какой атрибут может выступать детерминантом отношения
Детерминанты и их роль в базе данных
Детерминанты определяют значения, присвоенные другим атрибутам
Определитель в таблице базы данных – это атрибут, который можно использовать для определения значений, присвоенных другим атрибутам в той же строке. По этому определению любой первичный ключ или ключ-кандидат является определителем, но могут быть детерминанты, которые не являются первичными или потенциальными ключами.
Например, компания может использовать таблицу с атрибутами, и.
Меган | Коричневый | 01/29/1979 | |
234 | Бен | Уайлдером | 02/14/1985 |
345 | Меган | Chowdery | 2/14/1985 |
456 | Charles | Коричневый | 07/19/1984 В этом случае поле определяет оставшиеся три поля. Поля имени не определяют, потому что у фирмы могут быть сотрудники, которые имеют то же самое имя или фамилию. Точно так же поле не определяет поля или названия, потому что сотрудники могут иметь один и тот же день рождения. Детерминантные отношения с ключами базы данных В этом примере это определитель, ключ-кандидат, а также первичный ключ. Это ключ-кандидат, потому что при поиске 234 во всей базе данных появляется строка, содержащая информацию о Бене Уайлдере, и другие записи не отображаются. Другой ключ-кандидат возникает при поиске в базе данных по информации в трех столбцах; и, который также получает тот же результат. Это первичный ключ из-за всех комбинаций столбцов, которые можно использовать в качестве ключа-кандидата, это самый простой столбец для использования в качестве основной ссылки на эту таблицу. Кроме того, она гарантированно уникальна для этой таблицы, независимо от количества других сотрудников, в отличие от информации в других столбцах. ГОСы 2012Реляционная модель (РМ) основана на понятии «отношения» (Relationship), она наиболее распространена сегодня. Недостатками реляционной модели: Основными понятиями модели являются: тип данных, домен, атрибут, кортеж, первичный ключ и отношение. Тип данных определяет множество значений и операций, которые могут быть применены к значениям. Под доменом понимают множество допустимых значений простого типа. Все элементы домена относятся к 1 типу данных и отвечают логическому условию. Элемент домена — число, символьная строка, дата и т. д. Схемой отношения называют именованное множество пар (Ai, Di), i=1,k, где Ai — имя атрибута, Di — имя домена, k — ранг отношения. Например: Студенты ((имя, имена людей), (возраст, числа от 17 до 59), (номер паспорта, целые числа)) ранг=3. Кортеж отношения — это множество пар вида «имя атрибута, значение атрибута», причем каждый атрибут отношения один и только один раз входит в кортеж. # (Саша, 19, 222222) или (Катя, 20, 353453) или (Настя, 18, 424242) Отношение — это множество кортежей, соответствующих одной схеме отношения. Элементами отношений являются кортежи. Фундаментальные свойства отношений: Для связи между разными отношениями используется понятие внешнего ключа. Внешним ключом называется атрибут (совокупность атрибутов), который является ключом Ak в другом отношении R1 и его значения принадлежат домену Dk отношения R2, т.е отношение, в котором определен внешний ключ ссылается на другое отношение в котором такой же атрибут является первичным ключом. Компоненты реляционной модели данных (согласно Дейту модель состоит из 3 частей) Для описания структуры данных используются только нормализованные отношения. Для описания операций над данными используются два механизма: реляционная алгебра и реляционное исчисление. Первая базируется на теории множеств, а реляционные исчисления — на логическом аппарате исчисления предикатов 1-ого порядка. В модели должны выполняться 2 базовых условия целостности: РБД наиболее распространены в настоящее время. В РБД должна поддерживаться целостность данных. Если схема РБД неудачна, то она не обеспечивает этой целостности. Нарушение целостности называют аномалиями. Аномалии могут быть вызваны избыточностью отношений. Для устранения избыточности применяют нормализацию схем отношений. Форма представления схемы РБД на каком-либо шаге этого процесса называется нормальной формой. Каждой нормальной форме соответствует некоторый определенный набор ограничений, и отношение находится в некоторой нормальной форме, если удовлетворяет свойственному ей набору ограничений. В РБД выделяется последовательность нормальных форм: Основные свойства нормальных форм: Дадим некоторые определения:Функциональная зависимость. В отношении R атрибут Y функционально зависит от атрибута X — если каждому значению X соответствует в точности одно значение Y. Обозначается y:x→y (x функционально определяет y) Полная функциональная зависимость. Функциональная зависимость y:x→y называется полной, если атрибут Y не зависит функционально от любого точного подмножества X Транзитивная функциональная зависимость. Функциональная зависимость y:x→y называется транзитивной, если существует такой атрибут Z, что имеются функциональные зависимости x →z и z→y (обратная зависимость отсутствует). Возможный ключ. Возможным ключом отношения называется его атомарный или составной атрибут, значения которого полностью функционально определяют значения всех остальных атрибутов отношения. Неключевой атрибут — любой атрибут отношения, не входящий в состав первичного ключа. Взаимно независимые атрибуты. Два или более атрибута называются взаимно независимыми, если не один из них не зависит функционально от других атрибутов. Детерминант. Детерминантом называется любой атрибут, от которого полностью функционально зависит некоторый другой атрибут. НормализацияПервая нормальная форма (1NF) Таблица находится в первой нормальной форме, если каждый её атрибут атомарен. Под выражением «атрибут атомарен» понимается, что атрибут может содержать только одно значение. Таким образом, не существует 1NF таблицы, в полях которых могут храниться списки значений. Для приведения таблицы к 1NF обычно требуется разбить таблицу на несколько отдельных таблиц. Замечание: в реляционной модели отношение всегда находится в 1 (или более высокой) нормальной форме в том смысле, что иные отношения не рассматриваются в реляционной модели. То есть само определение понятия отношение заведомо подразумевает наличие 1NF. Вторая нормальная форма (2NF) Таблица находится во второй нормальной форме, если она находится в первой нормальной форме, и при этом любой её атрибут, не входящий в состав первичного ключа, функционально полно зависит от первичного ключа. Функционально полная зависимость означает, что атрибут функционально зависит от всего первичного составного ключа, но при этом не находится в функциональной зависимости от какой-либо из входящих в него атрибутов (частей). Или другими словами: в 2NF нет неключевых атрибутов, зависящих от части составного ключа (+ выполняются условия 1NF). Третья нормальная форма (3NF) Таблица находится в третьей нормальной форме (3NF), если она находится во второй нормальной форме 2NF и при этом любой ее неключевой атрибут зависит только от первичного ключа (Primary key, PK) (иначе говоря, один факт хранится в одном месте). Таким образом, отношение находится в 3NF тогда и только тогда, когда оно находится во 2NF и отсутствуют транзитивные зависимости неключевых атрибутов от ключевых. Транзитивной зависимостью неключевых атрибутов от ключевых называется следующая: A → B и B → C, где A — набор ключевых атрибутов (ключ), B и С — различные множества неключевых атрибутов. При решении практических задач в большинстве случаев третья нормальная форма является достаточной. Процесс проектирования реляционной базы данных, как правило, заканчивается приведением к 3NF. Нормальная форма Бойса — Кодда (BCNF) Это модификация третьей нормальной формы (в некоторых источниках именно 3NF называется формой Бойса — Кодда). Таблица находится в BCNF, если она находится в 3NF, и при этом отсутствуют функциональные зависимости атрибутов первичного ключа от неключевых атрибутов. Таблица может находиться в 3NF, но не в BCNF, только в одном случае: если она имеет, помимо первичного ключа, ещё по крайней мере один возможный ключ. Все зависимые от первичного ключа атрибуты должны быть потенциальными ключами отношения. Если это условие не выполняется, для них создаётся отдельное отношение. Чтобы сущность соответствовала BCNF, она должна находиться в третьей нормальной форме. Любая сущность с единственным возможным ключом, соответствующая требованиям третьей нормальной формы, автоматически находится в BCNF. Четвёртая нормальная форма (4NF) Таблица находится в 4NF, если она находится в BCNF и не содержит нетривиальных многозначных зависимостей. Многозначная зависимость не является функциональной, она существует в том случае, когда из факта, что в таблице содержится некоторая строка X, следует, что в таблице обязательно существует некоторая определённая строка Y. То есть, таблица находится в 4NF, если все ее многозначные зависимости являются функциональными. Пятая нормальная форма (5NF) Доменно-ключевая нормальная форма (DKNF) Отношение в ДКНФ не имеет аномалий модификации. Другими словами, что бы ни менялось — ничего не потеряется, если соблюдены все ограничения относительно ключей и доменов. Формулировка слишком общая, но суть ее заключается в том, что если выполнять некоторые правила, то при любых действиях с таблицей ее целостность не пострадает и вся необходимая информация сохранится. Если рассматривать на примере, то правила действуют примерно так: нельзя просто удалить категорию из таблицы категорий, если с этой категорией связаны, например, продукты из таблицы продуктов. Прежде чем удалять категорию, необходимо выполнить предварительные действия в таблице продуктов (например, поле отвечающее за id категории этого товара нужно сделать NULL). Шестая нормальная форма (6NF) Таблица находится в 6NF, если она находится в 5NF и удовлетворяет требованию отсутствия нетривиальных зависимостей. Зачастую 6NF отождествляют с DKNF. Какой атрибут может выступать детерминантом отношенияСначала будет рассмотрен классический подход, при котором весь процесс проектирования производится в терминах реляционной модели данных методом последовательных приближений к удовлетворительному набору схем отношений. Исходной точкой является представление предметной области в виде одного или нескольких отношений, и на каждом шаге проектирования производится некоторый набор схем отношений, обладающих лучшими свойствами. Процесс проектирования представляет собой процесс нормализации схем отношений, причем каждая следующая нормальная форма обладает свойствами лучшими, чем предыдущая. В основе процесса проектирования лежит метод нормализации, декомпозиция отношения, находящегося в предыдущей нормальной форме, в два или более отношения, удовлетворяющих требованиям следующей нормальной формы. Наиболее важные на практике нормальные формы отношений основываются на фундаментальном в теории реляционных баз данных понятии функциональной зависимости. Для дальнейшего изложения нам потребуются несколько определений. Определение 1. Функциональная зависимость В отношении R атрибут Y функционально зависит от атрибута X (X и Y могут быть составными) в том и только в том случае, если каждому значению X соответствует в точности одно значение Y: R.X (r) R.Y. Определение 2. Полная функциональная зависимость Функциональная зависимость R.X (r) R.Y называется полной, если атрибут Y не зависит функционально от любого точного подмножества X. Определение 3. Транзитивная функциональная зависимость Определение 4. Неключевой атрибут Неключевым атрибутом называется любой атрибут отношения, не входящий в состав первичного ключа (в частности, первичного). Определение 5. Взаимно независимые атрибуты Два или более атрибута взаимно независимы, если ни один из этих атрибутов не является функционально зависимым от других. 6.1.1. Вторая нормальная формаРассмотрим следующий пример схемы отношения: (СОТР_НОМЕР, СОТР_ЗАРП, ОТД_НОМЕР, ПРО_НОМЕР, СОТР_ЗАДАН) СОТР_НОМЕР, ПРО_НОМЕР -> СОТР_ЗАДАН Как видно, хотя первичным ключом является составной атрибут СОТР_НОМЕР, ПРО_НОМЕР, атрибуты СОТР_ЗАРП и ОТД_НОМЕР функционально зависят от части первичного ключа, атрибута СОТР_НОМЕР. В результате мы не сможем вставить в отношение СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ кортеж, описывающий сотрудника, который еще не выполняет никакого проекта (первичный ключ не может содержать неопределенное значение). При удалении кортежа мы не только разрушаем связь данного сотрудника с данным проектом, но утрачиваем информацию о том, что он работает в некотором отделе. При переводе сотрудника в другой отдел мы будем вынуждены модифицировать все кортежи, описывающие этого сотрудника, или получим несогласованный результат. Такие неприятные явления называются аномалиями схемы отношения. Они устраняются путем нормализации. Определение 6. Вторая нормальная форма (в этом определении предполагается, что единственным ключом отношения является первичный ключ) Отношение R находится во второй нормальной форме (2NF) в том и только в том случае, когда находится в 1NF, и каждый неключевой атрибут полностью зависит от первичного ключа. Можно произвести следующую декомпозицию отношения СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ в два отношения СОТРУДНИКИ-ОТДЕЛЫ и СОТРУДНИКИ-ПРОЕКТЫ: СОТРУДНИКИ-ОТДЕЛЫ (СОТР_НОМЕР, СОТР_ЗАРП, ОТД_НОМЕР) СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР, СОТР_ЗАДАН) СОТР_НОМЕР, ПРО_НОМЕР -> CОТР_ЗАДАН Каждое из этих двух отношений находится в 2NF, и в них устранены отмеченные выше аномалии (легко проверить, что все указанные операции выполняются без проблем). Если допустить наличие нескольких ключей, то определение 6 примет следующий вид: Отношение R находится во второй нормальной форме (2NF) в том и только в том случае, когда оно находится в 1NF, и каждый неключевой атрибут полностью зависит от каждого ключа R. Здесь и далее мы не будем приводить примеры для отношений с несколькими ключами. Они слишком громоздки и относятся к ситуациям, редко встречающимся на практике. 6.1.2. Третья нормальная формаРассмотрим еще раз отношение СОТРУДНИКИ-ОТДЕЛЫ, находящееся в 2NF. Заметим, что функциональная зависимость СОТР_НОМЕР -> СОТР_ЗАРП является транзитивной; она является следствием функциональных зависимостей СОТР_НОМЕР -> ОТД_НОМЕР и ОТД_НОМЕР -> СОТР_ЗАРП. Другими словами, заработная плата сотрудника на самом деле является характеристикой не сотрудника, а отдела, в котором он работает (это не очень естественное предположение, но достаточное для примера). В результате мы не сможем занести в базу данных информацию, характеризующую заработную плату отдела, до тех пор, пока в этом отделе не появится хотя бы один сотрудник (первичный ключ не может содержать неопределенное значение). При удалении кортежа, описывающего последнего сотрудника данного отдела, мы лишимся информации о заработной плате отдела. Чтобы согласованным образом изменить заработную плату отдела, мы будем вынуждены предварительно найти все кортежи, описывающие сотрудников этого отдела. Т.е. в отношении СОТРУДИКИ-ОТДЕЛЫ по-прежнему существуют аномалии. Их можно устранить путем дальнейшей нормализации. Определение 7. Третья нормальная форма. (Снова определение дается в предположении существования единственного ключа.) Отношение R находится в третьей нормальной форме (3NF) в том и только в том случае, если находится в 2NF и каждый неключевой атрибут нетранзитивно зависит от первичного ключа. Можно произвести декомпозицию отношения СОТРУДНИКИ-ОТДЕЛЫ в два отношения СОТРУДНИКИ и ОТДЕЛЫ: СОТРУДНИКИ (СОТР_НОМЕР, ОТД_НОМЕР) ОТДЕЛЫ (ОТД_НОМЕР, СОТР_ЗАРП) Каждое из этих двух отношений находится в 3NF и свободно от отмеченных аномалий. Если отказаться от того ограничения, что отношение обладает единственным ключом, то определение 3NF примет следующую форму: Отношение R находится в третьей нормальной форме (3NF) в том и только в том случае, если находится в 2NF, и каждый неключевой атрибут не является транзитивно зависимым от какого-либо ключа R. На практике третья нормальная форма схем отношений достаточна в большинстве случаев, и приведением к третьей нормальной форме процесс проектирования реляционной базы данных обычно заканчивается. Однако иногда полезно продолжить процесс нормализации. 6.1.3. Нормальная форма Бойса-КоддаРассмотрим следующий пример схемы отношения: СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, СОТР_ИМЯ, ПРО_НОМЕР, СОТР_ЗАДАН) СОТР_НОМЕР, ПРО_НОМЕР -> CОТР_ЗАДАН СОТР_ИМЯ, ПРО_НОМЕР -> CОТР_ЗАДАН В этом примере мы предполагаем, что личность сотрудника полностью определяется как его номером, так и именем (это снова не очень жизненное предположение, но достаточное для примера). В соответствии с определением 7 отношение СОТРУДНИКИ-ПРОЕКТЫ находится в 3NF. Однако тот факт, что имеются функциональные зависимости атрибутов отношения от атрибута, являющегося частью первичного ключа, приводит к аномалиям. Например, для того, чтобы изменить имя сотрудника с данным номером согласованным образом, нам потребуется модифицировать все кортежи, включающие его номер. Определение 8. Детерминант Определение 9. Нормальная форма Бойса-Кодда Отношение R находится в нормальной форме Бойса-Кодда (BCNF) в том и только в том случае, если каждый детерминант является возможным ключом. Очевидно, что это требование не выполнено для отношения СОТРУДНИКИ-ПРОЕКТЫ. Можно произвести его декомпозицию к отношениям СОТРУДНИКИ и СОТРУДНИКИ-ПРОЕКТЫ: СОТРУДНИКИ (СОТР_НОМЕР, СОТР_ИМЯ) СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР, СОТР_ЗАДАН) СОТР_НОМЕР, ПРО_НОМЕР -> CОТР_ЗАДАН Возможна альтернативная декомпозиция, если выбрать за основу СОТР_ИМЯ. В обоих случаях получаемые отношения СОТРУДНИКИ и СОТРУДНИКИ-ПРОЕКТЫ находятся в BCNF, и им не свойственны отмеченные аномалии. 6.1.4. Четвертая нормальная формаРассмотрим пример следующей схемы отношения: ПРОЕКТЫ (ПРО_НОМЕР,ПРО_СОТР, ПРО_ЗАДАН) Отношение ПРОЕКТЫ содержит номера проектов, для каждого проекта список сотрудников, которые могут выполнять проект, и список заданий, предусматриваемых проектом. Сотрудники могут участвовать в нескольких проектах, и разные проекты могут включать одинаковые задания. Каждый кортеж отношения связывает некоторый проект с сотрудником, участвующим в этом проекте, и заданием, который сотрудник выполняет в рамках данного проекта (мы предполагаем, что любой сотрудник, участвующий в проекте, выполняет все задания, предусмотренные этим проектом). По причине сформулированных выше условий единственным возможным ключем отношения является составной атрибут ПРО_НОМЕР, ПРО_СОТР, ПРО_ЗАДАН, и нет никаких других детерминантов. Следовательно, отношение ПРОЕКТЫ находится в BCNF. Но при этом оно обладает недостатками: если, например, некоторый сотрудник присоединяется к данному проекту, необходимо вставить в отношение ПРОЕКТЫ столько кортежей, сколько заданий в нем предусмотрено. Определение 10. Многозначные зависимости В отношении R (A, B, C) существует многозначная зависимость R.A -> -> R.B в том и только в том случае, если множество значений B, соответствующее паре значений A и C, зависит только от A и не зависит от С. В отношении ПРОЕКТЫ существуют следующие две многозначные зависимости: Легко показать, что в общем случае в отношении R (A, B, C) существует многозначная зависимость R.A -> -> R.B в том и только в том случае, когда существует многозначная зависимость R.A -> -> R.C. Дальнейшая нормализация отношений, подобных отношению ПРОЕКТЫ, основывается на следующей теореме: Отношение R (A, B, C) можно спроецировать без потерь в отношения R1 (A, B) и R2 (A, C) в том и только в том случае, когда существует MVD A -> -> B | C. Под проецированием без потерь понимается такой способ декомпозиции отношения, при котором исходное отношение полностью и без избыточности восстанавливается путем естественного соединения полученных отношений. Определение 11. Четвертая нормальная форма Отношение R находится в четвертой нормальной форме (4NF) в том и только в том случае, если в случае существования многозначной зависимости A -> -> B все остальные атрибуты R функционально зависят от A. В нашем примере можно произвести декомпозицию отношения ПРОЕКТЫ в два отношения ПРОЕКТЫ-СОТРУДНИКИ и ПРОЕКТЫ-ЗАДАНИЯ: ПРОЕКТЫ-СОТРУДНИКИ (ПРО_НОМЕР, ПРО_СОТР) ПРОЕКТЫ-ЗАДАНИЯ (ПРО_НОМЕР, ПРО_ЗАДАН) Оба эти отношения находятся в 4NF и свободны от отмеченных аномалий. 6.1.5. Пятая нормальная формаВо всех рассмотренных до этого момента нормализациях производилась декомпозиция одного отношения в два. Иногда это сделать не удается, но возможна декомпозиция в большее число отношений, каждое из которых обладает лучшими свойствами. Рассмотрим, например, отношение СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ (СОТР_НОМЕР, ОТД_НОМЕР, ПРО_НОМЕР) Предположим, что один и тот же сотрудник может работать в нескольких отделах и работать в каждом отделе над несколькими проектами. Первичным ключем этого отношения является полная совокупность его атрибутов, отсутствуют функциональные и многозначные зависимости. Поэтому отношение находится в 4NF. Однако в нем могут существовать аномалии, которые можно устранить путем декомпозиции в три отношения. Определение 12. Зависимость соединения Определение 13. Пятая нормальная форма Введем следующие имена составных атрибутов: Предположим, что в отношении СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ существует зависимость соединения: На примерах легко показать, что при вставках и удалениях кортежей могут возникнуть проблемы. Их можно устранить путем декомпозиции исходного отношения в три новых отношения: СОТРУДНИКИ-ОТДЕЛЫ (СОТР_НОМЕР, ОТД_НОМЕР) СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР) ОТДЕЛЫ-ПРОЕКТЫ (ОТД_НОМЕР, ПРО_НОМЕР) Методы проектирования логических моделей реляционных баз данных. Декомпозиция и синтез отношенийМетоды проектирования на основе декомпозиции отношенийПонятие о методах декомпозиции отношенийПредположим, что схема базы данных содержит F-зависимости. Из положений теории о F-зависимостях следует, что если отношения базы данных находятся в нормальной форме Бойса-Кодда (НФБК), то проектирование логической модели базы данных можно считать завершенным в этом классе зависимостей. Как видно, теория дает полезный (!) критерий останова проектирования. Сформулируем наглядный критерий, позволяющий определить, находится ли отношение в НФБК. Для этого введем следующее вспомогательное понятие.
Детерминантами в отношениях являются атрибуты левых частей ФЗ. Возможные ключи (см. учебный элемент » Реляционная модель данных «) идентифицируются путем нахождения минимального множества значений атрибутов, которые определяют значения всех остальных атрибутов в отношении. Напомним понятие возможного ключа отношения как атрибута или атрибутов данного отношения, который (-ые) могут быть в данном отношении выбраны в качестве первичного. Тогда критерий Кодда, позволяющий определить, находится ли отношение в НФБК, может быть сформулирован следующим образом: Таким образом, при декомпозиции отношений необходимо строить списки возможных ключей и детерминантов и сравнивать их на совпадение. Устранив таким образом большинство потенциальных аномалий, проектирование можно завершить. Алгоритм метода декомпозиции отношенийАлгоритм метода декомпозиции отношений Уточним некоторые аспекты метода декомпозиции.
Методы проектирования на основе синтеза отношенийНекоторые проблемы метода декомпозицииПервая ситуация: в процессе декомпозиции потеряна ФЗ Прежде чем перейти к изучению метода синтеза, рассмотрим использование элементов синтеза в декомпозиции. Как можно было заметить, декомпозиция осложняется при наличии транзитивных ФЗ. Особенностью транзитивной ФЗ является ее избыточность. ФЗ принято считать избыточной, если она содержит в себе информацию, которая может быть получена из других ФЗ базы данных. Исключение избыточной транзитивной ФЗ из базы данных может быть выполнено без отрицательного воздействия на ее результаты. Избыточность присуща не только транзитивным ФЗ и, следовательно, избыточные ФЗ желательно исключать до применения алгоритма декомпозиции. Понятие о методах синтеза отношенийИсключить избыточность в исходном наборе ФЗ можно путем применения правил вывода ФЗ (См. учебный элемент » Функциональные зависимости «). Как известно, для класса F-зависимостей достаточно использовать шесть таких правил. При этом критерием останова процедуры исключения может служить получение минимального покрытия исходного набора ФЗ. Неединственность минимальных покрытий указывает на то, что порядок исключения избыточных ФЗ может оказать влияние на полученные результаты. Отсюда следует эмпирическое правило: Избыточные ФЗ следует удалять по одной, каждый раз проводя анализ полученного набора ФЗ на избыточность. Первое. Если универсальное отношение содержит большое количество атрибутов, например более трех десятков, то ручное проектирование становится трудоемким и может, с одной стороны, привести к большим временным затратам, а с другой стороны, породить недопустимое для практики число отношений в базе данных. Поэтому в данном случае следует подумать об автоматизации процесса проектирования, т.е. создать программу проектирования схем баз данных. Кроме того, задача приведения исходных отношений к НФБК может оказаться невыполнимой. Такой факт имел место в практике проектирования. Поскольку НФБК может не существовать на заданном наборе ФЗ, то логичным было бы отказаться от требования приведения отношений базы данных к этой форме. Эта ситуация подкрепляется и теоретически: при любом заданном множестве F-зависимостей над схемой r БД можно построить схему БД в 3НФ. Таким образом, ограничимся поиском 3НФ в ходе применения метода синтеза, при этом остаются проблемы, связанные с выполнением операций над данными.
|