какие могут быть формы жизни кроме углеродной
Согласно нашим представлениям, жизнь может иметь только белково-углеродную природу. А так ли это? Обязательно ли у всех живых организмов должна быть одинаковая биохимическая структура? На самом деле, существует масса научных теорий, описывающих альтернативные формы жизни, которые потенциально могут существовать на просторах Вселенной.
Кремниевая жизнь
Кремний очень похож на углерод и образует аналогичные биохимические связи, которые потенциально могут стать основой биосистемы. Наряду с кислородом, это самый распространенный элемент в составе земной коры. Он также очень распространен во Вселенной в целом, и его возраст составляет уже миллиарды лет. Кремний входит в циклы биологического развития некоторых водорослей. Хотя, если углерод может образовывать сложные и устойчивые молекулы, сложные молекулы на основе кремния, увы, подвержены быстрому распаду.
Вряд ли кремниевые формы жизни могут возникнуть в среде, подобной земной, считают специалисты. Но вот в условиях высоких температур — другое дело… По мнению астрохимика НАСА Макса Бернштейна, такая жизнь могла бы существовать на очень горячей планете, атмосфера которой богата водородом и бедна кислородом. Там кремний мог бы образовывать связи, например, с селеном и теллуром.
Метановая жизнь
Метаногены могут обитать, в частности, на Титане — спутнике Сатурна, атмосфера которого состоит из азота и метана. Также на Титане есть жидкие озера из этана и метана. Это может способствовать взаимодействию органических молекул.
Синтетическая жизнь
Как известно, жизнь на Земле существует на основе двух «информационных» видов молекул — ДНК и РНК. Именно в них заложены «коды» наших организмов. А можно ли создать синтетические аналоги биологических молекул?
В 2012 году международная группа ученых впервые в мире создала синтетические нуклеотиды КНК и XNA, которые по своим функциональным особенностям и структуре напоминали ДНК и РНК. При этом, в отличие от похожих молекул, синтезированных ранее, эти обладали способностью к воспроизводству и эволюции. Так было разработано шесть искусственных генетических систем — HNA, CeNA, LNA, ANA, FANA и TNA.
Одна из них, HNA, или гекситонуклеиновая кислота, способна хранить достаточное количество генетической информации, которая может послужить основой для биологических систем. Другая, треозонуклеиновая кислота, или TNA, в свою очередь, могла бы стать основой для первичных биохимических молекул, существовавших на заре зарождения жизни на Земле… Понятно, что сфера применения этих соединений может быть очень широкой — от исследований в области биологии и генетики до практической медицины.
Ядерная жизнь
В 1979 году специалист по нанотехнологиям Роберт Фрейтас-младший выдвинул гипотезу о том, что метаболизм живых организмов может быть основан не только на электромагнитных взаимодействиях, как происходит с привычной биологической жизнью, но и на ядерных взаимодействиях, а также гравитации.
Например, на массивных, тяжелых и плотных нейтронных звездах может существовать хромодинамическая форма жизни, основанная на сильном ядерном взаимодействии. Присутствующие там макроядра могли бы сформировать еще более крупные ядра — аналоги органических молекул. При этом эквивалентом воды в обменных процессах выступали бы нейтроны.
Появление жизни на основе слабых ядерных взаимодействий менее вероятно, так как эти структуры быстро распадаются. Но все же во Вселенной могут быть регионы, где такие взаимодействия сильнее, чем в других местах, а следовательно, там могут возникать подобные формы жизни.
Пылевая и плазменная жизнь
В 2007 году международной команде ученых во главе с В. Н. Цытовичем из Института общей физики Российской академии наук удалось доказать, что пылевые частицы образуют спиральные структуры, способные взаимодействовать друг с другом аналогично реакциям в органической химии. Так же ведут себя и частицы плазмы — так называемого четвертого состояния вещества после твердого, жидкого и газообразного: на этой стадии электроны отрываются от атомов, оставляя множество заряженных частиц. Электрически заряженные «спирали» притягиваются друг к другу и образуют копии оригинальных структур, подобно ДНК. Также они способны «заряжать» своих соседей.
Правда жизни на основе пыли или плазмы пока не обнаружено. Но поскольку облака межзвездной пыли и плазмы курсируют по всему космосу, то где-то они могли сформировать и структуры, подобные органическим.
Так что, вполне возможно, мы не одиноки во Вселенной. Другое дело — нельзя ожидать, что представители «альтернативной» жизни будут настолько похожи на нас, что смогут вступать с нами в полноценный контакт…
Читайте также:
Добавьте «Правду.Ру» в свои источники в Яндекс.Новости или News.Google, либо Яндекс.Дзен
Быстрые новости в Telegram-канале Правды.Ру. Не забудьте подписаться, чтоб быть в курсе событий.
5 альтернативно живых форм жизни
Если окажешься в кругу незнакомых зомби — не стоит называть их трупами, восставшими мертвецами и прочими клишированными словами. Ведь эти ребята могут оскорбиться, а тогда добра не жди. Лучше звать их альтернативно живыми, нужно быть толерантнее.
У нас есть строгие представления о живом и неживом. Человек, дерево, кот — это всё живое, в то время как камень, гора или дом — неживое. Однако в бесконечной Вселенной могут отыскаться самые невообразимые формы жизни, и вот некоторые теоретические претенденты.
1. Меметическая жизнь
Один из основных принципов жизни гласит, что она должна иметь механизмы самовоспроизведения. Кроме этого, жизнь должна существовать в среде, в которой будут возможны естественный отбор и эволюция. Понятия, идеи и мысли, возникающие в мозгу, распространяются среди людей, изменяются, вытесняя друг друга. Во многом это напоминает поведение и адаптацию генов.
Шутки, песни и ритуалы первобытного общества можно сравнить с первыми стадиями органической жизни — с органическими молекулами, плавающими в бескрайних древних морях Земли. Постепенно эти элементы соединялись, усложнялись и превратились в традиции, религии и целые культуры. Это своего рода творения разума, которые могут воспроизводиться письменно или устно. Они эволюционируют и борются за выживание в царстве идей.
Изобретение письменности сильно ускорило развитие меметической жизни, поскольку теперь она смогла распространяться в пространстве и времени подобно генам. Разница лишь в том, что гены передают биологическую информацию, а мысли — меметическую. Также существует теория «симбиоза», в которой сами языки рассматриваются как самостоятельные формы жизни. Люди живут в сотрудничестве с языковыми организмами, и это взаимовыгодный симбиоз. Без нас языки не смогут существовать, а без них мы вернёмся к животному состоянию.
2. Хромодинамическая и гравитационная жизнь
Метаболизм, или обмен веществ, — это химические реакции, возникающие в живом организме для поддержания жизни. Метаболизм живых систем может быть основан на некоторых фундаментальных силах. Например, на сильном ядерном взаимодействии, являющемся сильнейшей из фундаментальных сил.
Подходящая для такой жизни среда может быть в нейтронной звезде. Это компактный, по астрономическим меркам, объект диаметром всего 10–20 километров, однако имеющий массу звезды. Нейтронные звёзды — очень плотные объекты с мощнейшим магнитным полем и гравитацией, которая в миллиарды раз сильнее, чем на Земле. «Первичный бульон» в этом случае заменит море из горячих нейтронов, которые могут стать эквивалентом воды. Кроме этого, в альтернативном «первичном бульоне» плавают ядерные частицы и протоны. Из этого набора могут получиться макроядра, а из них, в свою очередь, могли бы сформироваться крупные сверхъядра, аналогичные органическим молекулам.
Гравитационные формы жизни также возможны благодаря распространённости самой гравитации — она практически вездесуща. Это значит, что энергию из гравитации можно извлекать везде и в любых масштабах. Гравитационные существа могли бы питаться от столкновений черных дыр, галактик и других небесных объектов. Если представить существ поменьше, то подойдёт просто вращение планеты или даже энергия водопадов, причём необязательно, чтобы в этих водопадах была именно вода.
3. Жизнь на основе КНК
На Земле жизнь основывается на двух молекулах, способных переносить информацию, — ДНК и РНК. В 2012 году ученые из Англии, Дании и Бельгии создали ксенонуклеиновую кислоту, или КНК, — синтетическое соединение, функционально напоминающее ДНК. Подобные эксперименты проводились и раньше, но только новая КНК оказалась способна воспроизводиться и эволюционировать, то есть это соединение отвечает критериям жизни.
Два года спустя были созданы искусственные генетические системы — достаточно надёжные и, главное, способные хранить необходимое количество генетической информации. Можно сказать, что эти разработки являются фундаментом для создания искусственной жизни. Кроме этого, КНК может получить терапевтическое применение. Возможно, удастся лечить повреждённые молекулярные цепи или вообще заменять элементы настоящих ДНК и РНК.
4. Неорганическая жизнь
Профессор Ли Кронин из Шотландии пытается создать живые клетки из металла. Процесс сложный, с кучей терминов, поэтому упрощаем и приносим извинения за оскорбление чувств биологов и химиков.
Полиоксометаллаты — это атомы металлов, связанные с кислородом и фосфором. Из них создаются структуры, похожие на живые клетки, но они не совсем живые. Для этих соединений придумали название «неорганические химические клетки». Из оксидов металла получают соль, её превращают в раствор и добавляют к другим солям, содержащим органику. Разные виды соли смешиваются и вступают в реакцию таким образом, что неорганические оксиды металла становятся партнерами с органическими ионами. Пока не удалось наделить новые соединения функциями биологических клеточных мембран, то есть заставить их, подобно живым клеткам, пропускать и выпускать химические вещества.
5. Жизнь на основе кремния
Представь себе кремниево-алюминиевые организмы — животных или растения. Теперь представь кремниево-алюминиевых людей, которые живут на планете с атмосферой из газообразной серы. Они плещутся в морских волнах из жидкого железа, температурой в несколько тысяч градусов.
Звучит невероятно, но такая жизнь возможна — правда, для неё нужны и особые условия. Прежде всего, должно быть очень жарко, чтобы из залежей железа получились моря и океаны. Атмосфера такой планеты должна быть богата водородом и бедна кислородом. Долгое время учёные заискивающе посматривали на Титан, спутник Сатурна, но температура там слишком низкая, а в атмосфере преобладает углерод. Большая часть кремния, как и на Земле, находится глубоко под поверхностью.
На самой Земле теоретические кремниевые организмы развивались и размножались бы очень медленно, практически незаметно для нас. Возможно, они добрались бы до наших городов однажды и даже попытались бы их съесть. Но для защиты мы бы применили отбойные молотки.
Неуглеродные формы жизни: кремний или азот?
Земная жизнь, единственная из известных нам в настоящее время, основана на огромном многообразии соединений углерода. Между тем, это не единственный химический элемент, который может лежать в основе жизни.
Существование иных форм жизни, принципиально отличающихся от нашей земной наличием, расположением и количеством лап, глаз, зубов, когтей, щупалец и других частей тела — одна из излюбленных тем в фантастической литературе. Впрочем, фантасты не ограничиваются только этим — они придумывают как экзотические формы традиционной (углеродной) жизни, так и не менее экзотические ее основы — скажем, живые кристаллы, бестелесные энергетические полевые существа или кремнийорганические создания.
Помимо фантастов, обсуждением подобных вопросов занимаются и ученые, хотя они в своих оценках гораздо более осторожны. Ведь пока единственная основа жизни, которая точно известна науке, — это углеродная. Тем не менее в свое время известный астроном и популяризатор науки Карл Саган заявил, что обобщать утверждения о земной жизни в отношении жизни во всей Вселенной совершенно неправильно. Подобные обобщения Саган назвал «углеродным шовинизмом», при этом он сам в качестве наиболее вероятной альтернативной основы жизни рассматривал в первую очередь кремний.
Главный вопрос жизни
Что же такое жизнь? Казалось бы, ответ на этот вопрос очевиден, но как ни странно, о формальных критериях в научном сообществе до сих пор идут дискуссии. Тем не менее можно выделить ряд характерных признаков: жизнь должна самовоспроизводиться и эволюционировать, а для этого нужно соблюдение нескольких важных условий. Во-первых, для существования жизни необходимо большое количество химических соединений, состоящих в основном из ограниченного числа химических элементов. В случае органической химии это углерод, водород, азот, кислород, сера, причем число подобных соединений огромно. Во-вторых, эти соединения должны быть термодинамически стабильными или хотя бы метастабильными, то есть время их жизни должно быть достаточно продолжительным для осуществления различных биохимических реакций. Третье условие — должны существовать реакции для извлечения энергии из окружающей среды, а также ее накопления и высвобождения. Четвертое — для самовоспроизводимости жизни требуется механизм наследственности, носителем информации в котором выступает крупная апериодическая молекула. Эрвин Шрёдингер предполагал, что носителем наследственной информации может быть апериодический кристалл, а позднее была открыта структура молекулы ДНК — линейный сополимер. Наконец, все эти вещества должны находиться в жидком состоянии, чтобы обеспечить достаточную скорость реакций метаболизма (обмена веществ) за счет диффузии.
В случае с углеродом все эти условия выполняются, а вот даже с ближайшей альтернативой — кремнием — дело обстоит далеко не так радужно. Кремнийорганические молекулы могут быть достаточно длинными, чтобы нести наследственную информацию, но их многообразие слишком бедно по сравнению с углеродной органикой — из-за большего размера атомов кремний с трудом образует двойные связи, что сильно ограничивает возможности присоединения различных функциональных групп. Кроме того, предельные кремнийводороды — силаны — и вовсе нестабильны. Конечно, существуют и стабильные соединения, такие как силикаты, но большинство из них — твердые при нормальных условиях вещества. С другими элементами, такими как бор или сера, дело обстоит еще печальнее: борорганика и высокомолекулярные соединения серы крайне нестабильны, а их разнообразие слишком бедно, чтобы обеспечить жизнь всеми необходимыми условиями.
«Азот никогда всерьез не рассматривался как основа для жизни, поскольку при нормальных условиях единственным стабильным азотоводородным соединением является аммиак NH3, — говорит Артем Оганов, руководитель лаборатории компьютерного дизайна материалов МФТИ, профессор Нью-Йоркского университета Стоуни-Брук и Сколковского института науки и технологий (Сколтех). — Однако недавно, проводя моделирование различных азотоводородных систем при высоких давлениях (до 800 ГПа) с помощью нашего алгоритма USPEX (Universal Structure Predictor: Evolutionary Xtallography, Универсальный предсказатель структур: эволюционная кристаллография, см. «ПМ» № 10’2010), наша группа обнаружила удивительную вещь. Оказалось, что при давлениях свыше 36 ГПа (360?000 атм) появляется целый ряд стабильных азотоводородов, таких как длинные одномерные полимерные цепи из звеньев N4H, N3H, N2H и NH, экзотические N9H4, образующие двухмерные листы атомов азота с присоединенными катионами NH4+, а также молекулярные соединения N8H, NH2, N3H7, NH4, NH5. Фактически мы обнаружили, что при давлениях порядка 40−60 ГПа азотоводородная химия по своему разнообразию значительно превосходит химию углеводородных соединений при нормальных условиях. Это позволяет надеяться, что химия систем с участием азота, водорода, кислорода и серы также более богата по своему разнообразию, чем традиционная органическая при нормальных условиях».
Эта гипотеза группы Артема Оганова открывает совершенно неожиданные возможности в плане неуглеродной основы жизни. «Азотоводороды могут образовывать длинные полимерные цепи и даже двухмерные листы, — объясняет Артем. — Сейчас мы изучаем свойства подобных систем с участием кислорода, потом добавим к рассмотрению в наших моделях углерод и серу, а это, возможно, откроет путь к азотным аналогам углеродных белков, пусть для начала и самых простых, без активных центров и сложной структуры. Вопрос об источниках энергии для жизни, основанной на азоте, пока остается открытым, хотя это вполне могут быть какие-то пока неизвестные нам окислительно-восстановительные реакции, идущие в условиях высоких давлений. В реальности такие условия могут существовать в недрах планет-гигантов типа Урана или Нептуна, хотя температуры там слишком высоки. Но пока мы не знаем точно, какие реакции могут там происходить и какие из них важны для жизни, поэтому не можем достаточно точно оценить необходимый температурный диапазон».
Условия «обитания» живых существ на основе азотных соединений могут показаться читателям чрезвычайно экзотичными. Но достаточно вспомнить тот факт, что распространенность планет-гигантов в звездных системах как минимум не меньшая, чем каменистых земплеподобных планет. А это означает, что во Вселенной именно наша, углеродная жизнь может оказаться куда большей экзотикой.
Артем Оганов, руководитель лаборатории компьютерного дизайна материалов МФТИ, профессор Нью-Йоркского университета Стоуни-Брук и Сколковского института науки и технологий (Сколтех):
«Азот — седьмой по распространенности элемент во Вселенной. Его довольно много в составе планет-гигантов, таких как Уран и Нептун. Считается, что там азот находится в основном в виде аммиака, но наше моделирование показывает, что при давлениях свыше 460 ГПа аммиак перестает быть стабильным соединением (каким он является при нормальных условиях). Так что, возможно, в недрах планет-гигантов вместо аммиака существуют совсем другие молекулы, и именно эту химию мы сейчас исследуем».
На рисунке — структуры N4H, N3H, N2H, NH, N9H4 (розовые — атомы водорода, синие — азота). В розовой рамке — мономерные звенья.
При высоких давлениях азот и водород образуют множество стабильных, сложных и необычных соединений. Химия этих азотоводородов гораздо более разнообразна, чем углеводородная при нормальных условиях, так что есть надежда, что азото-водородо-кислородо-сернистые соединения могут превзойти по богатству возможностей органическую химию.
Вполне возможно, что в поисках экзотической жизни нам не придется лететь на другой конец Вселенной. В нашей собственной Солнечной системе присутствуют две планеты с подходящими условиями. И Уран, и Нептун окутаны атмосферой, состоящей из водорода, гелия и метана, и, по-видимому, имеют силикатно-железо-никелевое ядро. А между ядром и атмосферой находится мантия, состоящая из горячей жидкости — смесь воды, аммиака и метана. Именно в этой жидкости при нужных давлениях на соответствующих глубинах может происходить предсказанный группой Артема Оганова распад аммиака и образование экзотических азотоводородов, а также более сложных соединений, включающих кислород, углерод и серу. Нептун к тому же обладает внутренним источником тепла, природа которого до сих пор точно не выяснена (предполагается, что это радиогенный, химический или гравитационный нагрев). Это позволяет значительно расширить «зону обитаемости» вокруг нашей (или другой) звезды далеко за пределы, доступные для нашей хрупкой углеродной жизни.
10 гипотетических форм жизни, существование которых возможно во Вселенной
Получайте на почту один раз в сутки одну самую читаемую статью. Присоединяйтесь к нам в Facebook и ВКонтакте.
1. Метаногены
Как и на Земле, атмосфера Титана в основном состоит из азота, но он смешан с метаном. Титан также является единственным местом в Солнечной системе, где кроме Земли существует множество озер и рек (состоящих из смеси этана с метаном). Жидкость считается необходимой для молекулярных взаимодействий органической жизни, но до сих пор на других планетах искали обычную воду.
2. Жизнь на основе кремния
Жизнь на основе кремния является, пожалуй, наиболее распространенной формой альтернативной биохимии, которая описывается в научно-популярной фантастике. Кремний является настолько популярным потому, что он очень похож на углерод и может принимать четыре формы, как и углерод.
Это открывает возможность для существования биохимической системы, основанной полностью на кремнии, который является самым распространенным элементом в земной коре, кроме кислорода. Недавно была открыта разновидность водорослей, которая использует кремний в процессе своего роста. Полноценная кремниевая жизнь вряд ли появится на Земле, поскольку большинство свободного кремния находится в вулканических и магматических породах из силикатных минералов. Но ситуация может отличаться в высокотемпературной среде.
3. Другие альтернативные биохимические системы
Существует много других предположений относительно того, как может развиваться жизнь, основанная на другом элементе, в не на углероде. Равно как углерод и кремний, бор имеет тенденцию образовывать прочные ковалентные молекулярные соединения, образуя различные структурные разновидности гидрида, в которых атомы бора связаны водородными мостиками. Подобно углероду, бор может образовывать связи с атомом азота, приводя к созданию соединений, которые имеют химические и физические свойства, аналогичные алканам, простейшим органическим соединениям.
Вся жизнь на Земле состоит из углерода, водорода, азота, кислорода, фосфора и серы, но в 2010 году ученые НАСА нашли бактерию GFAJ-1, которая может включать мышьяк вместо фосфора в свою клеточную структуру. GFAJ-1процветает в богатых мышьяком водах озера Моно в Калифорнии. Мышьяк считался ядовитым для каждого живого существа на планете, но оказалось, что возможна жизнь на его основе.
Также в качестве возможной альтернативы воды для создания жизненных форм был назван аммиак. Биохимики создали азотно-водородные соединения с использованием аммиака в качестве растворителя, который может быть использован для создания белков, нуклеиновых кислот и полипептидов. Любое жизнь на основе аммиака должна будет существовать при более низких температурах, при которых аммиак принимает жидкое состояние.
Сера, как полагают, послужила основой для начала обмена веществ на Земле, и даже сегодня существуют организмы, которые в своем метаболизме используют серу вместо кислорода. Возможно, в другом мире эволюция будет развиваться на основе серы. Некоторые считают, что азот и фосфор могут также занять место углерода при очень специфических условиях.
4. Меметическая жизнь
Ричард Докинз считает, что «развитие жизни заключается в выживании и размножении». Жизнь должна быть способна к воспроизведению и должна развиваться в среде, где возможны естественный отбор и эволюция. В своей книге «Эгоистичный ген» Докинз отметил, что понятия и идеи развиваются в головном мозге и распространяются между людьми посредством общения. Во многих отношениях это напоминает поведение и адаптацию генов. Докинз ввел понятие мема, которое описывает единицу передачи человеческой культурной эволюции, аналогичной гену в генетике. Когда человечество стало способно к абстрактному мышлению, эти мемы стали развиваться дальше, регулируя племенные отношения и формируя основу первой культуры и религии.
5. Синтетическая жизнь на основе КНК
6. Хромодинамика, слабые ядерные силы и гравитационная жизнь
Хромодинамическая жизнь может быть возможна на основе сильного ядерного взаимодействия, которое является сильнейшей из основных сил, но только на очень коротких расстояниях. Он предполагает, что такая среда может существовать на нейтронной звезде, сверхплотном объекте, который имеет массу звезды, но его размер составляет всего 10-20 километров.
Фрейтас считает жизненные формы на основе слабых ядерных сил менее вероятными, поскольку слабые силы действуют только лишь в суб-ядерном диапазоне, и они не особенно сильные.
Также могут существовать гравитационные существа, поскольку гравитация является наиболее распространенной и эффективной фундаментальной силой во вселенной. Такие существа могли бы получать энергию от самой силы тяжести во Вселенной.
7. Пылевая плазменная форма жизни
Как известно, органическая жизнь на Земле основана на молекулах соединения углерода. Но в 2007 году, международная команда ученых во главе с В.Н.Цытовичем из Института общей физики Российской академии наук документально подтвердила, что при определенных условиях частицы неорганической пыли могут организовываться в спиральные структуры, которые затем могут взаимодействовать друг с другом практически идентично процессам органической химии. Подобный процесс происходит в состоянии плазмы, четвертом состоянии вещества (помимо твердого, жидкого и газообразного), в котором электроны отрываются от атомов.
Команда Цытовича обнаружили, что когда электроны отделяются, а плазма становится поляризованной, частицы в плазме без внешнего воздействия самоорганизоваются в форму спиральных структур, которые притягиваются друг к другу. Эти спиральные структуры также могут разделяться, формируя в дальнейшем копии исходной структуры, подобно ДНК.
8. iCHELL
У профессора Ли Кронина, завкафедрой химии в колледже науки и техники Университета Глазго, есть мечта — он хочет создать живые клетки из металла. Для этого профессор экспериментирует с полиоксометаллатами, атомами металла, связывая их с кислородом и фосфором, чтобы создать пузырькообразные ячейки, которые он называет неорганическими химическими клетками или iCHELL. Изменяясостав оксида металла, пузырькам могут быть приданы характеристики мембран биологических клеток.
9. Гипотеза Гайя
В 1975 году Джеймс Лавлок и Сидни Эптон написали статью для New Scientist «В поисках Гайя». Несмотря на то, что традиционно принято считать, что жизнь возникла на Земле, Лавлок и Эптон утверждают, что жизнь сама по себе принимает активную роль в определении и поддержании условий для своего выживания. Они предположили, что все живое на Земле, вплоть до воздуха, океанов и суши, является частью единой системы, которая представляет из себя живой супер-организм, способный изменить температуру поверхности и состав атмосферы, чтобы обеспечить свое выживание.
Эту систему Гайя, в честь греческой богини Земли. Она существует, чтобы поддерживать гомеостаз, с помощью которого биосфера может существовать в системе Земли. Биосфера Земли якобы имеет ряд природных циклов, и с одним из них что-то идет не так, то остальные компенсируют его в целях поддержания условий для существования жизни. С помощью этой гипотезы легко объяснить, почему атмосфера не состоит в основном из диоксида углерода или почему моря не слишком соленые.
10. Зонды фон Неймана
Возможность искусственной жизни на основе машин обсуждается уже давно. Сегодня же рассмотрим концепцию зондов фон Неймана. Венгерский математик и футурист середины 20-го века Джон фон Нейман считал, что для того, чтобы повторить функции человеческого мозга, машине необходимы самоосознание и механизм самовосстановления. Он выдвинул идею создания самовоспроизводящихся машин, которые должны иметь какой-то универсальный конструктор, позволяющий им не только строить собственные реплики, но и потенциально улучшать или изменять версии, что сделает возможным долговременную эволюцию.
Зонды-роботы фон Неймана будут идеально подходить для того, чтобы достичь далеких звездных систем и создать заводы, на которых они будут размножаться тысячами. Причем луны, а не планеты больше подходят для зондов фон Неймана, поскольку они могут легко приземляться и взлетать с этих спутников, а также потому, что на спутниках нет эрозии. Эти зонды будут размножаться за счет природных залежей железа, никеля и т.д., добывая сырье для создания заводов роботов. Они создадут тысячи копий самих себя, а затем полетят искать другие звездные системы.
Понравилась статья? Тогда поддержи нас, жми: