какой недостаток устраняется за счет компенсирующего устройства

КОМПЕНСИ́РУЮЩИЕ УСТРО́ЙСТВА

Том 14. Москва, 2009, стр. 688

Скопировать библиографическую ссылку:

КОМПЕНСИ́РУЮЩИЕ УСТРО́ЙСТВА в элек­тро­энер­ге­ти­ке, уст­рой­ст­ва, для воз­ме­ще­ния (ком­пен­са­ции) ре­ак­тив­ной мощ­но­сти; при­меня­ют­ся в элек­тро­энер­ге­тич. сис­те­мах с це­лью нор­ма­ли­за­ции на­пря­же­ний в уз­лах се­ти и сни­же­ния по­терь элек­тро­энер­гии. Ре­ак­тив­ная мощ­ность (РМ), оп­ре­де­ляе­мая пе­рио­дич. об­ме­ном энер­ги­ей ме­ж­ду элек­три­че­ски­ми и маг­нит­ны­ми по­ля­ми эле­мен­тов элек­трич. це­пи, спо­соб­ных на­ка­п­ли­вать и от­да­вать энер­гию, вы­зы­ва­ет до­пол­нит. на­грев про­вод­ни­ков и ока­зы­ва­ет зна­чит. влия­ние на на­пря­же­ние в уз­лах элек­трич. се­ти. В трёх­фаз­ной се­ти пе­ре­мен­но­го то­ка эле­мен­ты с маг­нит­ны­ми по­ля­ми (напр., асин­хрон­ные дви­га­те­ли, транс­фор­ма­то­ры) по­треб­ля­ют РМ; эле­мен­ты с элек­трич. по­ля­ми (напр., кон­ден­са­тор­ные ба­та­реи) её ге­не­ри­ру­ют. Осн. ис­точ­ни­ком РМ в элек­трич. се­ти яв­ля­ют­ся ге­не­ра­то­ры элек­тро­стан­ций. Возд. ли­нии элек­тро­пе­ре­дач вы­со­ко­го и сверх­вы­со­ко­го на­пря­же­ния (330 кВ и вы­ше) при ма­лой на­груз­ке энер­го­сис­те­мы ге­не­ри­ру­ют, а при боль­шой – по­треб­ля­ют РМ. В за­ви­си­мо­сти от на­груз­ки в се­ти мо­жет воз­ник­нуть как из­бы­ток РМ, так и её де­фи­цит. Это яв­ле­ние, как пра­ви­ло, но­сит ло­каль­ный ха­рак­тер и воз­ни­ка­ет в к.-л. из уз­лов се­ти. Из­бы­ток РМ при­во­дит к по­вы­ше­нию на­пря­же­ния в уз­ле и мо­жет пред­став­лять опас­ность для обо­ру­до­ва­ния под­стан­ций; он по­гло­ща­ет­ся К. у., ус­та­нов­лен­ны­ми в уз­ле, в ре­зуль­та­те че­го на­пря­же­ние нор­ма­ли­зу­ет­ся. Де­фи­цит РМ вы­зы­ва­ет сни­же­ние на­пря­же­ния, что при­во­дит к ухуд­ше­нию ра­бо­ты обо­ру­дова­ния по­тре­би­телей элек­тро­энер­гии (сни­же­ние ос­ве­щён­но­сти, ос­та­нов­ка элек­тро­дви­га­те­лей, на­ру­ше­ние ра­бо­ты ком­пь­ю­те­ров и др.); уст­ра­ня­ет­ся К. у., ге­не­ри­рую­щи­ми РМ.

Источник

Выбор компенсирующих устройств

Содержание

Основные сведения

Компенсирующие устройства являются одним из способов регулирования напряжений в электрической сети. Данные устройства являются источниками или потребителями реактивной мощности таким образом, потребляя или генерируя реактивную мощность, эти устройства влияют на величины падения и потери напряжения на отдельных элементах электрической сети.

Виды компенсирующих устройств

Различаются следующие основные виды компенсирующих устройств:

Принцип выбора мощности компенсирующего устройства

какой недостаток устраняется за счет компенсирующего устройства

Принцип регулирования напряжения за счет изменения потока реактивной мощности приведен на рисунке 1.

Напряжение в конце сети:

где [math] \dot U_2 [/math] — вектор напряжения в конце сети, кВ;

[math] \dot U_1 [/math] — вектор напряжения в начале сети, кВ; [math] \dot ΔU_ <12>[/math] — вектор падения напряжения на участке сети.

Вектор падения напряжения в основном зависит от продольной составляющей:

[math] \displaystyle ΔU_ <12>= \frac<Р_<12>^Н⋅R_C+Q_<12>^Н⋅X_C>, (2)[/math]

где [math] ΔU_ <12>[/math] — продольная составляющая вектора падения напряжения на участке сети, кВ;

[math] Р_<12>^Н [/math] — поток активной мощности в начале участка сети, МВт; [math] Q_<12>^Н [/math] — поток реактивной мощности в начале участка сети, Мвар; [math] R_C [/math] — активное сопротивление участка сети, Ом; [math] X_C [/math] — индуктивное сопротивление участка сети, Ом; [math] U_1 [/math] — модуль вектора напряжения в начале сети, кВ.

Если принять, что напряжение в начале участка сети удовлетворяет всем требованиям, а напряжение в конце участка сети выходит за пределы заданных ограничений, то с учетом выражений (1) и (2) на величину напряжения в конце участка сети можно повлиять только путем изменения значения потока реактивной мощности. Активная мощность определяется требованием нагрузки и не может корректироваться для регулирования режима. Параметры сети (активной и индуктивное сопротивление) также являются неизмененными параметрами, так как отражают марку, сечение и количество проводов на рассматриваемом участке сети, следовательно, они не могут изменяться в процессе изменения режима сети.

[math] \displaystyle U_2\sim\frac <1><ΔU_<12>>\sim\frac<1>> (3)[/math]

То есть, чем больше значение передаваемой мощности, тем больше значение падения напряжения, тем больше снижается напряжение в рассматриваемом участке сети.

Для того, чтобы понять, какое именно компенсирующее устройство лучше подходит для проектируемого района сети, необходимо определиться с уровнем напряжения в сети относительно требуемого:

Мощность, которую необходимо выработать или потребить:

где [math] Q_<КУ>^[/math] — минимальная реактивная мощность, которую необходимо скомпенсировать посредством компенсирующих устройств для введения напряжения в рассматриваемом узле в допустимую область, Мвар;

[math]U_<2.ДОП>[/math] — модуль допустимого напряжения в рассматриваемом узле, кВ; [math]U_2[/math] — модуль напряжения в рассматриваемом узле, кВ; [math]X_C[/math] — индуктивное сопротивление участка сети, Ом.

Источник

Эволюция технологий и устройств компенсации реактивной мощности

Если абстрагироваться от дат публикаций ряда важных ранних теоретических исследований в области снижения негативного влияния перетоков реактивной мощности на качество генерируемой/транспортируемой электрической энергии, то текущий год знаменует столетие реального практического использования устройств компенсации реактивной мощности в энергопередающих сетях разного уровня напряжения.

Впервые вне исследовательских лабораторий для компенсации реактивной мощности в 1914 году были использованы шунтирующие конденсаторы (H. Frankand S. Ivner, «Thyristor-ControlledShuntCompensationinPowerNetworks», ASEA Journal, 1981), подключаемые в сеть последовательно с нагрузкой, а к началу текущего тысячелетия эволюционировали не только устройства и технологии для коррекции коэффициента мощности, но и сама концепция — сегодня электрическая сеть уже рассматривается не, как пассивное сооружение для транспорта электроэнергии, а как активное устройство, участвующее в управлении режимами генерации, транспорта и потребления электрической энергии.

Переход к управляемым (гибким) системам электропередачи переменного тока (FACTS — Flexible AlternativeCurrentTransmissionSystem – термин формализован Институтом электроэнергетики EPRI в США) обусловил разработку и внедрение в энергосистемы новых типов устройств коррекции коэффициента мощности и стабилизации сетевого напряжения —управляемых шунтирующих реакторов, статических тиристорных компенсаторов реактивной мощности, синхронных статических компенсаторов реактивной мощности типа СТАТКОМ (StaticSynchronousCompensator — STATCOM), синхронных статических продольных компенсаторов реактивной мощности на базе преобразователей напряжения, управляемых тиристорами устройств продольной емкостной компенсации, управляемых фазоповоротных устройств, вставок постоянного тока на базе преобразователей напряжения, объединенных регуляторов потока мощности, асинхронизированных машин, электромашинновентильных комплексов и т.д., а также управляющих систем — глобального мониторинга, защиты и управления (wide-areamonitoring, protection, andcontrolsystems — WAMPAC), глобального позиционирования (GPS), фазных измерений (PMU), диспетчерского управления и сбора информации (SCADA), защиты схем управления (SPS) и пр.

какой недостаток устраняется за счет компенсирующего устройства

Вместе с тем, во всяком случае в сетях низкого и среднего напряжения РФ по-прежнему достаточно эффективно используются традиционные устройства компенсации реактивной мощности, имеющие свои достоинства и недостатки в сравнении с устройствами, агрегатами, комплексами и системами FACTS.

Типовые топологии схем компенсации реактивной мощности

Вне зависимости от типа устройств компенсации реактивной мощности традиционными на текущий момент стали две топологии схем их присоединения к сетям электропередачи с переменного тока с линейными и нелинейными нагрузками:

какой недостаток устраняется за счет компенсирующего устройства

Рис. Параллельная (поперечная) компенсация реактивной мощности электродвигателя (индуктивной нагрузки): а — схема без компенсации, б — схема с компенсацией

К достоинствам схем параллельной (поперечной) компенсации реактивной мощности относят:

Недостатком параллельной (поперечной) компенсации является ограниченная возможность демпфирования быстрых изменений (колебаний) активной составляющей мощности;

какой недостаток устраняется за счет компенсирующего устройства

Рис. Параллельная (продольная) компенсация реактивной мощности электродвигателя: а —схема без компенсации, б — схема с компенсацией. Рис. Типовая схема устройства последовательной (продольной) компенсации реактивной мощности с защитой от перенапряжения

Достоинствами схем последовательной (продольной) компенсации реактивной мощности считают: возможность оптимизации потоков реактивной энергии по разным фазам напряжения;

значительную степень компенсации; простоту интеграции в сеть компенсирующих устройств. Недостатки последовательной (продольной) компенсации реактивной мощности — отсутствие возможности регулирования сетевого напряжения, сложность управления устройствами при переменных нагрузках, большие риски перенапряжения во время резких изменений нагрузки из-за задержки срабатывания устройства.

Традиционные устройства компенсации реактивной мощности

Статические или механически переключаемые устройства компенсации реактивной мощности.

Это типовые релейные (контакторные) установки КРМ, УКРМ и т.д. с механическим (ручным) включением/отключением ступеней батарей силовых конденсаторов. Включение или отключение каждой ступени даже с современными вакуумными контакторами занимает время, часто критическое при динамических, быстро изменяющихся нагрузках, что определяет значительные риски, как перенапряжений, так и провалов сетевого напряжения. Условная «плавность» регулирования величины генерируемой реактивной энергии зависит от числа ступеней в установке и мощности каждой ступени, а потому в сети с динамической нагрузкой всегда напряжение нестабильно и может превышать или быть ниже оптимального разности в объемах генерируемой и потребляемой реактивной мощности.

Дополнительным недостатком релейных (контакторных) установок компенсации реактивной мощности с механическим переключением является практически полная неспособность к компенсации мощности искажений, возникающей в цепях с нелинейными нагрузками из-за искажений синусоиды основной частоты тока синусоидами гармоник тока более высокого порядка и показывающей несоответствие синусоидальности кривых тока/напряжения. Причем фильтры гармоник в статических/механически переключаемых устройствах компенсации реактивной мощности остаются малоэффективными из-за нестабильности сети по теку и напряжению, а прогрессивные импульсно-модуляционные преобразователи (ИМП), ориентированные на компенсацию мощности искажений, пока имеют ограниченное применение, как из-за большой стоимости, так и несовершенства алгоритмов адаптации в конкретных сетях с конкретной нелинейностью нагрузки.

какой недостаток устраняется за счет компенсирующего устройства

Рис. Типовая топология компенсатора с импульсно-модуляционным (ИМП) преобразователем с: а) емкостным и б) индуктивным накопителями энергии

какой недостаток устраняется за счет компенсирующего устройства

Рис. Диаграммы напряжений и токов компенсатора с импульсно-модуляционным (ИМП) преобразователем с нагрузкой сложного характера, где: а) напряжения и токи трёх фаз распределительной сети; б) напряжение фазы А — UA и токи фазы А — линейной нагрузки IAлн, нелинейной нагрузки IAнн, компенсатора IAк.

Установки синхронной компенсации реактивной мощности

Установки синхронной компенсации реактивной мощности используются в энергосетях развитых стран мира уже более 50 лет, однако из-за больших потерь в сравнении с статическими устройствами компенсации реактивной мощности и стоимости (в том числе систем защиты от токов короткого замыкания) установки синхронной компенсации реактивной мощности постепенно заменяются более прогрессивными устройствами. Кроме того, установки синхронной компенсации реактивной мощности, а по факту — синхронные двигатели специальной конструкции, работающие на холостом ходу и в режиме перевозбуждения обмотки генерирующие реактивную мощность — являются средствами пассивной компенсации и не могут быть адаптированы в системах FACTS.

Переключаемые тиристорные установки компенсации реактивной мощности типа TSC. Это статические конденсаторные установки с различным числом ступеней, управляемые тиристорными переключателями, обеспечивающими быстрое подключение/отключение ступеней в момент равенства напряжений на конденсаторных блоках и в сети. Впервые статические установки компенсации реактивной мощности типа TSC были использованы ASEA в 1971 году, имели среднюю задержку переключения от половины до цикла колебаний по току/напряжению, по факту не генерировали гармоник и отличались простотой конструктивных решений.

какой недостаток устраняется за счет компенсирующего устройства

Рис. Переключаемая тиристорами конденсаторная установка компенсации реактивной мощности. Вместе с тем, устройства типа TSC остались ступенчатыми, а значит дискретными по потокам генерируемой мощности, а каждая батарея конденсаторов оборудовалась своим тиристорным переключателем, что делало установку материалоемкой и финансово затратной.

Отчасти недостатки финансовой доступности установок типа TSC были устранены применением тиристорно-диодных схем, к тому же выгодно отличающихся почти полным отсутствием импульсных токов при переключении, однако имеющих запаздывание включения/отключения ступени не менее одного цикла в сравнении половиной цикла у установок TSC.

какой недостаток устраняется за счет компенсирующего устройства

Рис. Бинарные тиристорно-диодные переключатели статических установок компенсации реактивной мощности.

какой недостаток устраняется за счет компенсирующего устройства

Рис. Диаграммы токов бинарной тиристорно-диодной установки компенсации реактивной мощности, где: а — d — токи по В1 — В4; е — результирующая кривая тока установки. Управляемые тиристорами реакторы.

Управляемые тиристорами реакторы (тип TCR), как правило, имеют батареи статических конденсаторов, фильтры гармоник низшего порядка и управляемую тиристорами индуктивность (собственно реактор), интегрируемую в каждую фазу питающей сети. Управляемая тиристорами индуктивность используется для демпфирования избытка реактивной мощности, генерируемой конденсаторами, что исключает риски перенапряжения. В то же время тиристорное управление, как конденсаторными блоками, так и индуктивностью позволяет формировать достаточно плавную компенсацию реактивной мощности, хотя для получения реально плавной на практике компенсации используют:

какой недостаток устраняется за счет компенсирующего устройства

Рис. Трех импульсные (слева) управляемые тиристорами реакторы с пассивными фильтрами низкоуровневых гармоник и двенадцати импульсные (справа) управляемые тиристорами реакторы типа TCR с трансформатором для смещения фаз, позволяющего устранить гармоники 5 и 7 порядка без использования пассивных фильтров.

какой недостаток устраняется за счет компенсирующего устройства

Рис. Типовая топология комбинированной установки компенсации реактивной мощности TSC-TCR.

какой недостаток устраняется за счет компенсирующего устройства

Рис. Типовая топология тиристорно-управляемой установки последовательной (продольной) компенсации TCSC.

Самокоммутируемые преобразователи для компенсации реактивной мощности

Самокоммутируемые преобразователи для компенсации реактивной мощности – прогрессивные полупроводниковые устройства, способные к генерированию или поглощению реактивной мощности, и включающие статические синхронные компенсаторы, объединенные энергетические регуляторы потока (unifiedpowerflowcontrollers — UPFC) и динамические восстановители напряжения (dynamicvoltagerestorers — DVR).

какой недостаток устраняется за счет компенсирующего устройства

Источник

Сравнение основных типов компенсирующих устройств

какой недостаток устраняется за счет компенсирующего устройства

Рубрика: Технические науки

Дата публикации: 18.06.2016 2016-06-18

Статья просмотрена: 3800 раз

Библиографическое описание:

Шульга, К. С. Сравнение основных типов компенсирующих устройств / К. С. Шульга, Ю. О. Астапова, А. Е. Астапов. — Текст : непосредственный // Молодой ученый. — 2016. — № 12 (116). — С. 449-453. — URL: https://moluch.ru/archive/116/31791/ (дата обращения: 16.11.2021).

Проблема компенсации реактивной мощности (КРМ) вызвана высокой загрузкой элементов систем распределения электрической энергии (ЭЭ) потоками реактивной мощности (РМ) вследствие значительного её потребления из сетей. [1]

В сетях напряжением 6–10 кВ технологические потери достигают около 8–12 % от отпущенной в сеть электроэнергии. Потери электроэнергии зависят от параметров электрической схемы, а также от конструкции сетей и режимов нагрузки. По данным произведенных расчетов для реальных сетей 6–10 кВ, потери электроэнергии зависят от передаваемой потребителям величины реактивной мощности. Например, при изменении коэффициента реактивной мощности (tgφ) от 0,5 до 0,8 потери электроэнергии увеличиваются примерно на 20 %.

По произведенному анализу показаний счетчиков активной и реактивной мощности установлено, что на шинах 6–10 кВ источника питания коэффициент реактивной мощности в процессе эксплуатации изменяется и достигает значения 0,77–0,85, из-за чего потери электроэнергии достигают существенных значений.

Наиболее эффективным способом снижения потерь электрической энергии в сетях 6–10 кВ является компенсация реактивной мощности. [2]

Помимо изменения потерь электроэнергии и tgφ, посредством генерации реактивной мощности регулируется величина напряжения у потребителя по формуле:

какой недостаток устраняется за счет компенсирующего устройства(1)

где: UЦП — напряжение центра питания;

РН и QН — активная и реактивная мощность нагрузки потребителя;

RЭ и XЭ — эквивалентное активное и индуктивное сопротивление между центром питания и потребителем.

Из приведенной формулы видно, что можно влиять на напряжение у потребителя, изменяя реактивную мощность QН, например, регулируя ее с помощью батареи статических конденсаторов.

Существует три вида компенсации:

какой недостаток устраняется за счет компенсирующего устройства

Рис. 1 Виды компенсации

Рассмотрим основные типы компенсирующих устройств:

БСК состоит из групп силовых конденсаторов, путем параллельно — последовательного соединения их в звезду или треугольник в зависимости от режима работы нейтрали.

какой недостаток устраняется за счет компенсирующего устройства

Рис. 2 Принципиальные схемы батарей конденсаторов: а — соединение конденсаторов по схеме треугольник, б — соединение конденсаторов по схеме звезда

При соединении конденсаторов звездой реактивная мощность батареи:

какой недостаток устраняется за счет компенсирующего устройства(2)

При соединении конденсаторов треугольником реактивная мощность батареи:

какой недостаток устраняется за счет компенсирующего устройства(3)

Из приведенных формул видно, что существенным недостатком БСК является квадратичная зависимость генерируемой реактивной мощности от напряжения, что может являться причиной лавины напряжения.

Батареи конденсаторов бывают регулируемые (управляемые) и нерегулируемые. В нерегулируемых БСК число конденсаторов неизменно, а величина реактивной мощности зависит только от величины напряжения. При выборе БСК, суммарная мощность нерегулируемых батарей конденсаторов не должна превышать наименьшей реактивной нагрузки сети, иначе переток реактивной мощности в режиме минимума нагрузок может быть направлен в систему.

В регулируемых батареях конденсаторов в зависимости от режима автоматически или вручную изменяется число включенных конденсаторов. При этом изменяется емкость БСК и мощность, выдаваемая в сеть.

БСК очень чувствительны к высшим гармоникам, которые значительно снижают ее электрическую прочность. Поэтому были созданы специальные фильтро-компенсирующие устройства, которые могли работать в сетях с высшими гармониками. Конструктивно ФКУ это БСК с использованием специальных фильтров.

В режиме перевозбуждения синхронные двигатели генерируют реактивную мощность, а в режиме недовозбуждения — потребляют реактивную мощность, что является их главным достоинством. Но, по сравнению с БСК, СД имеют более сложную конструкцию и систему включения. Обычно СД участвуют в технологическом процессе предприятии и для компенсации реактивной мощности их специально приобретать не нужно.

Существует специальная конструкция синхронного двигателя, когда он не несет активной нагрузки, а используется только для выработки реактивной мощности, такое устройство получило название синхронный компенсатор.

Если СД уже установлены на промышленном предприятии по условиям технологии, их следует в первую очередь полностью использовать для КРМ. Поэтому при необходимости выполнения КРМ на напряжение 6–10 кВ следует рассматривать возможность получения дополнительной реактивной мощности от СД, если их коэффициент загрузки КСД

Похожие статьи

Компенсация реактивной мощности в районных сетях

Вопросы экономного использования всех видов энергии, в том числе электрической, и повышения экономичности работы электроустановок являются важной государственной проблемой.

Компенсация реактивной мощности в электрических сетях 0,4кВ

Компенсация реактивной мощности с одновременным улучшением качества электроэнергии непосредственно в сетях промышленных предприятий является одним из основных направлений сокращения потерь электроэнергии и повышения эффективности электроустановок.

Окупаемость мероприятий направленных на уменьшение потерь.

Устройства компенсации реактивной энергии необходимы для компенсации реактивных величин системы (пример, ЛЭП) и реактивной мощности, участвующей в загрузках и составляющих электроэнергетической системы.

Управление мощностью в системах электроснабжения

Индивидуальная компенсациякомпенсация реактивной мощности каждой нагрузки отдельно (например, на клеммах двигателя). Индивидуальная компенсация — это наиболее простое техническое решение.

Потери электроэнергии и способы борьбы с ними

Это способ использования устройств компенсации реактивной мощности.

Реактивная мощность. Качество электроэнергии: Руководство для практических расчетов. — М.: ЭНАС, 2009.

Меры по снижению потерь электроэнергии на промышленных.

реактивная мощность, потеря энергии, реактивная энергия, активная мощность, электрическая энергия, потеря, трансформатор, правильное проектирование, минимум потери энергии, холостой ход.

Неисправности батарей статических конденсаторов.

Батареи статических конденсаторов (БСК) одно из средств компенсации реактивной мощности и повышения коэффициента мощности (cosϕ) в электрических сетях.

Компенсация реактивной энергии как способ увеличения.

Устройства компенсации реактивной энергии необходимы для компенсации реактивных величин системы (пример, ЛЭП) и реактивной мощности, участвующей в загрузках и составляющих электроэнергетической системы.

Специальные фильтрокомпенсирующие устройства как метод.

ФКУ, также известные как силовые фильтры гармоник, помимо ослабления высших гармоник токов и напряжений выполняют функции компенсации реактивной мощности, изменения напряжения в месте подключения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *