. Вычислить среднее арифметическое 33,3 и 55,5.

Чтобы найти среднее арифметическое двух чисел, надо сложить эти числа и результат разделить на 2: (33,3 + 55,5) : 2 = 88,8 : 2 = 44,4.

Пример 2. Подсчитать среднее арифметическое 7,5 и 8 и 0,5.

Чтобы найти среднее арифметическое трех чисел, надо сложить эти числа и результат разделить на 3: (7,5 + 8 + 0,5) : 3 = 16 : 3 = 5,33.

Пример 3. Найти среднее арифметическое 202, 105, 67 и 9.

Чтобы найти среднее арифметическое четырех чисел, надо сложить эти числа и результат разделить на 4: (202 + 105 + 67 + 9) : 4 = 383 : 4 = 95,75.

Пример 4. Сколько в среднем тратит школьник денег в неделю, если в понедельник он потратил 80 рублей, во вторник 75 рублей, в среду и четверг по 100 рублей, в пятницу 50 рублей.

Чтобы найти сколько в среднем школьник потратил за пять дней, надо сложить эти суммы и результат разделить на 5: (80 + 75 + 100 + 100 + 50) : 5 = 405 : 5 = 81.

Ответ: школьник в неделю тратит в среднем 81 рубль.

Еще больше интересных практических заданий — на курсах математики в онлайн-школе Skysmart. Вводный урок — бесплатно!

Источник

Расчет среднего значения

В Excel существует несколько способов найти среднее для набора чисел. Например, можно воспользоваться функцией для расчета простого среднего, взвешенного среднего или среднего, исключающего определенные значения.

Чтобы научиться вычислять средние значения, используйте предоставленные образцы данных и описанные ниже процедуры.

Копирование примера данных

Чтобы лучше понять описываемые действия, скопируйте пример данных в ячейку A1 пустого листа.

Создайте пустую книгу или лист.

Выделите приведенный ниже образец данных.

Примечание: Не выделяйте заголовки строк или столбцов (1, 2, 3. A, B, C. ) при копировании данных примера на пустой лист.

Выбор примеров данных в справке

Как высчитать среднее значение

Цена за единицу

Количество заказанных изделий

Среднее качество изделий

Средняя цена изделия

Среднее качество всех изделий с оценкой качества выше 5

Нажмите клавиши Как высчитать среднее значение+C.

Выделите на листе ячейку A1, а затем нажмите клавиши Как высчитать среднее значение+V.

Расчет простого среднего значения

Выделите ячейки с A2 по A7 (значения в столбце «Качество изделия»).

Расчет среднего для несмежных ячеек

Выберите ячейку, в которой должно отображаться среднее значение, например ячейку A8, которая находится слева ячейки с текстом «Среднее качество изделия» в примере данных.

На вкладке Формулы щелкните стрелку рядом с кнопкой Автоумма Как высчитать среднее значениекнопку Среднее инажмите клавишу RETURN.

Щелкните ячейку, которая содержит только что найденное среднее значение (ячейка A8 в этом примере).

Если используется образец данных, формула отображается в строка формул, =СС00(A2:A7).

В строке формул выделите содержимое между скобками (при использовании примера данных — A2:A7).

Удерживая нажатой клавишу Как высчитать среднее значение, щелкните ячейки, для чего нужно вычесть среднее значение, и нажмите клавишу RETURN. Например, выберите A2, A4 и A7 и нажмите клавишу RETURN.

Выделенная ссылка на диапазон в функции СРЗНАЧ заменится ссылками на выделенные ячейки. В приведенном примере результат будет равен 8.

Расчет среднего взвешенного значения

В приведенном ниже примере рассчитывается средняя цена за изделие по всем заказам, каждый из которых содержит различное количество изделий по разной цене.

Выделите ячейку A9, расположенную слева от ячейки с текстом «Средняя цена изделия».

На вкладке Формулы нажмите кнопку Вставить функцию, чтобы открыть панель Построитель формул.

В списке построителя формул дважды щелкните функцию СУММПРОИЗВ.

Совет: Чтобы быстро найти функцию, начните вводить ее имя в поле Поиск функции. Например, начните вводить СУММПРОИЗВ.

Щелкните поле рядом с надписью массив1 и выделите на листе ячейки с B2 по B7 (значения в столбце «Цена за единицу»).

Щелкните поле рядом с надписью массив2 и выделите на листе ячейки с C2 по C7 (значения в столбце «Количество заказанных изделий»).

В строке формул установите курсор справа от закрывающей скобки формулы и введите /

Если строка формул не отображается, в меню Вид выберите пункт Строка формул.

В списке построителя формул дважды щелкните функцию СУММ.

Выделите диапазон в поле число1, нажмите кнопку DELETE и выделите на листе ячейки с C2 по C7 (значения в столбце «Количество изделий»).

Теперь в строке формул должна содержаться следующая формула: =СУММПРОИЗВ(B2:B7;C2:C7)/СУММ(C2:C7).

Нажмите клавишу RETURN.

В этой формуле общая стоимость всех заказов делится на общее количество заказанных изделий, в результате чего получается средневзвешенная стоимость за единицу — 29,38297872.

Расчет среднего, исключающего определенные значения

Вы можете создать формулу, которая исключает определенные значения. В приведенном ниже примере создается формула для расчета среднего качества всех изделий, у которых оценка качества выше 5.

Выделите ячейку A10, расположенную слева от ячейки с текстом «Среднее качество всех изделий с оценкой качества выше 5».

На вкладке Формулы нажмите кнопку Вставить функцию, чтобы открыть панель Построитель формул.

В списке построителя формул дважды щелкните функцию СРЗНАЧЕСЛИ.

Совет: Чтобы быстро найти функцию, начните вводить ее имя в поле Поиск функции. Например, начните вводить СРЗНАЧЕСЛИ.

Щелкните поле рядом с надписью диапазон и выделите на листе ячейки с A2 по A7 (значения в столбце «Цена за единицу»).

Щелкните поле рядом с надписью условие и введите выражение «>5».

Нажмите клавишу RETURN.

Такая формула исключит значение в ячейке A7 из расчета. В результате будет получено среднее качество изделий, равное 8,8.

Совет: Чтобы использовать функцию СРЗНАЧЕСЛИ для расчета среднего без нулевых значений, введите выражение «<>0″ в поле условие.

Чтобы научиться вычислять средние значения, используйте предоставленные образцы данных и описанные ниже процедуры.

Копирование примера данных

Чтобы лучше понять описываемые действия, скопируйте пример данных в ячейку A1 пустого листа.

Создайте пустую книгу или лист.

Выделите приведенный ниже образец данных.

Примечание: Не выделяйте заголовки строк или столбцов (1, 2, 3. A, B, C. ) при копировании данных примера на пустой лист.

Выбор примеров данных в справке

Как высчитать среднее значение

Цена за единицу

Количество заказанных изделий

Среднее качество изделий

Средняя цена изделия

Среднее качество всех изделий с оценкой качества выше 5

Нажмите клавиши Как высчитать среднее значение+C.

Выделите на листе ячейку A1, а затем нажмите клавиши Как высчитать среднее значение+V.

Расчет простого среднего значения

Рассчитаем среднее качество изделий двумя разными способами. Первый способ позволяет быстро узнать среднее значение, не вводя формулу. Второй способ предполагает использование функции «Автосумма» для расчета среднего значения и позволяет вывести его на листе.

Быстрый расчет среднего

Выделите ячейки с A2 по A7 (значения в столбце «Качество изделия»).

Примечание: Если строка состояния не отображается, в меню Вид выберите пункт Строка состояния.

Расчет среднего с отображением на листе

Выберите ячейку, в которой должно отображаться среднее значение, например ячейку A8, которая находится слева ячейки с текстом «Среднее качество изделия» в примере данных.

На панели инструментов Стандартная под названием книги щелкните стрелку рядом с кнопкой Как высчитать среднее значениекнопку Среднее и нажмите клавишу RETURN.

Результат составляет 8,166666667 — это средняя оценка качества всех изделий.

Расчет среднего для несмежных ячеек

Существует два способа расчета среднего для ячеек, которые не следуют одна за другой. Первый способ позволяет быстро узнать среднее значение, не вводя формулу. Второй способ предполагает использование функции СРЗНАЧ для расчета среднего значения и позволяет вывести его на листе.

Быстрый расчет среднего

Выделите ячейки, для которых вы хотите найти среднее значение. Например, выделите ячейки A2, A4 и A7.

Совет: Чтобы выбрать несмещные ячейки, щелкните их, удерживая Как высчитать среднее значениеклавишу.

В приведенном примере результат будет равен 8.

Примечание: Если строка состояния не отображается, в меню Вид выберите пункт Строка состояния.

Расчет среднего с отображением на листе

Выберите ячейку, в которой должно отображаться среднее значение, например ячейку A8, которая находится слева ячейки с текстом «Среднее качество изделия» в примере данных.

На панели инструментов Стандартная под названием книги щелкните стрелку рядом с кнопкой Как высчитать среднее значениекнопку Среднее и нажмите клавишу RETURN.

Щелкните ячейку, которая содержит только что найденное среднее значение (ячейка A8 в этом примере).

Если используется образец данных, формула отображается в строка формул, =СС00(A2:A7).

В строке формул выделите содержимое между скобками (при использовании примера данных — A2:A7).

Удерживая нажатой клавишу Как высчитать среднее значение, щелкните ячейки, для чего нужно вычесть среднее значение, и нажмите клавишу RETURN. Например, выберите A2, A4 и A7 и нажмите клавишу RETURN.

Выделенная ссылка на диапазон в функции СРЗНАЧ заменится ссылками на выделенные ячейки. В приведенном примере результат будет равен 8.

Расчет среднего взвешенного значения

В приведенном ниже примере рассчитывается средняя цена за изделие по всем заказам, каждый из которых содержит различное количество изделий по разной цене.

Выделите ячейку A9, расположенную слева от ячейки с текстом «Средняя цена изделия».

На вкладке Формулы в разделе Функция выберите пункт Построитель формул.

В списке построителя формул дважды щелкните функцию СУММПРОИЗВ.

Совет: Чтобы быстро найти функцию, начните вводить ее имя в поле Поиск функции. Например, начните вводить СУММПРОИЗВ.

В разделе Аргументы щелкните поле рядом с надписью массив1 и выделите на листе ячейки с B2 по B7 (значения в столбце «Цена за единицу»).

В разделе Аргументы щелкните поле рядом с надписью массив2 и выделите на листе ячейки с C2 по C7 (значения в столбце «Количество заказанных изделий»).

В строке формул установите курсор справа от закрывающей скобки формулы и введите /

Если строка формул не отображается, в меню Вид выберите пункт Строка формул.

В списке построителя формул дважды щелкните функцию СУММ.

В разделе Аргументы щелкните диапазон в поле число1, нажмите кнопку DELETE и выделите на листе ячейки с C2 по C7 (значения в столбце «Количество изделий»).

Теперь в строке формул должна содержаться следующая формула: =СУММПРОИЗВ(B2:B7;C2:C7)/СУММ(C2:C7).

Нажмите клавишу RETURN.

В этой формуле общая стоимость всех заказов делится на общее количество заказанных изделий, в результате чего получается средневзвешенная стоимость за единицу — 29,38297872.

Расчет среднего, исключающего определенные значения

Вы можете создать формулу, которая исключает определенные значения. В приведенном ниже примере создается формула для расчета среднего качества всех изделий, у которых оценка качества выше 5.

Выделите ячейку A10, расположенную слева от ячейки с текстом «Среднее качество всех изделий с оценкой качества выше 5».

На вкладке Формулы в разделе Функция выберите пункт Построитель формул.

В списке построителя формул дважды щелкните функцию СРЗНАЧЕСЛИ.

Совет: Чтобы быстро найти функцию, начните вводить ее имя в поле Поиск функции. Например, начните вводить СРЗНАЧЕСЛИ.

В разделе Аргументы щелкните поле рядом с надписью диапазон и выделите на листе ячейки с A2 по A7 (значения в столбце «Цена за единицу»).

В разделе Аргументы щелкните поле рядом с надписью условие и введите выражение «>5».

Нажмите клавишу RETURN.

Такая формула исключит значение в ячейке A7 из расчета. В результате будет получено среднее качество изделий, равное 8,8.

Совет: Чтобы использовать функцию СРЗНАЧЕСЛИ для расчета среднего без нулевых значений, введите выражение «<>0″ в поле условие.

Источник

Средние величины и показатели вариации

Понятие и виды средних величин

Существует 2 класса средних величин: степенные и структурные.

К структурным средним относятся мода и медиана, но наиболее часто применяются степенные средние различных видов.

Степенные средние величины

Степенные средние могут быть простыми и взвешенными.

Простая средняя величина рассчитывается при наличии двух и более несгруппированных статистических величин, расположенных в произвольном порядке по следующей общей формуле:

Как высчитать среднее значение

Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием следующей общей формулы:

Как высчитать среднее значение

Используя общие формулы простой и взвешенной средних при разных показателях степени m, получаем частные формулы каждого вида, которые будут далее подробно рассмотрены.

Средняя арифметическая

Как высчитать среднее значение

Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Рассчитаем средний балл по формуле средней арифметической простой: (3+4+4+5)/4 = 16/4 = 4.

Средняя арифметическая взвешенная имеет следующий вид:

Как высчитать среднее значение

Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Рассчитаем средний балл по формуле средней арифметической взвешенной: (3*1 + 4*2 + 5*1)/4 = 16/4 = 4.

Если значения X заданы в виде интервалов, то для расчетов используют середины интервалов X, которые определяются как полусумма верхней и нижней границ интервала. А если у интервала X отсутствует нижняя или верхняя граница (открытый интервал), то для ее нахождения применяют размах (разность между верхней и нижней границей) соседнего интервала X.

Средняя арифметическая применяется чаще всего, но бывают случаи, когда необходимо применение других видов средних величин. Рассмотрим такие случаи далее.

Средняя гармоническая

Средняя гармоническая применяется, когда исходные данные не содержат частот f по отдельным значениям X, а представлены как их произведение Xf. Обозначив Xf=w, выразим f=w/X, и, подставив эти обозначения в формулу средней арифметической взвешенной, получим формулу средней гармонической взвешенной:

Как высчитать среднее значение

Таким образом, средняя гармоническая взвешенная применяется тогда, когда неизвестны частоты f, а известно w=Xf. В тех случаях, когда все w=1, то есть индивидуальные значения X встречаются по 1 разу, применяется формула средней гармонической простой:

Как высчитать среднее значение

Средняя геометрическая

Средняя геометрическая применяется при определении средних относительных изменений, о чем сказано в теме Ряды динамики. Геометрическая средняя величина дает наиболее точный результат осреднения, если задача стоит в нахождении такого значения X, который был бы равноудален как от максимального, так и от минимального значения X.

Как высчитать среднее значение

Средняя квадратическая

Средняя квадратическая применяется в тех случая, когда исходные значения X могут быть как положительными, так и отрицательными, например при расчете средних отклонений.

Как высчитать среднее значение

Главной сферой применения квадратической средней является измерение вариации значений X, о чем пойдет речь позднее в этой лекции.

Средняя кубическая

Средняя кубическая применяется крайне редко, например, при расчете индексов нищеты населения для развивающихся стран (ИНН-1) и для развитых (ИНН-2), предложенных и рассчитываемых ООН.

Как высчитать среднее значение

Структурные средние величины

К наиболее часто используемым структурным средним относятся статистическая мода и статистическая медиана.

Статистическая мода

Если X задан дискретно, то мода определяется без вычисления как значение признака с наибольшей частотой. В статистической совокупности бывает 2 и более моды, тогда она считается бимодальной (если моды две) или мультимодальной (если мод более двух), и это свидетельствует о неоднородности совокупности.

Если X задан равными интервалами, то сначала определяется модальный интервал как интервал с наибольшей частотой f. Внутри этого интервала находят условное значение моды по формуле:

Как высчитать среднее значение

где Мо – мода;
ХНМо – нижняя граница модального интервала;
hМо – размах модального интервала (разность между его верхней и нижней границей);
fМо – частота модального интервала;
fМо-1 – частота интервала, предшествующего модальному;
fМо+1 – частота интервала, следующего за модальным.

Если размах интервалов h разный, то вместо частот f необходимо использовать плотности интервалов, рассчитываемые путем деления частот f на размах интервала h.

Статистическая медиана

Если X задан дискретно, то для определения медианы все значения нумеруются от 0 до N в порядке возрастания, тогда медиана при четном числе N будет лежать посередине между X c номерами 0,5N и (0,5N+1), а при нечетном числе N будет соответствовать значению X с номером 0,5(N+1).

Если X задан в виде равных интервалов, то сначала определяется медианный интервал (интервал, в котором заканчивается одна половина частот f и начинается другая половина), в котором находят условное значение медианы по формуле:

Как высчитать среднее значение

где Ме – медиана;
ХНМе – нижняя граница медианного интервала;
hМе – размах медианного интервала (разность между его верхней и нижней границей);
fМе – частота медианного интервала;
Как высчитать среднее значениеfМе-1 – сумма частот интервалов, предшествующих медианному.

Также как и в случае с модой, при определении медианы если размах интервалов h разный, то вместо частот f необходимо использовать плотности интервалов, рассчитываемые путем деления частот f на размах интервала h.

Показатели вариации

Размах вариации

Размах вариации – это разность между максимальным и минимальным значениями X из имеющихся в изучаемой статистической совокупности:

Как высчитать среднее значение

Недостатком показателя H является то, что он показывает только максимальное различие значений X и не может измерять силу вариации во всей совокупности.

Cреднее линейное отклонение

Как высчитать среднее значение

Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Ранее уже была рассчитана средняя арифметическая = 4. Рассчитаем среднее линейное отклонение простое: Л = (|3-4|+|4-4|+|4-4|+|5-4|)/4 = 0,5.

Как высчитать среднее значение

Вернемся к примеру про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Ранее уже была рассчитана средняя арифметическая = 4 и среднее линейное отклонение простое = 0,5. Рассчитаем среднее линейное отклонение взвешенное: Л = (|3-4|*1+|4-4|*2+|5-4|*1)/4 = 0,5.

Линейный коэффициент вариации

Как высчитать среднее значение

С помощью линейного коэффициента вариации можно сравнивать вариацию разных совокупностей, потому что в отличие от среднего линейного отклонения его значение не зависит от единиц измерения X.

В рассматриваемом примере про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5, линейный коэффициент вариации составит 0,5/4 = 0,125 или 12,5%.

Дисперсия

Как высчитать среднее значение

В уже знакомом нам примере про студента, который сдал 4 экзамена и получил оценки: 3, 4, 4 и 5, ранее уже была рассчитана средняя арифметическая = 4. Тогда дисперсия простая Д = ((3-4) 2 +(4-4) 2 +(4-4) 2 +(5-4) 2 )/4 = 0,5.

Как высчитать среднее значение

В рассматриваемом примере про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5, рассчитаем дисперсию взвешенную: Д = ((3-4) 2 *1+(4-4) 2 *2+(5-4) 2 *1)/4 = 0,5.

Если преобразовать формулу дисперсии (раскрыть скобки в числителе, почленно разделить на знаменатель и привести подобные), то можно получить еще одну формулу для ее расчета как разность средней квадратов и квадрата средней:

Как высчитать среднее значение

В уже знакомом нам примере про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5, рассчитаем дисперсию методом разности средней квадратов и квадрата средней:
Д = (3 2 *1+4 2 *2+5 2 *1)/4-4 2 = 16,5-16 = 0,5.

Как высчитать среднее значение.

Cреднее квадратическое отклонение

Выше уже было рассказано о формуле средней квадратической, которая применяется для оценки вариации путем расчета среднего квадратического отклонения, обозначаемое малой греческой буквой сигма:

Как высчитать среднее значение

Еще проще можно найти среднее квадратическое отклонение, если предварительно рассчитана дисперсия, как корень квадратный из нее:

Как высчитать среднее значение

В примере про студента, в котором выше рассчитали дисперсию, найдем среднее квадратическое отклонение как корень квадратный из нее: Как высчитать среднее значение.

Квадратический коэффициент вариации

Как высчитать среднее значение

В примере про студента, в котором выше рассчитали среднее квадратическое отклонение, найдем квадратический коэффициент вариации V = 0,707/4 = 0,177, что меньше критериального значения 0,333, значит вариация слабая и равна 17,7%.

Источник

Среднее арифметическое нескольких чисел

Среднее арифметическое множества чисел — число, равное сумме всех чисел множества, делённой на их количество.

Для трёх чисел необходимо сложить их и разделить на 3:

Как высчитать среднее значение

Для четырёх чисел необходимо сложить их и разделить на 4:

Как высчитать среднее значение

Данный онлайн калькулятор поможет вычислить среднее арифметическое ряда чисел.

Вводите каждое новое число в отдельную ячейку. Для добавления ячейки нажмите на кнопку со знаком «+».

Онлайн калькуляторы
Актуальная информация

Помимо онлайн калькуляторов, сайт также предоставляет актуальную информацию по курсам валют и криптовалют, заторах на дорогах, праздниках и значимых событиях, случившихся в этот день. Информация из официальных источников, постоянное обновление.

Источник

8.3. Средние величины в статистике

Как высчитать среднее значение

Наиболее распространенной формой статистических показателей, используемой в экономических исследованиях, являются средние показатели (средняя величина).

Средняя величина – представляет обобщенную количественную характеристику признака в статистической совокупности в конкретных условиях места и времени.

Показатель в форме средней величины выражает типичные черты и дает обобщающую характеристику однотипных явлений по одному из варьирующих признаков. Он отражает уровень этого признака, отнесенный к единице совокупности.

Важнейшее свойство средней величины заключается в том, что она отражает то общее, что присуще всем единицам исследуемой совокупности.

Значения признака отдельных единиц совокупности колеблются в ту или иную сторону под влиянием множества факторов, среди которых могут быть как основные, так и случайные.

Сущность средней заключается, в том, что в ней взаимопогашаются отклонения значений признака отдельных единиц совокупности, обусловленные действием случайных факторов, и учитываются изменения, вызванные действием факторов основных. Это позволяет средней отражать типичный уровень признака и абстрагироваться от индивидуальных особенно­стей, присущих отдельным единицам.

ВИДЫ СРЕДНИХ ВЕЛИЧИН наиболее часто применяемых на практике:

Выбор средней величины зависит от содержания осредняемого признака и конкретных данных, по которым ее приходится вычислять.

ФОРМУЛЫ СРЕДНИХ ВЕЛИЧИН

Как высчитать среднее значение

Как высчитать среднее значение

Таблица 8.2 – Результаты опроса работников офиса

Источник

Как определить подходящую меру центральной тенденции?

Как высчитать среднее значение

Мера центральной тенденции (measure of central tendency) представляет из себя статистическую величину, которая характеризует целый набор данных одним единственным числом. Ее также называют мерой центрального расположения (measure of central location). Она описывает, как выглядит приблизительный центр набора данных.

Но сам по себе термин “центр” может подразумевать немного разные значения в зависимости от конкретной ситуации. Вы можете считать “центром” среднее арифметическое. Вы также можете назвать “центром” данные, которые просто находятся в середине вашей выборки. А еще вы можете рассматривать в качестве “центра” данные, которые повторяются чаще всего. Все эти центры по-своему характеризуют ваши данные.

Поскольку человеческое понимание “центра” может разниться, статистика позаботилась определить каждый вариант. Таким образом мы имеем следующие общепринятые меры центральной тенденции:

В этой статье я расскажу, каким образом распределение вашего набора данных играет роль в выборе подходящей меры центральной тенденции. А объяснять я буду это на примере реальных наборов данных.

1. Среднее арифметическое

Среднее арифметическое — это среднее значение всех элементов в наборе данных. Оно рассчитывается как сумма всех значений, деленная на общее количество значений.

Среднее арифметическое = сумма всех значений / общее количество значений

Когда следует использовать среднее арифметическое?

Среднее арифметическое лучше всего использовать для описания данных, которые имеют нормальное распределение. Нормальное распределение — это когда построив график по “значениям” и их “частоте” (количеству появлений каждого значения в наборе данных), вы получаете кривую, по форме напоминающую колокол. Центр этой кривой совпадает со средним арифметическим.

Пример — набор данных с длинами крыльев комнатной мухи

В качестве примера я буду использовать реальный набор данных — это набор данных с длинами крыльев комнатной мухи, который естественным образом имеет нормальное распределение.

Источник набора данных: [Sokal, R.R. and F.J. Rohlf, 1968. Biometry, Freeman Publishing Co., p 109. Original data from Sokal, R.R. and P.E. Hunter. 1955. A morphometric analysis of DDT-resistant and non-resistant housefly strains Ann. Entomol. Soc. Amer. 48: 499-507.]

Набор данных содержит длины крыльев комнатной мухи в миллиметрах. В нем 100 элементов.

Как высчитать среднее значениеЧасть набора данных с длинами крыльев комнатной мухи

Я построил гистограмму (по “значениям” и “количествам повторений этих значений”) этих данных, которую вы можете наблюдать ниже. Если мы проведем по внешним краям столбцов плавную линию, то она образует колоколообразную кривую. Вычислив среднее арифметическое значение этих данных, мы получим 45,5. А теперь давайте поищем на приведенном ниже графике полученное значение 45,5. Он находится прямо по середине.

Колоколообразная кривая со средним значением в центре дает нам четкое понимание, что этот набор данных имеет нормальное распределение.

Как высчитать среднее значениеДлина крыла комнатной мухи – гистограмма

Это хороший пример, наглядно демонстрирующий, что для нормально распределенных данных имеет смысл использовать “среднее арифметическое” как меру центральной тенденции.

Когда НЕ стоит использовать среднее арифметическое?

Хотя среднее арифметическое является одной из основных мер центральной тенденции, иногда (на самом деле очень часто) оно наоборот может ввести вас в заблуждение. Данные из реального мира не всегда имеют нормальное распределение. В подавляющем большинстве случаев есть вероятность, что ваши данные ассиметричны.

Ассиметричные данные — это данные, в которых несколько элементов у верхнего или нижнего пределов имеют заметно отличающийся паттерн по сравнению с остальной частью набора данных.

Пример — набор данных с зарплатами игроков NBA

Давайте посмотрим на набор данных с зарплатами игроков NBA. Этот набор данных содержит зарплаты в долларах США за период с 2017 по 2018 годы.

Как высчитать среднее значениеЧасть набора данных с зарплатами игроков NBA

Я построил гистограмму столбца c зарплатой (название столбца “season17_18”).

Как высчитать среднее значениеЗарплата игрока NBA – гистограмма

Глядя на приведенное выше распределение, становится очевидным, что данные распределены не нормально. Из 573 игроков более 300 получают зарплату ниже 2,5 миллионов долларов (из графика выше). Но когда мы вычисляем среднее арифметическое заработной платы, оно составляет 5,85 миллиона долларов.

Как вы считаете, годится ли среднее арифметическое в качестве лучшего представления этих данных в целом?

Уж точно нет. Те немногие игроки, которые получали огромные зарплаты, утащили среднее арифметическое далеко от центра. Это называется асимметрией данных.

Не имеет смысла и говорить о том, что среднее арифметическое, ​​которое составляет 5,85 миллиона, является центром, потому что абсолютное большинство из игроков получили зарплату менее 2,5 миллиона долларов.

Таким образом, в случае подобных асимметрий наборов данных среднее арифметическое хорошим выбором для представления данных не является. Здесь нам может помочь медиана.

2. Медиана

Медиана — это значение, которое находится в центре (прямо посередине), если данные расположены в порядке возрастания или убывания.

Если общее количество значений в наборе данных нечетное, то в центральной позиции будет только одно число. Это и будет наша медиана. Если общее количество значений в наборе данных четное, в центральной позиции будет два значения. В этом случае медиана представляет собой среднее значение этих двух значений.

Когда следует использовать медиану?

Если набор данных асимметричен или содержит выбросы, среднее арифметическое — не лучший способ представления данных. В таком случае как меру центральной тенденции можно использовать медиану. Выбросы не портят медиану. Потому что само название “выбросы” означает, что они располагаются снаружи, либо в нижнем, либо в верхнем диапазоне. В таком случае медиана — это среднее значение, не нарушенное выбросами.

Еще раз давайте рассмотрим ассиметричный набор данных с зарплатами игроков NBA. (Который мы рассматривали в предыдущем разделе “Когда НЕ стоит использовать среднее арифметическое?”). Медиана по зарплате составляет 2,38 миллиона долларов.

Как высчитать среднее значениеДиаграмма зарплаты игроков NBA, демонстрирующая среднее арифметическое и медиану

Это значение находится в первой столбце. Обратите внимание, что ось X это 10^7. Итак, первый столбик представляет зарплату до 2,5 миллионов. Таким образом, медианное значение 2,38 миллиона лучше всего представляет эти данные, потому что большинство игроков получают зарплату, близкую к этому показателю.

Когда НЕ стоит использовать медиану?

Если и среднее арифметическое, и медиана одного и того же набора данных не сильно отклоняются, то можно использовать обе эти меры. В любом случае расчет среднего арифметического предполагает учет всех элементов данных и их усреднение. Таким образом, логичнее, что среднее арифметическое является более точной мерой (когда среднее арифметическое и медиана не сильно отклоняются).

Как определить, является ли ваш набор данных асимметричным или содержит выбросы?

Самый банальный способ определить, является ли ваш набор данных асимметричным или содержит выбросы, — это вычислить среднее арифметическое и медиану. Если обе меры не сильно отклоняются, то с вашим набором данных все в порядке. И вы сэкономили время, которое в противном случае было бы потрачено на очистку и преобразование данных.

Если среднее арифметическое и медиана очень сильно отклоняются, ваш набор данных асимметричен или содержит выбросы. Следующий шаг — провести исследование с целью выявить и удалить выбросы, если таковые имеются. Или применить какое-либо преобразование, чтобы уменьшить асимметрию в ваших данных, если таковая имеется.

3. Мода

Мода — это значение, которое чаще всего встречается в наборе данных. В гистограмме мода — это значение с самым высоким столбцом.

Если набор данных имеет более одного значения с одинаковой максимальной частотой появления, набор данных имеет мультимодальное распределение, поскольку он имеет несколько мод. Если в наборе данных нет повторяющихся значений, то и моды у него тоже нет.

Когда стоит использовать моду?

Моду можно использовать для анализа часто встречающихся значений как числовых, так и категориальных данных.

Пример — Простое перечисление

Ниже приведен учебный набор данных, отражающий любимый вид искусства семерых человек. Построим частотный график (гистограмму).

data_art = [‘music’, ‘painting’, ‘pottery’, ‘painting’, ‘dance’, ‘music’, ‘music’]

Как высчитать среднее значениеГистограмма любимого вида искусства — пример моды

Во многих областях машинного обучения возникают функции многих переменных и их производные. Такие производные ещё называют «матричными». На открытом уроке мы поговорим про отличие таких производных от обычных, изучаемых в школе, разберём необходимую теорию, научимся такие производные считать, а также посмотрим, где и как матричные производные используются. Регистрация открыта по ссылке для всех желающих.

Источник

Как вычислить среднее арифметическое взвешенное

Среднее арифметическое — это статистический показатель, иллюстрирующий среднее значение набора данных, который рассчитывается как сумма всех значений, деленная на их количество. Это важный коэффициент, получивший широкое распространение в прикладных науках.

Что такое среднее арифметическое

Суть данного показателя проще всего продемонстрировать на примере. Торговец продает на рынке яблоки. В понедельник ему удалось продать 54 кг, во вторник — 47 кг, а в среду — 61 кг. Торговец хочет спланировать свои продажи и ему интересно, сколько килограмм фруктов он продает в среднем за день. Вот здесь на сцену и выходит среднее арифметическое. Для его определения необходимо суммировать значения показателей и разделить на их количество.

Среднее = (54 + 47 + 61) / 3 = 54 кг

Торговец выяснил, что в среднем он продает 54 кг яблок в день и может грамотно спрогнозировать свои затраты на покупку товара. Так как килограмм яблок стоит 10 рублей, то в день наш коммерсант зарабатывает в среднем 540 рублей.

Среднее арифметическое широко используется в статистике в случаях, если рассматривается набор однородных данных. В нашем случае это были только яблоки. Однако если торговец расширит свой ассортимент и добавит на прилавки еще и апельсины? Как изменится средняя стоимость одной единицы товара?

Пусть в понедельник торговец реализовал 23 кг апельсинов, во вторник — 28 кг, а в среду — 21 кг. Средний уровень продаж апельсинов составит:

Среднее = (28 + 21 + 23) / 3 = 24 кг.

Так как цена одного килограмма цитрусов составляет 20 рублей, то средний доход от продажи апельсинов составит 480 рублей в день.

Теперь решим простую на первый взгляд задачу. Какова средняя стоимость реализации одного килограмма любого товара? Неискушенный аналитик решит эту задачу как:

Среднее = (20 + 10) / 2 = 15 рублей,

за килограмм апельсинов или яблок. Однако не все так просто. В случае с разнородными данными важно учитывать их вес.

Среднее арифметическое взвешенное

Данный показатель используется при расчете среднего арифметического для разных данных, каждое из которых имеет свой вес. Для определения взвешенного параметра необходимо каждое значение умножить на свой вес, суммировать эти произведения, после чего разделить на сумму весов.

В данном случае у нас есть средний вес каждого вида фруктов и его необходимо учесть для определения средней цены одного килограмма товара. На практике это выглядит так:

Среднее взвешенное = (20 × 24 + 10 × 54) / (24 + 54) = 13,07.

Естественно, 13,07 не сильно отличается от 15, однако чем больше слагаемых и больший разброс весов, тем сильнее отличается среднее взвешенное от простого среднего арифметического. Также очевидно, что если все веса равны единице, то среднее взвешенное становится равным среднему арифметическому.

Что выбрать?

Если требуется найти среднее значение одного элемента из однородного набора, то достаточно отыскать среднее арифметическое. Именно это мы делали при поиске среднего уровня продажи яблок или апельсинов за день. Если требуется найти среднее между разными элементами, принадлежащими к разным группам или отыскать среднее средних, то для расчета используется среднее арифметическое взвешенное.

Наша программа представляет собой калькулятор для расчета среднего арифметического и его взвешенного варианта. В меню калькулятора вы можете выбрать тип искомого параметра. Для расчета среднего арифметического вам понадобится ввести только значения параметров. В случае необходимости вы можете добавить дополнительные ячейки.

Для расчета взвешенного среднего выберите соответствующий пункт в меню калькулятора, укажите значения и их вес. Рассмотрим на примерах, как рассчитывать взвешенное значение.

Примеры из реальной жизни

Подсчет средней зарплаты

Пусть на вашем предприятии числятся сотрудники, каждый из которых получает зарплату в соответчики с должностью. Для рекламного проспекта о поиске персонала вы хотите уточнить, на какую среднюю зарплату может рассчитывать соискатель. Вы знаете, что:

Для вычисления средней зарплаты на предприятии вам потребуется ввести в ячейки значений размер зарплаты, а в ячейки весов — количество сотрудников, которые ее получают. Калькулятор мгновенно выдаст вам результат, что средняя зарплата равна 19 540 рублей. Без учета веса значений среднее арифметическое было бы равно 22 666 рублей, что уже значительно отличается от взвешенного значения.

Средняя скорость автомобиля

Допустим, водитель ехал по городскому проспекту со скоростью 60 км/ч в течение одного часа. Затем он выехал на автомагистраль, увеличил скорость до 120 км/ч и ехал так три часа, после чего свернул на проселочную дорогу и со скоростью 40 км/ч ехал еще два часа. С какой средней скоростью ехал водитель? В этой задаче в качестве веса выступает время езды, а значений — скорость. Выглядит это так:

Введем эти данные в форму калькулятора и получим ответ: средняя скорость автомобиля составляет 83,3 км/ч. Без учета времени средняя скорость была бы равна 73,3 км/ч, что неверно.

Заключение

Расчет среднего арифметического взвешенного широко используется в прикладных науках. Этот параметр популярен не только в статистике, но и в физике, экономике или финансах. Используйте наши калькуляторы в качестве помощника для решения практических и теоретических задач.

Источник

Расчет среднего значения в программе Microsoft Excel

Как высчитать среднее значение

В процессе различных расчетов и работы с данными довольно часто требуется подсчитать их среднее значение. Оно рассчитывается путем сложения чисел и деления общей суммы на их количество. Давайте выясним, как вычислить среднее значение набора чисел при помощи программы Microsoft Excel различными способами.

Стандартный способ вычисления

Самый простой и известный способ найти среднее арифметическое набора чисел — это воспользоваться специальной кнопкой на ленте Microsoft Excel. Выделяем диапазон чисел, расположенных в столбце или в строке документа. Находясь во вкладке «Главная», жмем на кнопку «Автосумма», которая расположена на ленте в блоке инструментов «Редактирование». Из выпадающее списка выбираем пункт «Среднее».

Как высчитать среднее значение

После этого, с помощью функции «СРЗНАЧ», производится расчет. В ячейку под выделенным столбцом, или справа от выделенной строки, выводится средняя арифметическая данного набора чисел.

Как высчитать среднее значение

Этот способ хорош простотой и удобством. Но, у него имеются и существенные недостатки. С помощью этого способа можно произвести подсчет среднего значения только тех чисел, которые располагаются в ряд в одном столбце, или в одной строке. А вот, с массивом ячеек, или с разрозненными ячейками на листе, с помощью этого способа работать нельзя.

Например, если выделить два столбца, и вышеописанным способом вычислить среднее арифметическое, то ответ будет дан для каждого столбца в отдельности, а не для всего массива ячеек.

Как высчитать среднее значение

Вычисление с помощью Мастера функций

Для случаев, когда нужно подсчитать среднюю арифметическую массива ячеек, или разрозненных ячеек, можно использовать Мастер функций. Он применяет все ту же функцию «СРЗНАЧ», известную нам по первому методу вычисления, но делает это несколько другим способом.

Кликаем по ячейке, где хотим, чтобы выводился результат подсчета среднего значения. Жмем на кнопку «Вставить функцию», которая размещена слева от строки формул. Либо же, набираем на клавиатуре комбинацию Shift+F3.

Как высчитать среднее значение

Запускается Мастер функций. В списке представленных функций ищем «СРЗНАЧ». Выделяем его, и жмем на кнопку «OK».

Как высчитать среднее значение

Открывается окно аргументов данной функции. В поля «Число» вводятся аргументы функции. Это могут быть как обычные числа, так и адреса ячеек, где эти числа расположены. Если вам неудобно вводить адреса ячеек вручную, то следует нажать на кнопку расположенную справа от поля ввода данных.

Как высчитать среднее значение

Как высчитать среднее значение

После этого, окно аргументов функции свернется, а вы сможете выделить ту группу ячеек на листе, которую берете для расчета. Затем, опять нажимаете на кнопку слева от поля ввода данных, чтобы вернуться в окно аргументов функции.

Как высчитать среднее значение

Если вы хотите подсчитать среднее арифметическое между числами, находящимися в разрозненных группах ячеек, то те же самые действия, о которых говорилось выше, проделывайте в поле «Число 2». И так до тех пор, пока все нужные группы ячеек не будут выделены.

Как высчитать среднее значение

После этого, жмите на кнопку «OK».

Как высчитать среднее значение

Результат расчета среднего арифметического будет выделен в ту ячейку, которую вы выделили перед запуском Мастера функций.

Как высчитать среднее значение

Панель формул

Существует ещё третий способ запустить функцию «СРЗНАЧ». Для этого, переходим во вкладку «Формулы». Выделяем ячейку, в которой будет выводиться результат. После этого, в группе инструментов «Библиотека функций» на ленте жмем на кнопку «Другие функции». Появляется список, в котором нужно последовательно перейти по пунктам «Статистические» и «СРЗНАЧ».

Как высчитать среднее значение

Затем, запускается точно такое же окно аргументов функции, как и при использовании Мастера функций, работу в котором мы подробно описали выше.

Как высчитать среднее значение

Дальнейшие действия точно такие же.

Ручной ввод функции

Но, не забывайте, что всегда при желании можно ввести функцию «СРЗНАЧ» вручную. Она будет иметь следующий шаблон: «=СРЗНАЧ(адрес_диапазона_ячеек(число); адрес_диапазона_ячеек(число)).

Как высчитать среднее значение

Конечно, этот способ не такой удобный, как предыдущие, и требует держать в голове пользователя определенные формулы, но он более гибкий.

Расчет среднего значения по условию

Кроме обычного расчета среднего значения, имеется возможность подсчета среднего значения по условию. В этом случае, в расчет будут браться только те числа из выбранного диапазона, которые соответствуют определенному условию. Например, если эти числа больше или меньше конкретно установленного значения.

Для этих целей, используется функция «СРЗНАЧЕСЛИ». Как и функцию «СРЗНАЧ», запустить её можно через Мастер функций, из панели формул, или при помощи ручного ввода в ячейку. После того, как открылось окно аргументов функции, нужно ввести её параметры. В поле «Диапазон» вводим диапазон ячеек, значения которых будут участвовать в определении среднего арифметического числа. Делаем это тем же способом, как и с функцией «СРЗНАЧ».

А вот, в поле «Условие» мы должны указать конкретное значение, числа больше или меньше которого будут участвовать в расчете. Это можно сделать при помощи знаков сравнения. Например, мы взяли выражение «>=15000». То есть, для расчета будут браться только ячейки диапазона, в которых находятся числа большие или равные 15000. При необходимости, вместо конкретного числа, тут можно указать адрес ячейки, в которой расположено соответствующее число.

Поле «Диапазон усреднения» не обязательно для заполнения. Ввод в него данных является обязательным только при использовании ячеек с текстовым содержимым.

Когда все данные введены, жмем на кнопку «OK».

Как высчитать среднее значение

После этого, в предварительно выбранную ячейку выводится результат расчета среднего арифметического числа для выбранного диапазона, за исключением ячеек, данные которых не отвечают условиям.

Как высчитать среднее значение

Как видим, в программе Microsoft Excel существует целый ряд инструментов, с помощью которых можно рассчитать среднее значение выбранного ряда чисел. Более того, существует функция, которая автоматически отбирает числа из диапазона, не соответствующие заранее установленному пользователем критерию. Это делает вычисления в приложении Microsoft Excel ещё более удобными для пользователей.

Источник

Вычисление среднего значения ряда чисел

Предположим, вам нужно найти среднее количество дней для выполнения задач разными сотрудниками. Или вы хотите вычислить среднюю температуру для определенного дня на основе 10-летнего промежутка времени. Существует несколько способов расчета среднего для группы чисел.

Функция СРЗНАЧ вычисляет среднее значение, то есть центр набора чисел в статистическом распределении. Существует три наиболее распространенных способа определения среднего значения:

Среднее значение Это арифметическое и вычисляется путем с добавления группы чисел и деления на их количество. Например, средним значением для чисел 2, 3, 3, 5, 7 и 10 будет 5, которое является результатом деления их суммы, равной 30, на их количество, равное 6.

Медиана Среднее число числа. Половина чисел имеют значения больше медианой, а половина чисел имеют значения меньше медианой. Например, медианой для чисел 2, 3, 3, 5, 7 и 10 будет 4.

Мода Наиболее часто встречается число в группе чисел. Например, модой для чисел 2, 3, 3, 5, 7 и 10 будет 3.

При симметричном распределении множества чисел все три значения центральной тенденции будут совпадать. В акосимном распределении группы чисел они могут быть другими.

Выполните действия, описанные ниже.

Щелкните ячейку снизу или справа от чисел, для которых необходимо найти среднее.

На вкладке «Главная» в группе «Редактирование» щелкните стрелку рядом с кнопкой » Как высчитать среднее значение«, выберите «Среднее» и нажмите клавишу ВВОД.

Для этого используйте функцию С AVERAGE. Скопируйте приведенную ниже таблицу на пустой лист.

Среднее значение всех чисел в списке выше (9,5).

Среднее значение 3-го и последнего числа в списке (7,5).

Среднее значение чисел в списке за исключением тех, которые содержат нулевые значения, например ячейка A6 (11,4).

Для этой задачи используются функции СУММПРОИВ И СУММ. В этом примере вычисляется средняя цена за единицу для трех покупок, при которой каждая покупка приобретает различное количество единиц по разной цене.

Скопируйте приведенную ниже таблицу на пустой лист.

Источник

Правильное среднее

Существует много видов средних, но в каждой ситуации только одно из них правильное. Только один вид среднего следует использовать в каждом конкретном случае, и ошибка может вам стоить очень дорого.

Дело в том, что в основе такого усреднения лежит закон больших чисел и допущение, что исходная величина распределена нормально. А это подразумевает, что возможные значения сконцентрированы вокруг некоторого наиболее частого значения, а отклонения и в большую, и в меньшую сторону относительно невелики и равновероятны.
Как высчитать среднее значение

В следующих записях я приведу интересные примеры неправильного усреднения, а сейчас перейдем к другим видам среднего.

Сначала, наверное, может показаться, что правильное значение 65 км/ч, потому что (50+80)/2 = 65.
Однако быстро становится понятно, что если бы другой автомобиль двигался со средней скоростью, то он провел бы в пути столько же времени, что и первый. Именно в этом смысл усреднения в данном случае.

И вот тут на помощь приходит среднее гармоническое:
Как высчитать среднее значение
Для нашей задачи искомое среднее равно 2/(1/50+1/80)=61.54 км/ч. И действительно в первом случае автомобиль затратил 2 часа на преодоление 100 км со скоростью 50 км/ч и еще 1.25 часа ему потребовалось на следующие 100 км, потому что скорость возросла до 80 км/ч. Таким образом, всего ушло 3.25 часа.
Если бы автомобиль все 200 км двигался со скоростью 61.54 км/ч, то у него также ушло бы на дорогу 3.25 часа.

Можно предположить, что есть несколько вариантов усреднения. Во-первых, среднее арифметическое: (12+42)/2 = 27%. Во-вторых, сложный процент: 1.12*1.42=1.5904, т.е. 59.04% за 2 года или 28.02% за год.

Но «в среднем» означает, что применив это значение к каждому году, мы получим тот же самый результат, что и при использовании множества исходных значений.

Проверяем. Среднее арифметическое: 1.27*1.27=1.6129 (на 61.29%). Сложный процент: 1.2802*1.2802=1.6389 (на 63.89%). Результаты мало того, что разные, так и оба неправильные, потому что выручка за 2 года выросла на 59.04%.

Среднее геометрическое часто встречается в реальных бизнес-задачах вместе с процентами и долями. Если в вашей задаче что-то растет или падает и вы хотите усреднить динамику показателя, то вам следует применять среднее геометрическое.

Вместо заключения
Повторю главные моменты:
— среднее арифметическое далеко не всегда соответствует смыслу и физической сущности усредняемого показателя;
— существует много видов средних значений, но в каждом конкретном случае есть только один правильный вид среднего, и именно его следует использовать в расчетах.

Источник

Как посчитать среднее значение в Excel

Подсчет среднего арифметического

Формула для вычислений предельно проста:

P = (a1 + a2 + … an) / n,

где an – значение величины, n – общее количество значений.

Для чего может использоваться данный показатель? Первое и очевидное его применение — это статистика. Практически в каждом статистическом исследовании используется показатель среднего арифметического. Это может быть средний возраст вступления в брак в России, средняя оценка по предмету у школьника или средние траты на продукты в день. Как уже говорилось выше, без учета весов подсчет средних значений может давать странные или абсурдные значения.

К примеру, президент Российской Федерации сделал заявление, что по статистике, средняя зарплата россиянина составляет 27 000 рублей. Для большинства жителей России такой уровень зарплаты показался абсурдным. Не мудрено, если при расчете учитывать размер доходов олигархов, руководителей промышленных предприятий, крупных банкиров с одной стороны и зарплаты учителей, уборщиков и продавцов с другой. Даже средние зарплаты по одной специальности, например, бухгалтера, будут иметь серьезные отличия в Москве, Костроме и Екатеринбурге.

Как считать средние для разнородных данных

В ситуациях с подсчетом заработной платы важно учитывать вес каждого значения. Это означает, что зарплаты олигархов и банкиров получили бы вес, например, 0,00001, а зарплаты продавцов — 0,12. Это цифры с потолка, но они приблизительно иллюстрируют распространенность олигархов и продавцов в российском обществе.

Таким образом, для подсчета среднего средних или среднего значения в разнородном массиве данных, требуется использовать среднее арифметическое взвешенное. Иначе вы получите среднюю зарплату по России на уровне 27 000 рублей. Если же вы хотите узнать свою среднюю оценку по математике или среднее количество забитых шайб выбранного хоккеиста, то вам подойдет калькулятор среднего арифметического.

Если в массиве есть числа в текстовом формате

В случае, если число введено в ячейку с текстовым форматом (см. ячейку А6 ), то это значение воспринимается функцией СРЗНАЧ() как текст и игнорируется. Поэтому, не смотря на то, что в диапазоне A 5: A 15 11 значений, для функции СРЗНАЧ() их всего 10, т.е. n в этом случае =10. Среднее будет равно 20,4 (см. файл примера ).

Примечание : о вычислении средневзвешенного значения см. статью Средневзвешенная цена в MS EXCEL

Способ стандартный

Первостепенно разберем способ, как посчитать среднее арифметическое в Excel, который подразумевает использование стандартного инструмента для этого. Метод является наиболее простым и удобным для использования, однако у него существуют и некоторые недостатки. Но о них позже, а сейчас перейдем к выполнению поставленной задачи.

Как высчитать среднее значение

Как только вы это сделаете, в ячейке рядом появится результат расчета среднего арифметического выделенных значений. Его расположение будет зависеть от блока данных, если вы выделили строку, то находиться результат будет справа от выделения, если столбец, снизу.

Но как было сказано ранее, у данного метода есть и недостатки. Так, у вас не получится рассчитать значение из диапазона ячеек, или же ячеек, расположенных в разных местах. Например, если в вашей таблице смежно находятся два столбца с числовыми значениями, то, выделив их и произведя вышеописанные действия, вы получите результат для каждого столбца в отдельности.

Способ с помощью Мастера функций

Способов, позволяющих найти среднее арифметическое в Excel, существует много, и естественно, что с их помощью есть возможность обойти ограничения, предполагающие предыдущий способ. Сейчас будет рассказано о произведении вычислений путем использования Мастера функций. Итак, вот что вам необходимо сделать.

Как высчитать среднее значение

По завершении ввода окно Мастера закроется, а в ячейке, которую вы выделяли в самом начале, появится результат вычислений. Теперь вы знаете второй способ, как рассчитать среднее арифметическое в Excel. Но далеко не последний, поэтому двигаемся дальше.

Основная идея

Предположим, что мы с вами сидим в приемно-экзаменационной комиссии и оцениваем абитуриентов, которые хотят поступить в наш ВУЗ. Оценки по различным предметам у наших кандидатов следующие:

Как высчитать среднее значение

Свободное место, допустим, только одно, и наша задача – выбрать достойного.

Первое, что обычно приходит в голову – это рассчитать классический средний балл с помощью стандартной функции Excel СРЗНАЧ

На первый взгляд кажется, что лучше всех подходит Иван, т.к. у него средний бал максимальный. Но тут мы вовремя вспоминаем, что факультет-то наш называется “Программирование”, а у Ивана хорошие оценки только по рисованию, пению и прочей физкультуре, а по математике и информатике как раз не очень. Возникает вопрос: а как присвоить нашим предметам различную важность (ценность), чтобы учитывать ее при расчете среднего? И вот тут на помощь приходит средневзвешенное значение.

Средневзвешенное – это среднее с учетом различной ценности (веса, важности) каждого из элементов.

В бизнесе средневзвешенное часто используется в таких задачах, как:

Расчет средневзвешенного формулами

Добавим к нашей таблице еще один столбец, где укажем некие безразмерные баллы важности каждого предмета по шкале, например, от 0 до 9 при поступлении на наш факультет программирования. Затем расчитаем средневзвешенный бал для каждого абитурента, т.е. среднее с учетом веса каждого предмета. Нужная нам формула будет выглядеть так:

Как высчитать среднее значение

Функция СУММПРОИЗВ (SUMPRODUCT) попарно перемножает друг на друга ячейки в двух указанных диапазонах – оценки абитурента и вес каждого предмета – а затем суммирует все полученные произведения. Потом полученная сумма делится на сумму всех баллов важности, чтобы усреднить результат. Вот и вся премудрость.

Как найти среднее значение в Excel?

Итак, как обычно рассчитывается среднее арифметическое? Для этого нужно сложить все числа и разделить на их общее количество. Для решения очень простых задач этого достаточно, но во всех остальных случаях такой вариант не подойдет. Дело в том, что в реальной ситуации числа всегда меняются, количество этих чисел тоже. К примеру, у пользователя есть таблица, где указаны оценки студентов. И нужно найти средний балл каждого студента. Понятно, что у каждого из них будут разные оценки, а количество предметов на разных специальностях и на разных курсах тоже будет разным. Было бы очень глупо (и нерационально) все это отслеживать и считать вручную. Да и делать это не понадобится, поскольку в Excel есть специальная функция, которая поможет найти среднее значение любых чисел. Даже если они будут изменяться время от времени, программа будет автоматически пересчитывать новые значения.

Можно предположить, что у пользователя есть уже созданная таблица с двумя колонками: первый столбец — название предмета, а второй — оценка по этому предмету. И необходимо найти средний балл. Для этого надо с помощью мастера функций прописать формулу для расчета среднего арифметического. Делается это достаточно просто:

Если теперь, например, изменить какое-то значение по одному из предметов (или вовсе его удалить и оставить поле пустым), то Эксель сразу же пересчитает формулу и выдаст новый результат.

Альтернативные способы расчета среднего значения

Еще один способ найти среднее значение в Excel — с помощью строки формул.

Как высчитать среднее значение

Пример использования функции СРЗНАЧ для расчета среднего значения диапазона ячеек

Также можно прописывать любые формулы и вручную. Для этого нужно в любой выбранной ячейке поставить знак «=», прописать вручную формулу (СРЗНАЧ), открыть скобку, выбрать нужный диапазон ячеек и закрыть скобку. Результат тут же будет отображен.

Вот таким простым способом рассчитывается среднее значение в Microsoft Excel. Аналогичным образом можно считать и среднее арифметическое только для нужных полей, а не для всего диапазона ячеек. Для этого во время выбора диапазона ячеек потребуется лишь зажать клавишу «Ctrl» и поочередно щелкать по каждому нужному полю.

Что возвращает функция

Возвращает число, соответствующее среднему арифметическому от заданного диапазона данных.

Синтаксис

=AVERAGE(number1, [number2], …) – английская версия

=СРЗНАЧ(число1;[число2];…) – русская версия

Стандартный способ вычисления

Самый простой и известный способ найти среднее арифметическое набора чисел — это воспользоваться специальной кнопкой на ленте Microsoft Excel. Выделяем диапазон чисел, расположенных в столбце или в строке документа. Находясь во вкладке «Главная», жмем на кнопку «Автосумма», которая расположена на ленте в блоке инструментов «Редактирование». Из выпадающее списка выбираем пункт «Среднее».

Как высчитать среднее значение

После этого, с помощью функции «СРЗНАЧ», производится расчет. В ячейку под выделенным столбцом, или справа от выделенной строки, выводится средняя арифметическая данного набора чисел.

Как высчитать среднее значение

Этот способ хорош простотой и удобством. Но, у него имеются и существенные недостатки. С помощью этого способа можно произвести подсчет среднего значения только тех чисел, которые располагаются в ряд в одном столбце, или в одной строке. А вот, с массивом ячеек, или с разрозненными ячейками на листе, с помощью этого способа работать нельзя.

Например, если выделить два столбца, и вышеописанным способом вычислить среднее арифметическое, то ответ будет дан для каждого столбца в отдельности, а не для всего массива ячеек.

Как высчитать среднее значение

Синтаксис СРЗНАЧ

=СРЗНАЧ(число1;[число2];…) – русская версия

Аргументы СРЗНАЧ

Для расчета проделайте следующие шаги:

Как высчитать среднее значение

Функция рассчитает среднее значение в указанном диапазоне среди тех ячеек, в которых есть числа.

Как найти среднее арифметическое чисел?

Чтобы найти среднее арифметическое, необходимо сложить все числа в наборе и разделить сумму на количество. Например, оценки школьника по информатике: 3, 4, 3, 5, 5. Что выходит за четверть: 4. Мы нашли среднее арифметическое по формуле: =(3+4+3+5+5)/5.

Как это быстро сделать с помощью функций Excel? Возьмем для примера ряд случайных чисел в строке:

Как высчитать среднее значение

Как высчитать среднее значение Как высчитать среднее значение

Как высчитать среднее значение

Как высчитать среднее значение

Или: сделаем активной ячейку и просто вручную впишем формулу: =СРЗНАЧ(A1:A8).

Теперь посмотрим, что еще умеет функция СРЗНАЧ.

Как высчитать среднее значение

Найдем среднее арифметическое двух первых и трех последних чисел. Формула: =СРЗНАЧ(A1:B1;F1:H1). Результат:

Среднее значение по условию

Условием для нахождения среднего арифметического может быть числовой критерий или текстовый. Будем использовать функцию: =СРЗНАЧЕСЛИ().

Найти среднее арифметическое чисел, которые больше или равны 10.

Как высчитать среднее значениеРезультат использования функции СРЗНАЧЕСЛИ по условию “>=10”: Как высчитать среднее значение

Третий аргумент – «Диапазон усреднения» – опущен. Во-первых, он не обязателен. Во-вторых, анализируемый программой диапазон содержит ТОЛЬКО числовые значения. В ячейках, указанных в первом аргументе, и будет производиться поиск по прописанному во втором аргументе условию.

Внимание! Критерий поиска можно указать в ячейке. А в формуле сделать на нее ссылку.

Найдем среднее значение чисел по текстовому критерию. Например, средние продажи товара «столы».

Как высчитать среднее значение

Функция будет выглядеть так: =СРЗНАЧЕСЛИ($A$2:$A$12;A7;$B$2:$B$12). Диапазон – столбец с наименованиями товаров. Критерий поиска – ссылка на ячейку со словом «столы» (можно вместо ссылки A7 вставить само слово “столы”). Диапазон усреднения – те ячейки, из которых будут браться данные для расчета среднего значения.

В результате вычисления функции получаем следующее значение:

Как высчитать среднее значение

Внимание! Для текстового критерия (условия) диапазон усреднения указывать обязательно.

Среднее значение через формулу в Эксель

Сделать задачу также можно через стандартную формулу для чего прописываем в ячейке:

Как высчитать среднее значение

Через мастер формул

При необходимости нужно выделить нужную ячейку и кликнуть на функции.

Как высчитать среднее значение

Далее в категории «Полный алфавитный перечень» выбираем СРЗНАЧ.

Как высчитать среднее значение

Теперь можно выделить столбец или строку, где нужно произвести вычисление.

Как высчитать среднее значение

Заключение

Расчет среднего арифметического широко используется во многих научных сферах. Этот показатель популярен не только в статистических расчетах, но и в физике, механике, экономике, медицине или финансах.

Источник

Как посчитать среднее значение, квадратическое отклонение и погрешность

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 24 человек(а).

Количество просмотров этой статьи: 63 360.

После сбора данных их нужно проанализировать. Обычно нужно найти среднее значение, квадратичное отклонение и погрешность. Мы расскажем вам, как это сделать.

Как высчитать среднее значение

Как высчитать среднее значение

Как высчитать среднее значение

Как высчитать среднее значение

Источник

Меры центральной тенденции.

До сих пор мы обсуждали методы, которые мы можем использовать для организации и представления финансовых данных с целью того, чтобы они были более понятными.

Например, частотное распределение доходности класса активов показывает характер рисков, с которыми инвесторы могут столкнуться в конкретном классе активов. Гистограмма годовой доходности S&P 500 ясно показывает, что большие положительные и отрицательные значения годовой доходности являются обычной ситуацией.

Хотя таблицы частотных распределений и гистограммы предоставляют собой удобный способ обобщить серии наблюдений, эти методы являются лишь первым шагом к описанию финансовых данных.

В этом разделе мы обсудим использование количественных показателей, которые объясняют характеристики данных. Наше внимание сосредоточено на мерах центральной тенденции и других показателях (или параметрах), характеризующих положение данных.

Показатель или мера центральной тенденции (англ. ‘measure of central tendency’) указывает, насколько центрированы финансовые данные.

Меры центральной тенденции, вероятно, используются более широко, чем любые другие статистические показатели, потому что их легко рассчитать и применить. Меры положения (англ. ‘measures of location’) включают в себя не только меры центральной тенденции, но и другие показатели, которые иллюстрируют местоположение или распространение данных в рамках распределения.

Среднее арифметическое.

Определение среднего арифметического.

Мы можем вычислить среднее арифметическое как для совокупностей, так и для выборок. Эти показатели известны как среднее по совокупности и выборочное среднее значение соответственно.

Среднее значение для совокупности.

Если мы можем адекватно определить совокупность, то мы можем рассчитать среднее значение для совокупности как среднее арифметическое всех наблюдений или значений в совокупности.

Например, аналитики, изучающие годовой рост продаж крупных оптовых клубов в США за 2013 финансовый год, могут определить интересующую совокупность, включив в нее только три компании: BJ’s Wholesale Club (частная компания с 2011 г.), Costco Wholesale Corporation. и Sam’s Club, входящую в группу Wal-Mart.

В качестве другого примера можно привести портфельного менеджера, специализирующегося на индексе Nikkei 225. Интересующая его совокупность включает 225 акций из первой секции Токийской фондовой биржи, которые формируют индекс Nikkei.

Формула среднего значения для совокупности.

Среднее по совокупности, \( \bf \mu\), является средним арифметическим значением совокупности.

Для конечной совокупности используется следующая формула среднего значения:

\(\large< \mu = <\dsum_^X_i \over N> >\) (Формула 2)

Среднее по совокупности является примером статистического параметра. Среднее значение для совокупности уникально; то есть, данная совокупность имеет только одно среднее значение.

Чтобы проиллюстрировать расчеты по приведенной формуле, мы можем найти среднее по совокупности для доли прибыли в выручке американских компаний, управляющих крупными оптовыми клубами за 2012 год.

В течение года прибыль в процентах от выручки для оптовых клубов BJ, Costco Wholesale Corporation, и Wal-Mart Stores составляли 0,9%, 1,6% и 3,5% соответственно, согласно списку Fortune 500 за 2012 год. Таким образом, среднее значение по совокупности для прибыли в процентах от выручки составило:

\(\mu\) = (0,9 + 1,6 + 3,5)/3 = 6/3 = 2%

Выборочное среднее значение.

Очень часто мы не можем наблюдать каждый элемент множества данных; вместо этого мы наблюдаем подмножество или выборку из генеральной совокупности.

Концепция среднего значения может применяться к наблюдениям в выборке с небольшим изменением обозначений.

Формула выборочного среднего значения.

\(\large < \overline= <\dsum_^X_i \over n> >\) (Формула 3)

Формула 3 предписывает суммировать значения наблюдений \(X_i\) и делить эту сумму на количество наблюдений. Например, если выборка коэффициентов прибыли на акцию (P/E) для шести публичных компаний содержит значения 35, 30, 22, 18, 15 и 12, то среднее значение P/E для выборки будет 132/6 = 22. Среднее значение выборки также называется средним арифметическим (англ. ‘arithmetic average’).

Как отмечалось ранее, выборочное среднее значение является статистикой (то есть описательной мерой выборки).

Средние значения можно рассчитывать для отдельных статистических единиц или для временного отрезка.

В качестве примера можно привести рентабельность собственного капитала (ROE) за 2013 год для 100 компаний из FTSE Eurotop 100, индексе 100 крупнейших компаний Европы. В этом случае мы рассчитываем среднее значение ROE за 2013 год в среднем по 100 отдельным статистическим единицам (или элементам множества, от англ. ‘statistical unit’ или просто ‘unit’).

Когда мы изучаем характеристики некоторых статистических единиц в определенный момент времени (например, ROE для FTSE Eurotop 100), мы изучаем перекрестные данные (англ. ‘cross-sectional data’). Среднее этих наблюдений называется перекрестным средним значением (англ. ‘cross-sectional mean’).

С другой стороны, если наша выборка состоит из исторической месячной доходности по FTSE Eurotop 100 за последние 5 лет, то мы имеем дело с данными временного ряда (англ. ‘time-series data’). Среднее значение этих наблюдений называется средним временного ряда (англ. ‘time-series mean’).

Мы рассмотрим специализированные статистические методы, связанные с поведением временных рядов в следующих разделах, посвященных анализу временных рядов.

Ниже мы покажем пример определения выборочной средней доходности для 16 европейских фондовых рынков за 2012 г. В этом случае среднее значение является перекрестным, поскольку мы усредняем доходность по отдельным странам.

Пример вычисления перекрестного среднего значения.

Термин «скорректированный с учетом свободного обращения акций» (англ. ‘free float-adjusted’) означает, что веса компаний в индексе отражают стоимость акций, фактически доступных для инвестиций.

По состоянию на сентябрь 2013 года EAFE состояла из 22 индексов стран развитых рынков, включая индексы для 16 европейских рынков, 2 австралийских рынков (Австралия и Новая Зеландия), 3 дальневосточных рынков (Гонконг, Япония и Сингапур) и Израиля.

Предположим, что мы заинтересованы в показателях динамики местной валюты на 16 европейских рынках EAFE в 2012 году. Мы хотим найти примерную среднюю общую доходность за 2012 год по этим 16 рынкам.

Ряды ставок доходности, представленные в Таблице 8, приведены в местной валюте (то есть доходность указана для инвесторов, проживающих в стране). Поскольку эта доходность не указывается в валюте каждого отдельного инвестора, она не является доходностью, которую мог бы получить отдельный инвестор. Это, скорее, средняя доходность для местных валют 16 стран.

Таблица 8. Общая доходность европейских фондовых рынков, 2012 г.

Общая доходность
в местной валюте (%)

Источник

Как высчитать среднее значение

Занимательная математика. Среднее значение

В математике среднее арифметическое значение чисел (или просто среднее) — это сумма всех чисел в данном наборе, разделенная на их количество. Это наиболее обобщенное и распространенное понятие средней величины. Как вы уже поняли, чтобы найти среднее значение, нужно суммировать все данные вам числа, а полученный результат разделить на количество слагаемых.

Что такое среднее арифметическое?

Давайте рассмотрим пример.

Пример 1. Даны числа: 6, 7, 11. Нужно найти их среднее значение.

Для начала найдем сумму всех данных чисел.

Теперь разделим получившуюся сумму на количество слагаемых. Так как у нас слагаемых три, соответственно, мы будем делить на три.

Следовательно, среднее значение чисел 6, 7 и 11 — это 8. Почему именно 8? Да потому, что сумма 6, 7 и 11 будет такая же, как трех восьмерок. Это отлично видно на иллюстрации.

Как высчитать среднее значение

Среднее значение чем-то напоминает «выравнивание» ряда чисел. Как видите, кучки карандашей стали одного уровня.

Рассмотрим еще один пример, чтобы закрепить полученные знания.

Пример 2. Даны числа: 3, 7, 5, 13, 20, 23, 39, 23, 40, 23, 14, 12, 56, 23, 29. Нужно найти их среднее арифметическое значение.

3 + 7 + 5 + 13 + 20 + 23 + 39 + 23 + 40 + 23 + 14 + 12 + 56 + 23 + 29 = 330

Делим на количество слагаемых (в этом случае — 15).

Следовательно, среднее значение данного ряда чисел равно 22.

Зная это, рассмотрим еще один пример.

Находим сумму чисел.

3 + (-7) + 5 + 13 + (-2) = 12

Так как слагаемых 5, разделим получившуюся сумму на 5.

Как высчитать среднее значениеВ наше время технологического прогресса гораздо удобнее использовать для нахождения среднего значения компьютерные программы. Microsoft Office Excel — одна из них. Искать среднее значение в Excel быстро и просто. Тем более, эта программа входит в пакет программ от Microsoft Office. Рассмотрим краткую инструкцию, как найти среднее арифметическое значение с помощью этой программы.

Чтобы было более понятно, опробуем полученные знания.

Как высчитать среднее значение

Очень удобно использовать эту функцию для ведения учета, накладных или когда вам просто нужно найти среднее значение из очень длинного ряда чисел. Поэтому ее часто используют в офисах и крупных компаниях. Это позволяет сохранять порядок в записях и дает возможность быстро посчитать что-либо (например, средний доход за месяц). Также с помощью Excel можно найти среднее значение функции.

Среднее арифметическое

Сре́днее арифмети́ческое (в математике и статистике) множества чисел — сумма всех чисел, делённая на их количество. Является одной из наиболее распространённых мер центральной тенденции.

Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].

Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).

Введение

Для обозначения среднего арифметического всей совокупности используется греческая буква μ. Для случайной величины, для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки xi из этой совокупности μ = E<xi> есть математическое ожидание этой выборки.

На практике разница между μ и x ¯ <\displaystyle <\bar >> в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда x ¯ <\displaystyle <\bar >> (но не μ) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

Обе эти величины вычисляются одним и тем же способом:

Если X — случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X. Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.

В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n, тем меньше различие между новым и старым средними значениями.

Заметим, что имеется несколько других «средних» значений, в том числе среднее степенное, среднее Колмогорова, гармоническое среднее, арифметико-геометрическое среднее и различные средне-взвешенные величины (например, среднее арифметическое взвешенное, среднее геометрическое взвешенное, среднее гармоническое взвешенное).

Примеры

Или проще 5+5=10, 10:2. Потому что мы складывали 2 числа, а значит, сколько чисел складываем, на столько и делим.

Непрерывная случайная величина

Для непрерывно распределённой величины f ( x ) <\displaystyle f(x)>среднее арифметическое на отрезке [ a ; b ] <\displaystyle [a;b]>определяется через определённый интеграл:

Некоторые проблемы применения среднего

Отсутствие робастности

Хотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, что означает, что среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическое может не соответствовать понятию «среднего», а значения среднего из робастной статистики (например, медиана) может лучше описывать центральную тенденцию.

Классическим примером является подсчёт среднего дохода. Арифметическое среднее может быть неправильно истолковано в качестве медианы, из-за чего может быть сделан вывод, что людей с большим доходом больше, чем на самом деле. «Средний» доход истолковывается таким образом, что доходы большинства людей находятся вблизи этого числа. Этот «средний» (в смысле среднего арифметического) доход является выше, чем доходы большинства людей, так как высокий доход с большим отклонением от среднего делает сильный перекос среднего арифметического (в отличие от этого, средний доход по медиане «сопротивляется» такому перекосу). Однако, этот «средний» доход ничего не говорит о количестве людей вблизи медианного дохода (и не говорит ничего о количестве людей вблизи модального дохода). Тем не менее, если легкомысленно отнестись к понятиям «среднего» и «большинство народа», то можно сделать неверный вывод о том, что большинство людей имеют доходы выше, чем они есть на самом деле. Например, отчёт о «среднем» чистом доходе в Медине, штат Вашингтон, подсчитанный как среднее арифметическое всех ежегодных чистых доходов жителей, даст на удивление большое число из-за Билла Гейтса. Рассмотрим выборку (1, 2, 2, 2, 3, 9). Среднее арифметическое равно 3.17, но пять значений из шести ниже этого среднего.

Сложный процент

Если числа перемножать, а не складывать, нужно использовать среднее геометрическое, а не среднее арифметическое. Наиболее часто этот казус случается при расчёте окупаемости инвестиций в финансах.

Например, если акции в первый год упали на 10 %, а во второй год выросли на 30 %, тогда некорректно вычислять «среднее» увеличение за эти два года как среднее арифметическое (−10 % + 30 %) / 2 = 10 %; правильное среднее значение в этом случае дают совокупные ежегодные темпы роста, по которым годовой рост получается только около 8,16653826392 % ≈ 8,2 %.

Направления

При расчёте среднего арифметического значений некоторой переменной, изменяющейся циклически (например, фаза или угол), следует проявлять особую осторожность. Например, среднее чисел 1° и 359° будет равно 1 ∘ + 359 ∘ 2 = <\displaystyle <\frac <1^<\circ >+359^<\circ >><2>>=> 180°. Это число неверно по двум причинам.

Среднее значение для циклической переменной, рассчитанное по приведённой формуле, будет искусственно сдвинуто относительно настоящего среднего к середине числового диапазона. Из-за этого среднее рассчитывается другим способом, а именно, в качестве среднего значения выбирается число с наименьшей дисперсией (центральная точка). Также вместо вычитания используется модульное расстояние (то есть, расстояние по окружности). Например, модульное расстояние между 1° и 359° равно 2°, а не 358° (на окружности между 359° и 360°==0° — один градус, между 0° и 1° — тоже 1°, в сумме — 2°).

В процессе изучения математики школьники знакомятся с понятием среднего арифметического. В дальнейшем в статистике и некоторых других науках студенты сталкиваются и с вычислением других средних значений. Какими они могут быть и чем отличаются друг от друга?

Средние величины: смысл и различия

Не всегда точные показатели дают понимание ситуации. Для того чтобы оценить ту или иную обстановку, нужно подчас анализировать огромное количество цифр. И тогда на помощь приходят средние значения. Именно они позволяют оценить ситуацию в общем и целом.

Часто в рамках школьного курса изучают и среднее геометрическое. Расчет данного значения базируется на извлечении корня n-ной степени из произведения n-членов. Если брать те же числа: 27, 22, 34 и 37, то результат вычислений будет равен 29,4.

Как высчитать среднее значение

Средневзвешенное значение: особенности

Однако все вышеперечисленные величины могут быть использованы не везде. Например, в статистике при расчете некоторых средних значений важную роль имеет «вес» каждого числа, используемого в вычислениях. Результаты являются более показательными и корректными, поскольку учитывают больше информации. Эта группа величин носит общее название «средневзвешенное значение». Их в школе не проходят, поэтому на них стоит остановиться поподробнее.

В случае средневзвешенных расчетов за «вес» может быть принято количество отгрузок, число работающих в тот или иной день людей, в общем, все что угодно, что может быть измерено и повлиять на конечный результат.

Как высчитать среднее значение

Разновидности

Средневзвешенное значение соотносится со средним арифметическим, рассмотренным в начале статьи. Однако первая величина, как уже было сказано, учитывает также вес каждого числа, использованного в расчетах. Помимо этого существуют также средневзвешенное геометрическое и гармоническое значения.

Имеется еще одна интересная разновидность, используемая в рядах чисел. Речь идет о взвешенном скользящем среднем значении. Именно на его основе рассчитываются тренды. Помимо самих значений и их веса там также используется периодичность. И при вычислении среднего значения в какой-то момент времени также учитываются величины за предыдущие временные отрезки.

Расчет всех этих значений не так уж и сложен, однако на практике обычно используется только обычное средневзвешенное значение.

Способы расчета

В век повальной компьютеризации нет необходимости вычислять средневзвешенное значение вручную. Однако нелишним будет знать формулу расчета, чтобы можно было проверить и при необходимости откорректировать полученные результаты.

Проще всего будет рассмотреть вычисление на конкретном примере.

Заработная плата (тыс. руб.)Число рабочих (чел.)
3220
3335
3414
406

Необходимо узнать, какая же средняя оплата труда на этом предприятии с учетом количества рабочих, получающих тот или иной заработок.

Итак, расчет средневзвешенного значения производится с помощью такой формулы:

Для примера же вычисление будет таким:

x = (32*20+33*35+34*14+40*6)/(20+35+14+6) = (640+1155+476+240)/75 = 33,48

Как найти среднее значение в excel?

как рассчитать среднее значение в excel?

как найти среднее арифметическое в excel?

Владимир09854

Такой формулой вычисляется среднее арифметическое двух чисел.

Если же нам надо обсчитать среднее арифметическое, например четырех чисел, то в формуле мы складываем все четыре ячейки с числами, выделяем их круглыми скобками и делим на количество ячеек, а именно на 4.

Для красоты наших обсчетов можно выделить ячейки линиями, в виде таблички.

Есть еще в самом экселе функция определения среднего значения, но я пользуюсь дедовским методом и ввожу нужную мне формулу. Таким образом я уверен, что эксель посчитает именно так как мне надо, а не придумает какое-то там свое округление.

M3sergey

Это очень просто, если данные уже внесены в ячейки. Если вас интересует просто число, достаточно выделить нужный диапазон /диапазоны, и внизу справа в строке состояния появится значение суммы этих чисел, их среднее арифметическое и их количество.

Можно выделить пустую ячейку, нажать на треугольничек (раскрывающийся список) «Автосумма» и выбрать там «Среднее», после чего согласится с предложенным диапазоном для расчета, или выбрать свой.

Xarfax

В том случае, когда вы хотите использовать полученный результат в формулах, можно поступить так:

1) Суммировать ячейки с помощью функции СУММ и разделить всё это на количество чисел.

Как высчитать среднее значение

Как высчитать среднее значение

Владимир тихонов

обводите значения, которые будут участвовать в расчёте,нажимаете вкладку «Формулы», там увидите слева есть «Автосумма» и рядом с ней треугольник, направленный вниз. щёлкаете на этот треугольник и выбираете «Среднее». Вуаля, готово) внизу столбика увидите среднее значение:)

Екатерина муталапова

Начнём сначала и по порядку. Что значит среднее значение?

Искатель приключений 2000

Программа Ecxel является многообразной, поэтому есть несколько вариантов, которые позволят вам найти средние значение:

Первый вариант. Вы просто суммируете все ячейки и делите на их количество;

Второй вариант. Воспользоваться специальной командой, напишете в требуемой ячейки формулу «=СРЗНАЧ( а тут укажите диапазон ячеек)»;

Третий вариант. Если вы выделите требуемый диапазон, то обратите внимание, что на страничке внизу, также выводится среднее значение в данных ячейках.

Таким образом, способов найти среднее значение очень много, вам просто нужно выбрать оптимальный для вас и пользоваться им постоянно.

Ludya

В Excel c помощью функции СРЗНАЧ можно рассчитать среднее арифметическое простое. Для этого нужно вбить ряд значений. Нажать равно и выбрать в Категории Статистические, среди которых выбрать функцию СРЗНАЧ

Как высчитать среднее значение

Далее в окне Аргументы функции отметить введенный диапазон расчета, в результате чего получим среднее значение. В нашем примере 12,25.

Как высчитать среднее значение

Также с помощью статистических формул можно рассчитать среднее арифметическое взвешенное, которое считается более точным. Для его расчета нам понадобятся значения показателя и частота.

Как найти среднее значение в Excel?

Ситуация такая. Имеется следующая таблица:

В столбиках, закрашенных красным цветом содержатся численные значения оценок по предметам. В столбце «Средний балл» требуется подсчитать их среднее значение.
Проблема вот в чем: всего предметов 60-70 и часть из них на другом листе.
Я смотрела в другом документе уже подсчитано среднее, а в ячейке стоит формула типа
=’имя листа’!|Е12
но это делал какой-то программист, которого уволили.
Подскажите, пожалуйста, кто разбирается в этом.

Гектор

В строке фцнкций вставляешь из предложеннвх функций «СРЗНАЧ» и выбираешь откуда те надо высчитать (B6:N6) для Иванова, к примеру. Про соседние листы точно не знаю, но наверняка это содержится в стандартной виндовской справке

Подскажите как вычислить среднее значение в ворде

Подскажите пожалуйста как вычислить среднее значение в ворде. А именно среднее значение оценок, а не количества людей получивших оценки.
Как высчитать среднее значение

Юля павлова

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *