какую систему счисления используют дети при счете на пальцах
Презентация для учителя «Пальцевый счет»
Ищем педагогов в команду «Инфоурок»
Описание презентации по отдельным слайдам:
ПАЛЬЦЕВОЙ СЧЁТ Выполнила студентка 3 курса Пшеничникова Виктория
Пальцевый счёт, счёт на пальцах или дактилономия — математические вычисления, осуществляемые человеком с помощью сгибания, разгибания или указывания пальцев рук (иногда и ног).
Самым первым инструментом счета у древнего пещерного человека в верхнем палеолите, безусловно, были пальцы рук. У многих народов пальцы (или их суставы) при любых торговых операциях выполняли роль первого счетного устройства.
К счету по пальцам рук восходят многие системы счисления: пятеричная (одна рука), десятеричная (две руки), двадцатеричная (пальцы рук и ног), сорокаричная (суммарное число пальцев рук и ног у покупателя и продавца).
Как считали сороками Это вычисление происходит от счета по суставам пальцев. Сибирские звероловы до начала ХХ века считали большим пальцем по двум суставам остальных четырех пальцев правой руки. Насчитав на правой руке 8 единиц, счетчик загибал палец левой руки. Операция счета заканчивалась, когда оказывались загнутыми все 5 пальцев левой руки. Пять восьмерок, или 40, составляли счетную группу – сорочόк.
«Счёт дюжинами» Счет дюжинами основан на подсчете числа фаланг на руке счетовода и похож на счет сороками. Сосчитав 12 фаланг на левой руке, счетовод загибал на правой руке один палец. Когда все пальцы правой руки оказывались сжатыми в кулак, счет завершался. Получалось 12 пятерок, то есть 60. Кулак означал пятерку дюжин, то есть шестьдесят.
Способ 2 Умножение чисел от 6 до 9 Это старинный способ пальцевого счета. Так умножали еще древние римляне. Пусть нам нужно умножить 6 на 7. Руки сожмем в кулаки. На одной руке разогнем столько пальцев, насколько 6 больше 5, т.е. на 1 палец, а на другой столько, насколько 7 больше 5, т.е. на 2. Количество разогнутых пальцев покажет число десятков произведения. Один палец на одной руке, да два пальца на другой составят десятки, получаем три десятка. Перемножим загнутые пальцы правой руки с загнутыми пальцами левой руки. На одной четыре, а на другой три. Их произведение равно 3х4=12. Теперь сложим результаты двух действий: 30+12=42 ( 1 + 2 ) * 10 = 30 4 * 3 = 12 30 + 12 = 42 6 * 7 = 42
Способ 3 Умножение двузначных числе на 9 Отсчитаем число ДЕСЯТКОВ (3) нашего двузначного множителя от большого пальца левой руки. Раздвинем пальцы так, чтобы палец десятков и следующий за ним образовали V (галочку). Палец, соответствующий ЕДИНИЦАМ множителя (7), загнём, как и в способе I (начиная считать от большого пальца слева). Количество пальцев от большого пальца левой руки до «галочки» равно количеству сотен в произведении; Количество пальцев от «галочки» до загнутого пальца равно количеству десятков в произведении; Количество пальцев от загнутого пальца до большого пальца правой руки равно количеству единиц в произведении. Загнутый палец в подсчётах не участвует. Перед нами три группы пальцев: сотни, десятки и единицы произведения. 37 * 9=333 3 х 100 + 3 х 10 + 3 х 1 = 333
Пальцевой счет сегодня На ринге При обучении счету детей В системе школьных отметок
СПАСИБО ЗА ВНИМАНИЕ!
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Номер материала: ДБ-1197835
Международная дистанционная олимпиада Осень 2021
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Безлимитный доступ к занятиям с онлайн-репетиторами
Выгоднее, чем оплачивать каждое занятие отдельно
Минпросвещения будет стремиться к унификации школьных учебников в России
Время чтения: 1 минута
Заболеваемость ковидом среди студентов и преподавателей снизилась на 33%
Время чтения: 4 минуты
Руководители управлений образования ДФО пройдут переобучение в Москве
Время чтения: 1 минута
В проекте КоАП отказались от штрафов для школ
Время чтения: 2 минуты
Путин попросил привлекать родителей к капремонту школ на всех этапах
Время чтения: 1 минута
В России выбрали топ-10 вузов по работе со СМИ и контентом
Время чтения: 3 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Исследовательская работа «Считаем на пальцах»
Ищем педагогов в команду «Инфоурок»
МБОУ Новоселковской СОШ
Работа реферативного характера с элементами самостоятельного поиска.
Тема: «Считаем на пальцах»
Выполнила: ученица 6А класса
Коровина Карина Сергеевна
Филатова Анастасия Николаевна
1 квалификационной категории
1. Как люди научились считать. 4
1.1 Что такое пальцевый счет? 4
2. Счёт на пальцах у разных народов. 6
2.1 Арабско-восточноафриканский счёт. 7
2.2 Китайский счёт. 8
2.3 Континентальный европейский счёт. 10
2.4 Русский счёт. 10
3. Таблица умножения на пальцах. 12
4. Пальцы в двоичной системе счисления. 14
Можно ли представить себе мир без чисел? Без чисел ни покупки не сделаешь, ни времени не узнаешь, ни номера телефона не наберёшь. А космические корабли, лазеры и все другие технические достижения?! Они были бы попросту невозможны, если бы не наука о числах.
Две стихии господствуют в математике – числа и фигуры с их бесконечным многообразием свойств и взаимосвязей. В моей работе предпочтение отдано стихии чисел и действий с ними.
С глубокой древности накапливалось все больше сведений о числах. Начатки математических знаний обнаруживаются уже примерно за 4 тыс. лет до н.э. Об этом свидетельствуют дошедшие до нас египетские папирусы, вавилонские таблички, где встречаются решения арифметических, геометрических и алгебраических задач.
В 3 в. до н.э. Архимед нашёл способ определения площадей, объёмов и центров тяжести простых фигур. Во 2 в. до н.э. Птолемей изложил основы тригонометрии, дал таблицы синусов. Учёные народов Востока и Западной Европы делали сложнейшие математические вычисления без технических приспособлений.
Сейчас, на этапе стремительного развития информатики и вычислительной техники, современные школьники не хотят утруждать себя счетом в уме. Поэтому я сочла важным показать не только то, что сам процесс выполнения действия может быть важным, но и интересным занятием.
Мне показалось интересным разобраться в древних способах счета. Теперь я понимаю, насколько мудры были древние математики. Изучать эти материалы действительно очень увлекательно. Подобные сведения не содержатся в школьных учебниках.
Объектом исследования является счет на пальцах.
Предметом исследования выступает процесс вычисления.
Цель: изучить приемы вычислений на пальцах
раскрыть историю возникновения счета;
описать старинные способы вычислений;
рассмотреть некоторые приемы вычисления на пальцах.
Для того чтобы выяснить, знают ли современные школьники способы выполнения арифметических действий при помощи пальцев рук был проведен опрос №1. И на вопрос о том хотели бы они о них узнать, был проведен опрос №2. Всего опрошено 56 учащихся.
Как люди научились считать.
Частые наблюдения множеств, состоящих из пары предметов (глаза, уши, крылья, руки), привели человека к представлению о числе два. До сих пор слово «два» на некоторых языках звучит так же, как «глаза» или «крылья».
« Если предметов было больше двух, то первобытный человек говорил «много». Лишь постепенно человек научился считать до трех, затем до пяти и до десяти и т.д. Название каждого числа отдельным словом было великим шагом вперед.
Для счета люди использовали пальцы рук, ног. Ведь и маленькие дети тоже учатся считать по пальцам. Однако этот способ годился только в пределах 20.
Выход нашелся: считать на пальцах до 10, а затем начинать сначала, отдельно подсчитывая количество десятков. Система счисления на основе десяти возникла как естественное развитие пальцевого счета. При помощи пальцев рук люди научились не только считать большие числа, но и выполнять действия сложения и вычитания.
1.1 Что такое пальцевый счет?
От пальцевого счета пошли пятеричная система счисления (одна рука), десятеричная (две руки), двадцатиричная (пальцы рук и ног).
Кое-где пальцевый счет сохранился даже сегодня. Например, на крупнейшей в мире чикагской хлебной бирже маклеры на пальцах, не произнося ни единого слова, сообщают о предложениях, запросах, ценах на товары. Кроме этого, до сих пор родители обучают своих детей счету на пальцах, используя при этом считалочки.
2. Счёт на пальцах у разных народов.
Пальцы человека были не только первым счетным прибором, но и первой вычислительной машиной. Сама природа предоставила человеку этот универсальный счетный инструмент. У многих народов пальцы (или их суставы) при любых торговых операциях играли роль первого счетного устройства.
Для большинства бытовых потребностей людей их помощи вполне хватало.
К счету по пальцам рук восходят многие системы счисления, например пятеричная (одна рука), десятеричная (две руки), двадцатеричная (пальцы рук и ног), сорокаричная (суммарное число пальцев рук и ног у покупателя и продавца). У многих народов пальцы рук долгое время оставались инструментом счета и на наиболее высоких ступенях развития.
Известные средневековые математики рекомендовали в качестве вспомогательного средства именно пальцевой счет, допускающий довольно эффективные системы счета.
Однако в разных странах и в разные времена считали по-разному.
Несмотря на то, что у многих народов кисть руки является синонимом и фактической основой числительного «пять», у различных народов при пальцевом счете от одного до пяти указательный и большой пальцы могут иметь разные значения.
А русские начинают счет на пальцах, первым загибая мизинец, и заканчивают большим пальцем, обозначающим цифру 5,при этом указательный палец сопоставлялся с цифрой 4. Но когда показывают количество, выставляют указательный палец, затем средний и безымянный.
Счет десятками возник около 3-2,5 тысячи лет до нашей эры в Древнем Египте. Претерпев небольшие изменения, древнеегипетская десятеричная система сначала обосновалась на Востоке (в Индии примерно к VI веку нашей эры, более известная как индийский счет), а затем через весьма активную торговлю в XI-XIII веках достигла пределов Древней Руси. От Орды Русь переняла десятичную систему счисления для весовых измерений и денежного счета, опередив в этом даже Европу, которая познакомилась с десятеричной системой счисления через арабов только в XIII веке, а усвоила ее и того позже.
Однако окончательно эта система счисления прижилась в России вместе с реформами Петра I, пришедшими к нам из Европы.
В Древней Руси (особенно в Новгородской республике XII-XV веков) был широко распространен счет, основанный на счислении числа фаланг на руке «счетовода». Счет начинался с верхней фаланги «перстка» (мизинца) левой руки, а заканчивался нижней фалангой («низ перста») указательного пальца. Большой, или «палесъ великий», левой руки при этом последовательно осуществлял «подсчет» суставов на растопыренной пятерне. Досчитав до двенадцати, «счетовод» обращался к своей правой руке и загибал на ней один палец. Так продолжалось до тех пор, пока все пальцы правой руки не оказывались сжатыми в кулак (поскольку число фаланг на четырех пальцах было равно 12, получалось 12 пятерок, то есть 60). Кулак в данном случае символизировал пятерку дюжин, то есть «шестьдесят».
2.1 Арабско-восточноафриканский счёт.
Прикосновение к вытянутому указательному пальцу продавца, в зависимости от цены и используемых денежных единиц, будет означать 1, 10 или 100. Одновременное прикосновение к двум, трём или чётырём пальцам продавца будет означать соответственно 2 (20, 200), 3 (30, 300) или 4 (40, 400). Касание открытой ладонью указывает на число 5, 50 или 500. Дотронуться до мизинца означает 6, 60 или 600, безымянный палец — 7, 70 или 700, средний палец — 8, 80 или 800, согнуть указательный палец — 9, 90 или 900, коснуться Большого пальца — 10, 100 или 1000. При этом счислении может соблюдаться последовательность числовых степеней, например число 78 задаётся касанием безымянного пальца продавца, а затем — его среднего пальца. Постукивание по указательному пальцу продавца в направлении от среднего сустава к кончику пальца — предложение о снижении цены вдвое (1/2), на четверть (1/4) или на восьмую часть (1/8) от первоначальной. Постукивание по указательному пальцу от основания пальца до его среднего сустава — будет являться надбавкой половины (1/2) от предложенной цены, или 1/4, или 1/8. Если перед указанием дробной степени указывается целое число, то оно умножается на дробную степень.
2.2 Китайский счёт.
Китайская позиционная десятичная система счёта с примером (выделено красным)
Китайский метод счёта основан на количестве и символике пальцев. Используя этот метод, на двух руках можно посчитать до 20. Стоит заметить, что в некоторых провинциях жесты могут отличаться.
0 — сложенный кулак;
1 — разжатый указательный палец;
2 — разжаты и растопырены указательный и средний пальцы;
3 — разжаты и растопырены указательный, средний и безымянный пальцы;
4 — кроме прижатого к ладони большого пальца, остальные разжаты;
5 — открытая ладонь;
6 — выпрямлены мизинец и большой палец, остальные — сжаты в кулак;
7 — большим палец вместе с указательным и средним сложены в щепоть;
8 — выпрямлены указательный и большой пальцы, остальные — сжаты в кулак;
9 — указательный и большой изогнуты в виде буквы «С», остальные — сжаты в кулак;
10 — три варианта. Первый: рука сжимается в кулак; второй: указательные пальцы обеих рук пересекаются; третий: выпрямленный средний палец заводится за выпрямленный указательный, остальные — сжаты в кулак.
Древнекитайская позиционная десятичная система счёта по двум рукам является наиболее сложной из существующих подобных, но при всём том позволяет показать числа от 1 до 99 999 999. На обеих руках фалангам каждого пальца задаются цифровые значения от 1 до 9: причём задействуется пространство как посреди фаланги, так и по бокам. Роль указателя играют ногти больших пальцев. Каждый палец имеет собственную разрядность, как на абаке : указательный палец правой руки — означает единицы, средний палец — десятки, безымянный — сотни и т. д. Переход от пальца к пальцу характеризуется последовательным повышением разряда. Пропуск имеет значение нуля.
2.3 Континентальный европейский счёт.
Русский счёт на пальцах до десяти начинается с загибания мизинца левой руки и последовательно ведётся до загнутого большого пальца правой руки. Но когда требуется наглядно показать количество, рука сжимается в кулак и сначала разжимается указательный палец, затем средний, безымянный, мизинец и большой.
Но наибольшее распространение в Древней Руси получил «счёт сороками» (Рис. 3)(«сороковицами»). Охотники за пушным зверем в Сибири вели счет «сорочками», то есть укомплектованными в мешки шкурками (как правило, 40 собольих хвостов или 40 беличьих шкурок), которые полностью уходили на пошив богатой шубы («сорочки») русского боярина XVI века. Так, в таможенной грамоте 1586 года «сороками» были посчитаны шкурки соболей и куниц, посланные в качестве платы за ведение войны с турками от царя Фёдора Ивановича австрийскому императору Рудольфу. Методика счёта была схожа со «счётом дюжинами», только вместо подсчёта фаланг считали суставы пальцев (переходы между фалангами), которых было всего 8. Если число превышало 8, то при достижении 8 считающий загибал один палец на противоположной руке. По достижении числа 40 все пальцы руки, фиксировавшей полные осьмушки, оказывались сжатыми в кулак. Следы пальцевого «счёта сороками» сохранились в народных суевериях. Например, несчастливым для охотника считался сорок первый медведь и т. д. Также словом « сороконожка » традиционно называлась любая многоножка. Выражение «сорок сороков» или «тьма» для древнерусского крестьянина символизировало некое число, превосходящее всякое воображение и собственно математические познания самого земледельца.
Пальцевый счет
Самым первым инструментом счета у древнего пещерного человека в верхнем палеолите, безусловно, были пальцы рук. Сама природа предоставила человеку этот универсальный счетный инструмент. У многих народов пальцы (или их суставы) при любых торговых операциях выполняли роль первого счетного устройства. Для большинства бытовых потребностей людей их помощи вполне хватало.
К счету по пальцам рук восходят многие системы счисления, например пятеричная (одна рука), десятеричная (две руки), двадцатеричная (пальцы рук и ног), сорокаричная (суммарное число пальцев рук и ног у покупателя и продавца). У многих народов пальцы рук долгое время оставались инструментом счета и на наиболее высоких ступенях развития.
Известные средневековые математики рекомендовали в качестве вспомогательного средства именно пальцевый счет, допускающий довольно эффективные системы счета.
Однако в разных странах и в разные времена считали по-разному.
Несмотря на то что у многих народов кисть руки является синонимом и фактической основой числительного «пять», у различных народов при пальцевом счете от одного до пяти указательный и большой пальцы могут иметь разные значения.
Средняя Европа
Например, число 30 получалось, когда большой и указательный пальцы левой руки были соединены в кольцо. Для того чтобы изобразить число 60, большой палец нужно согнуть и как бы склонить его перед указательным, нависающим над ним. Чтобы показать число 100, нужно было прижать выпрямленный большой палец снизу к указательному и отвести остальные три пальца в сторону.
Россия
Счет десятками возник около 3-2,5 тысячи лет до нашей эры в Древнем Египте. Претерпев небольшие изменения, древнеегипетская десятеричная система сначала обосновалась на Востоке (в Индии примерно к VI веку нашей эры, более известная как индийский счет), а затем через весьма активную торговлю в XI-XIII веках достигла пределов Древней Руси. От Орды Русь переняла десятичную систему счисления для весовых измерений и денежного счета, опередив в этом даже Европу, которая познакомилась с десятеричной системой счисления через арабов только в XIII веке, а усвоила ее и того позже.
Однако окончательно эта система счисления прижилась в России вместе с реформами Петра I, пришедшими к нам из Европы.
В Древней Руси (особенно в Новгородской республике XII-XV веков) был широко распространен счет, основанный на счислении числа фаланг на руке «счетовода». Счет начинался с верхней фаланги «перстка» (мизинца) левой руки, а заканчивался нижней фалангой («низ перста») указательного пальца. Большой, или «палесъ великий», левой руки при этом последовательно осуществлял «подсчет» суставов на растопыренной пятерне. Досчитав до двенадцати, «счетовод» обращался к своей правой руке и загибал на ней один палец. Так продолжалось до тех пор, пока все пальцы правой руки не оказывались сжатыми в кулак (поскольку число фаланг на четырех пальцах было равно 12, получалось 12 пятерок, то есть 60). Кулак в данном случае символизировал пятерку дюжин, то есть «шестьдесят».
Пальцевой счет, унаследованный от далеких предков, сохранился вплоть до настоящего времени и активно используется, например, судьей на боксерском ринге при отсчете секунд во время нокаута или на товарно-сырьевой бирже где-нибудь в Чикаго или Токио. Да и в быту он не забыт. И сегодня мы сгибаем (а американцы, наоборот, разгибают) пальцы, в споре показывая оппоненту ради большей убедительности количество аргументов в пользу своей позиции.
Как человечество считало деньги
Приглашаем в исторический экскурс. Следуй за нами, читатель, и ты узнаешь, как зародились, эволюционировали и ассимилировались с происходящими социальными процессами счетные системы.
На пальцах
Первые счетные системы человек, вероятно, начал использовать в эпоху позднего палеолита (40–12 тысяч лет назад). Простейшими инструментами для этого служили пальцы. Счет на пальцах широко применялся в Древнем мире и Средневековье, постепенно совершенствуясь и усложняясь.
Естественное распределение пальцев на руках и ногах привело к использованию нескольких разрядов при счете и появлению нескольких систем счисления. Десятеричная система возобладала у народов Евразии. Пятеричная долгое время применялась в Китае, Древней Греции (аттическая система счисления, вытесненная затем десятеричной ионической), Древнем Риме и среди племен тропической Африки. Двадцатеричная система была у ацтеков и майя. Использование при счете четырех пальцев двух рук (большой палец не считался) привело к появлению восьмеричной системы счисления.
В древнем Шумере возникла двенадцатеричная система счисления, в которой счет велся по фалангам четырех пальцев руки. Элементы этой системы еще длительное время использовались в различные периоды истории во многих странах. Так, в Древнем Риме либра (мера веса) равнялась 12 унциям. Введенное денежной реформой Карла Великого (VIII век) соотношение «1 шиллинг = 12 денариев» просуществовало в денежных системах различных государств много столетий. Последними странами, отказавшимися от унаследованного от каролингской реформы соотношения (1 фунт = 20 шиллингов = 240 пенсов), были Великобритания (1971 год) и Нигерия (1973 год). В Древней Руси счет «дюжинами» (большим пальцем руки по фалангам остальных четырех пальцев) применялся в торговле, особенно в Новгороде в XII–XV веках, а традиция считать некоторые товары (носовые платки, карандаши и другие) дюжинами сохранялась до начала XX века.
Ловкость рук и никакого мошенничества
В период Римской республики активная международная торговля, в которую были вовлечены Средиземноморье и Ближний Восток, дала толчок развитию пальцевого счета. С его помощью можно было показывать числа до 10 000, а с использованием других частей тела — до миллиона. Римский ритор Квинтилиан (I век) писал, что необразованного человека выдает неумение правильно показать числа на пальцах.
В различных районах мира применялись системы пальцевого счета, отличные от римской. Так, арабские торговцы, знакомые с описанной Бедой Достопочтенным системой счета, применяли и отличавшийся от нее арабско-восточноафриканский метод. Собственная система счета, с помощью которой можно было показать числа до 100 миллионов, существовала в Китае.
Посчитать предметно
Счет на пальцах имел множество достоинств: простота, компактность, «счетные приспособления» всегда при себе. Но были у него и недостатки: для фиксирования результатов приходилось прибегать к иным средствам. Использование для счета других предметов (камней, раковин, костей, палочек и так далее) позволяло устранить этот недостаток. Счет мог вестись с помощью одновременно как пальцев, так и предметов.
Считать большие числа с помощью предметов было затруднительно, поэтому, например, при счете на палочках могли использоваться либо палочки разного цвета, либо различное положение палочек (горизонтальное или вертикальное) для обозначения разных разрядов.
В Древнем Китае возникшая в эпоху Сражающихся царств (V век до нашей эры) система счета на палочках использовалась до эпохи династии Мин (XIV–XVII века). Наибольшее развитие китайские счетные палочки получили в период династий Сун (X–XIII века) и Юань (XIII–XIV века). Применение китайских счетных палочек позволяло оперировать огромными числами и производить различные действия (сложение, вычитание, умножение, деление, действия с дробями и отрицательными числами, извлечение квадратного и кубического корня). Китайский математик Чжу Шицзе (1249–1314 годы) описал также способы решения с помощью палочек алгебраических уравнений.
Заруби себе на носу
Для фиксации результатов счета стали широко применяться отметки на различных предметах: зарубки (насечки), нанесение полос краской, завязывание узелков. Известно довольно много находок костей с нанесенными на них зарубками: предметы, относящиеся к эпохе мустьерской культуры (около 50 тысяч лет назад, департамент Дордонь во Франции), кости с нарезками из Дольни-Вестонице (около 30 тысяч лет назад, Чехия), браслеты с насечками, относящиеся к мезинской культуре (около 25–30 тысяч лет назад, Черниговская область) и другие. Нет единой точки зрения, имеют ли эти зарубки декоративный или счетный характер.
В Англии использование бирок было узаконено около 1100 года при короле Генрихе I (1068–1135 года) и отменено только в 1826 году. Вплоть до конца XVIII века бирки служили для учета уплаты налогов.
Законодательством Российской империи предусматривалось применение бирок для различных целей. Так, Местное Великороссийское Положение допускало учет с помощью бирок отработанных крестьянами в пользу помещика дней, а Устав торгового судопроизводства 1887 года признавал бирки особым родом доказательств, применяемых в торговом быту.
Узелок завяжется, узелок развяжется
Различные системы для счета с помощью узелков существовали у разных народов — китайцев, персов, индийцев и других. Эта система упоминается в трудах греческого историка Геродота (V век до нашей эры). Древнекитайский философ Лао-цзы (VI–V век до нашей эры) писал об употреблении веревок и узлов для счета как об основательно забытом обычае.
Наивысшей степени развития узелковое письмо достигло в Южной Америке в эпоху расцвета государства инков (XV век). Система инков, называвшаяся «кипу», представляла собой сложные веревочные сплетения и узлы, которые могли содержать различное количество свисающих нитей — от нескольких штук до более полутора тысяч.
С помощью кипу не только проводились арифметические вычисления, но и велось исчисление времени, делались картографические описания, записывались законы и генеалогические сведения, передавались донесения, велся бухгалтерский учет. Читали кипу специально подготовленные профессионалы — «кипукумайоки».
Через полвека после уничтожения государства инков конкистадорами (1532–1533 годы) колониальные власти запретили кипу, но использование этой счетной системы в некоторых районах продолжалось до начала XX века.
Взвешенное решение
С древности своеобразным счетным устройством служили человеку весы (древнейшие весы были обнаружены археологами в Месопотамии и относятся к V тысячелетию до нашей эры). Их применяли для определения количества однородных предметов путем взвешивания вместо пересчета. Неслучайно названия некоторых денежных единиц как в период античности (мина, либральный асс), так и в более позднее время (фунт, французский ливр, итальянская лира) происходят от единиц измерения веса. Чеканившиеся в СССР с 1926 по 1991 годы монеты в 1, 2, 3 и 5 копеек имели вес соответственно в 1, 2, 3 и 5 граммов, что позволяло определять сумму большого числа монет простым взвешиванием.
Важным этапом развития в древности стало появление счетных досок, получивших общее название «абак». Происхождение этого термина не установлено. Возможно, греческое слово ἄβαξ происходит от общесемитского корня слов со значением «пыль». Такое название могло быть связано с тем, что для вычислений использовались доски с углублениями и линиями, на которых в определенном порядке раскладывались однородные предметы (камешки, кости и другие), а чтобы они не скатывались с доски, она покрывалась слоем песка. Считается, что раньше, чем в Греции, абак стали применять в Вавилоне, Египте и Финикии, но археологических подтверждений этому пока не обнаружено. Пифагор (VI век до нашей эры) полагал, что счет с помощью абака должен входить в курс математики.
В Древнем Риме абак появился, вероятно, в V–VI веках и назывался calculi и abaculi (abacus). Римские абаки изготавливались из различных материалов (бронза, слоновая кость, цветное стекло). Бронзовый римский абак, хранящийся в Национальном археологическом музее Неаполя, представляет собой доску с прорезанными в ней щелями, в которых перемещаются костяшки. Семь длинных щелей с четырьмя костяшками, одна — с пятью, над каждой длинной щелью — короткая с одной костяшкой. Над длинными щелями помечены значения разрядов: миллионы, сотни тысяч, десятки тысяч, тысячи, сотни, десятки, единицы, унции (то есть двенадцатые части). В щели, помеченной « », — пять костяшек (то есть 5/12). В правой части абака — щели с пометками, означающие 1/2, 1/4 и 1/6 унции.
Распад и падение Римского государства прервали развитие счетной техники. Абак в Европе был надолго забыт.
В Китае аналог абака — суаньпань — появился в VI веке и постепенно вытеснил традиционную систему счета на палочках. Со временем его устройство менялось, современный вид он приобрел в XVII веке. Суаньпань представляет собой прямоугольную раму, разделенную на две части. В большом отделении («Земля») на каждой проволоке — 5 шариков, в меньшем («Небо») — 2 шарика. Проволоки соответствуют десятичным разрядам, каждый шарик большего поля — единице, меньшего — пяти. На суаньпане можно не только производить четыре арифметических операции, но и извлекать квадратные и кубические корни.
В XV–XVI веках суаньпань был завезен в Японию, где получил название «соробан». В Японии он был модифицирован (последний раз — в 1930 году).
Абак, забытый в Европе после распада Римской империи, вновь получил распространение в X веке благодаря монаху Герберту Орильякскому (938–1003), ставшему впоследствии римским папой Сильвестром II. Герберт во время путешествия в Кордовский халифат познакомился с арабской системой цифр и с абаком.
В XV веке в Англии появилась новая форма абака — «счет на линиях», — распространившаяся в XV–XVI веках по континентальной Европе. Для счета на линиях использовались горизонтально разлинованная доска и металлические жетоны, которые в Германии назывались счетными пфеннигами, в других странах — фишками. Жетоны при счете выкладывались не только на линиях, но и между ними. Разрядность повышалась снизу вверх. Правила счета на линиях излагались во многих учебниках, изданных в XV–XVII веках, счет упоминается в созданных в то время пьесах Шекспира и Мольера.
Лечь костьми
Немецкий физик, математик и философ Готфрид Лейбниц (1646–1716 годы) предпочитал счет на линиях счету на бумаге. Постепенно первый уступал последнему, применяясь все реже. Дольше всего он сохранялся в Германии и Австрии — до конца XVIII века.
Счетные приборы, аналогичные абаку, существовали в Америке. Так, в государстве инков применялись несколько видов устройства, называвшегося «юпана». Для вычислений применялись зерна, которые раскладывались по ячейкам.
В России существовал аналогичный счету на линиях способ, называвшийся «счет костьми». Он описан в рукописных книгах XVI века, объединенных общим названием «Цифирная счетная мудрость», но возник задолго до этого. Свое название способ получил из-за использования для счета сливовых или вишневых косточек. Внешне приспособление напоминало европейскую доску для счета на линиях. Горизонтальные линии служили разделителями разрядов. Косточки на линиях обозначали единицы разряда, кость над линиями — пять единиц разряда. Иногда для счета служили металлические жетоны («пенязи», что дало второе название — «счет пенязями»). Для вычисления налогов на досках применялись добавочные разделения для подсчета трети (1/3), полутрети (1/6) и так далее до «малой чети» (1/32).
В XVI веке на смену счету костьми пришел более удобный «дощаный счет». Его полное описание содержится в списке «Счетной мудрости» 1691 года. Первоначально устройство для дощаного счета представляло собой два соединенных ящика, каждый из которых был разделен на два отделения. Наличие четырех отделений позволяло не только сохранять условие задачи, но и фиксировать промежуточные расчеты. В каждом отделении было натянуто по 14 веревочек с нанизанными на них костяшками. На верхних десяти было по 9 костяшек (иногда — по 10), они предназначались для операций с целыми числами. На нижних рядах, содержащих 3, 4, 5 или 6 косточек, производились операции с дробями. Ряды с одной или двумя костяшками представляли половину той дроби, под которой они находились.
Постепенно устройство дощаного счета совершенствовалось, в нем стали применяться только две части вместо четырех, и только нижние ряды, для работы с дробями, имели четыре отделения. Затем исчезли ряды, содержащие по одной костяшке.
В XVII веке меняется название прибора, в 1658 году «счоты» впервые упоминаются в «Переписной книге домовой казны патриарха Никона». В начале XVIII столетия дощаный счет в России окончательно трансформируется в «счеты», в дальнейшем претерпевая только незначительные внешние изменения. В XIX веке русские счеты стали известны в Западной Европе, однако использовались там только для обучения в начальной школе. В России они применялись в торговле и бухгалтерском учете до конца XX века, пока не были окончательно вытеснены калькуляторами. В начальной школе для обучения счету они служили до конца 1980-х годов.
В счетах применяется позиционная десятичная система счисления. Каждый ряд костяшек представляет собой числовой разряд, возрастающий от единиц до сотен тысяч, а вниз — уменьшающийся от десятых до тысячных. Прут с четырьмя костяшками служит разделителем целых и дробных частей, а также для счета полушками (1/4 копейки).
Палочки на новый лад
Палочки неоднократно пытались усовершенствовать. Первую попытку предпринял сам Непер. В приложениях к «Рабдологии» он дал описание прибора, состоящего из 200 палочек, и счетной доски. Однако эти его изобретения были чрезвычайно сложны и не нашли практического применения.
Более удачными усовершенствованиями палочек Непера были предложенные русским изобретателем Г. К. Иоффе в 1881 году («бруски Иоффе») и французскими инженером А. Женаем и математиком Э. Люка в 1891-м («бруски Женая — Люка»). Бруски Женая — Люка позволяли выполнять умножение любого натурального числа на любое натуральное число, при этом пользователь, представляя перенос графически, мог считывать результат умножения без промежуточных расчетов. Принцип действия брусков Иоффе был основан на теореме Слонимского и позволял производить умножение быстрее. Популярность брусков для вычислений оказалась недолгой: вскоре они были вытеснены механическими вычислительными устройствами.
Механические расчеты
В связи с распространением торговых операций и океаническим судоходством возникла потребность в автоматических вычислениях. В двухтомном собрании рукописей итальянского ученого Леонардо да Винчи (XV–XVI век) содержится описание 13-разрядного суммирующего устройства, состоящего из стержней, на которые крепятся два зубчатых колеса: с одной стороны — большее, с другой — меньшее. Суммирующая машина Леонардо да Винчи, однако, так и осталась одним из нереализованных его проектов.
В 1623 году немецкий ученый Вильгельм Шиккард (1592–1635) разработал машину, названную им «счетные часы» и предназначенную для суммирования и умножения шестизначных чисел. Машина Шиккарда состояла из суммирующего устройства, множительного устройства и устройства для записи промежуточных результатов. Устройство было шестиразрядным, в каждом разряде на оси имелись закрепленная шестеренка с десятью зубцами и колесо с одним «пальцем», служившим для передачи десятка в следующий разряд. Были изготовлены два экземпляра машины Шиккарда, однако оба они сгорели во время пожара.
Машины Леонардо да Винчи и Шиккарда были забыты, поэтому длительное время считалось, что создателем первой арифметической машины является французский ученый Блез Паскаль (1623–1662). В 1960-х годах были изготовлены машины Леонардо и Шиккарда, доказавшие свою работоспособность.
Первая модель суммирующей машины Паскаля была создана в 1642 году. В дальнейшем изобретатель неоднократно ее совершенствовал, экспериментируя с материалами и формой деталей. Всего Паскаль создал более 50 моделей машины, названной «Паскалина», из них сохранилось восемь. Машина представляла собой небольшой ящичек с восемью круглыми отверстиями и нанесенной вокруг них круговой шкалой. Шкала крайнего правого отверстия была разделена на 12 частей, соседнего с ним — на 20, остальных — на 10. Такая градуировка была связана с тем, что Паскаль создавал свою машину в помощь отцу, сборщику налогов, и поэтому она соответствовала тогдашней монетной системе (1 ливр = 20 су = 240 денье). В отверстиях располагались зубчатые колеса, число зубьев колеса соответствовало числу делений шкалы данного отверстия. Один из зубцов каждой шестерни был немного удлинен и задевал соседнее колесо. «Паскалина» не получила широкого распространения в связи с ее высокой стоимостью, а также с незначительными вычислительными способностями — в частности, с неудобством выполнения операций вычитания.
В 1673 году Готфрид Лейбниц создал «ступенчатый вычислитель». В основе арифмометра Лейбница лежит ступенчатый валик (или колесо Лейбница), который впоследствии использовался в конструкции вычислительных машин на протяжении трехсот лет. Ступенчатый валик представлял собой цилиндр с зубцами разной длины, которые взаимодействуют со счётным колесом. Передвигая колесо вдоль валика, его вводили в зацепление с необходимым числом зубцов и обеспечивали установку определённой цифры. Механизм ввода слагаемых находился на подвижной каретке. Конструкция арифмометра включала две вращающиеся рукоятки: одна — для сдвига подвижной каретки, другая — для вращения ступенчатого колеса, что позволяло ускорить повторяющиеся операции сложения, при помощи которых выполнялись умножение и деление. Машина работала с 12-разрядными числами, позволяла производить операции сложения, вычитания, умножения, деления и извлечения квадратного корня.
Появившиеся в XVII–XVIII веках модели арифмометров не нашли широкого распространения, оставшись в основном в виде демонстрационных моделей.
Век арифмометров
В ходе промышленной революции XIX столетия потребность в механизации счетных работ стала возрастать. В 1820 году появляется «арифмометр Томаса», ставший первым серийно производимым арифмометром. Французский предприниматель Шарль Ксавье Тома де Кольмар (1785-1870) создает свой арифмометр, основанный на принципе Лейбница. Де Кольмар неоднократно выставлял свой арифмометр на различных международных выставках, и хотя его прибор не получил ни одной награды, он намного превзошел по продажам устройства всех остальных изобретателей. Арифмометр продавался в количестве 300–400 экземпляров в год (для того времени — довольно массовый выпуск) вплоть до начала прошлого столетия, то есть почти 90 лет.
В конце XIX века предпринимались также попытки выпуска арифмометра Томаса под иными марками, с внесенными в конструкцию изменениями. В 1874 году шведско-русский инженер Вильгодт Теофил Однер создал новую модель, основанную на применении «колеса Однера» — зубчатки с переменным числом зубцов. В его конструкции колесо имеет 9 выдвижных спиц. Количество выдвинутых спиц определяется углом поворота установочного рычажка до соответствующей цифры на шкале. Колесо Однера оказалось настолько удачным, что без принципиальных изменений применялось во многих последующих моделях арифмометров. В 1877 году на заводе Нобеля был выпущен первый арифмометр Однера, а в 1890 году его производство началось на фабрике Однера — Гиля в Петербурге. В 1897-м Однер стал единоличным владельцем фабрики, после его смерти производство продолжила фирма под названием «Наследники Однера». После Октябрьской революции завод был национализирован, а производство арифмометров прекращено. В 1925 году оно возобновилось на Сущевском заводе имени Дзержинского под прежней маркой «Однер», а с 1931 по 1978 год — «Феликс». Наследники Однера, эмигрировавшие после революции в Швецию, создали там новое производство и стали выпускать арифмометры под маркой «Оригинал-Однер».
Счетные машины типа Однера имели определенные недостатки: постановка рычажков на нужные цифры, обратная их перестановка, движение каретки и вращение барабана производились вручную. В XX веке появились вычислительные машины с электроприводом, в которых вращение барабана и передвижение каретки производилось электродвигателем, а набор чисел выполнялся нажатием клавиш. Это позволяло существенно повысить скорость вычислений по сравнению со счетом на арифмометрах с ручным приводом. Результаты вычислений фиксировались в виде цифр на барабанах, а в некоторых моделях (счетно-записывающих машинах), кроме того, печатались на бумажной ленте, причем могли воспроизводиться не только окончательные, но и промежуточные результаты.