клубеньковые бактерии тип отношений
Симбиоз клубеньковых бактерий и бобовых растений: особенности и видовая специфика клубеньковых бактерий и их взаимодействие с растениями-хозяевами
Симбиоз клубеньковых бактерий и бобовых растений
Особенности клубеньковых бактерий
Клубеньковые бактерии впервые были обнаружены в 1888 году ученым М. Бейеринком. Он выделил азотфиксирующие симбиотические микроорганизмы из корневых клубеньков бобовых растений. Особенность этих бактерий в том, что они благоприятствуют формированию клубеньков, в которых фиксируется атмосферный азот.
Это взаимовыгодный союз, так как бактерии потребляют органические соединения в клубеньках, а растению доступны связанные соединения азота. Эти взаимоотношения называются симбиотическими.
Все клубеньковые бактерии, которые поражают корневую систему бобовых различаются. При этом, они рассматриваются как родственные.
Клубеньковые бактерии характеризуются:
Клубеньковые бактерии питаются:
Отдельные виды бактерий при усвоении углеводов могут образовывать кислоты.
Микроорганизмы часто сами синтезируют некоторые витамины, такие как тиамин, рибофлавин и цианокобаламин, а также вещества роста — гетероауксин, гиббереллины, цитокинины.
Видовая специфика клубеньковых бактерий
Клубеньковые бактерии формируют симбиотические связи с растениями, принадлежащими семейству Leguminosae.
Клубеньковые бактерии отличаются видовой спецификой в зависимости от того, кто является их растением-хозяином. Отдельный вид бактерий образует клубеньки на одном или нескольких видах бобовых растений:
Специфичность клубеньковых бактерий — явление не до конца изученное. Многие считают, что бактерии начинают взаимодействовать с корневой системой растения в результате привлечения клеток микроорганизмов при помощи корневых выделений.
Подвижные бактерии, характеризующиеся хемотаксисом, заражают растения быстрее.
Растения преимущественно заражаются через молодые корневые волоски.
В бобовых растениях содержатся белки или гликопротеины (лектины), которые специфичным образом связывают полисахариды. Последние выполняют функцию распознавания.
С помощью взаимодействия поверхностных полисахаридов бактерий и лектинов корней бобового растения можно определить, может ли произойти инфицирование корневого волоска этим видом клубеньковых бактерий.
Как взаимодействуют бактерии и растения-хозяева
Клубеньковые бактерии проникают в корневые волоски бобовых растений разными способами:
Понять, что растение инфицировано, можно по специфическим изменениям формы корневых волосков: их изгиб похож на форму ручки зонтика.
То, насколько корневой волосок искривляется, зависит от:
Место проникновения бактерий характеризуется разрыхлением клеточной стенки волоска, которое происходит под действием гидролитических ферментов бактерий.
Бактерии формируют инфекционную нить: это гифообразная слизистая масса. Движение нити происходит в направлении клеток эпидермиса и основания волоска, а далее — в паренхиму через клетки коры.
Внедрившись в клетки растений, инфекционная нить покрывается целлюлозной оболочкой.
Бактерии могут размножаться исключительно в тетраплоидных клетках коры. За редким исключением — в клетках эпидермиса корня.
Происходит интенсивное деление инфицированной клетки и незараженных клеток. Как результат — образуется клубенек.
Клубеньковые бактерии
Роль бактерий в поставке азота
Насыщение почвенного слоя азотом – результат деятельности микроскопических организмов, к которым относятся и клубеньковые. Раньше считали, что этим видом работ занимаются исключительно клубеньковые организмы, способные потреблять из воздуха азот. И основную задачу в этом возлагали на бобовую растительность, как единственного источника для жизнедеятельности бактерий. Сегодня это мнение пересмотрено, так как в последнее время выявлено достаточное количество различных микроорганизмов, способствующих переработке азота.
И все же главное место в этом процессе отводится отряду клубеньковых. К нему причисляют ризобиум. Такой вид напоминает по своей форме палочку, не создает колоний, существует поодиночке либо парами. Встречаются отдельные виды, патогенные для человека, зараженного СПИДом.
Второй представитель – некоторые из актиномицетов, проживающие в корневых системах деревьев, обладающих способностью создавать для них клубеньковые отростки.
Попадая в волоски корней, бактерии создают активное деление их клеток, в ходе которого создаются клубеньки. Сами бактериальные микроорганизмы поселяются внутри, развиваются и перерабатывают азот. И в этих же клубеньковых отростках бактерии преобразуются в разветвленные формы, способные усваивать азот, соли, аминосодержащие кислоты, нитратные компоненты. С целью получения углерода микроорганизмы пользуются спиртами, моносахаридами, органическими кислотами.
Условия жизнедеятельности
Представители клубеньковых достигают размеров от 0,5 до 3 мкм. Они не создают споры, являются достаточно подвижными, грамотрицательные. Чтобы обменный процесс проходил без нарушений, следует обеспечить постоянный доступ кислорода. При разведении бактерий в условиях лабораторных опытов, наибольших результатов можно достичь при соблюдении температурного режима не менее двадцати пяти градусов тепла. Формы округлые, на вид прозрачные, консистенции слизистые.
Такие бактерии находят свое развитие на корневых системах бобовых, количество которых может достигать десяти процентов от общего числа. При этом у различных представителей создаются определенные виды этих организмов микроскопических форм.
С отмиранием корешков происходит и разрушение клубней. Но это не влечет за собой гибель бактерий. Они продолжают существовать в почве и перерабатывать азотные массы.
Бактериальные колонии способны поглощать около трехсот килограмм азота на каждый гектар земли, и в результате их процессов жизнедеятельности в почве задерживается более пятидесяти кило соединений, имеющих в своем составе азот. Именно поэтому используют севооборот культур, чтобы растения могли потреблять из земли полезные соединения, без добавления химикатов, вредных для здоровья. Высаживая после бобовых другие культуры например капусту урожай будет отличным.
Для севооборота в качестве сидератов используют бобовые, так как они отлично для этого подходят. Они рано всходят являясь холодостойкими и их корни рыхлят землю. Чаще применяют горох, однолетний люпин, вику, клевер, люцерну, нут, бобы и сою, фасоль, чечевицу, донник, козлятник, горох полевой и др. сильно обогащают почву азотом. Заделывание в верхний слой почвы зелень этих растений, заменяет удобрение навозом. Растения холодостойкие, рано всходят, а их корни мощно рыхлят землю.
С целью увеличения клубеньковых бактерий в почве и повышения урожайности бобовых, при посадке в землю можно внести нитрагин. С помощью этого средства проводится искусственное заражение семенного фонда клубеньковыми бактериями.
Клубеньковые бактерии живут на корнях
Эти микроорганизмы имеют возможность вступать в симбиотические отношения только с некоторыми видами флоры, поселяясь у них в корневищах. Существует несколько гипотез об их проникновении в корни.
Согласно одной из них, они проникают в корневую структуру через механические повреждения.
А другая теория гласит, что они проникают через корневые волоски.
Согласно третьей – ауксинной гипотезы, они оснащены клетками-спутниками, которые оказывают помощь во время их внедрения в корневую систему.
Внедряются бактериальные формы в корни растения в две фазы. Сначала происходит инфицирование волосков корневой системы, а только потом формируются клубеньки. Длительность фаз может отличаться в зависимости от качества почвы и вида посадки. Также они могут удлиняться из-за формирования неблагоприятных окружающих условий среды.
При отсутствии хозяев эти симбионты способны длительный период времени просто жить в почве. Однако в такой ситуации, микроорганизмы теряют свою способность, заключающуюся в фиксации азота. При посадке подходящих видов флоры они активно начинают проникать в ее корни, а потом и создавать клубеньки.
Вездесущие прокариоты
В начале прошлого века были открыты первые клубеньковые микроорганизмы, которые могут усваивать атмосферный азот. Интересно, что почти одновременно были обнаружены анаэробный Клостридиум пастерианум (С.Н.Виноградский) и аэробный Азотобактер (М. Бейеринк). Со временем были выявлены и другие азотфиксирующие бактерии, как свободноживущие, так и симбионты, которые живут и размножаются на корнях злаковых, бобовых, сложноцветных (наиболее известны тимофеевка, сорго, картофель). Выращивая клубеньковые бактерии на питательных средах, ученые обнаружили, что кроме фиксации азота, они живут и размножаются, выполняя синтез стимуляторов роста и корнеобразования, некоторых витаминов, а также антибиотиков.
Клубеньковые бактерии отличаются высокой специфичностью по отношению к растениям-симбионтам. Исследование их специфичности позволило найти ответ на вопрос о том, почему бактериальные препараты имеют варьирующую эффективность в зависимости от культур, которые ими обрабатываются. Первый бактериальный препарат Нитрагин, предназначенный для обработки семян бобовых растений, был предложен в 1897 году Ф. Ноббе и Л. Гильтнером. Это положило начало промышленному производству бактериальных удобрений, исследованиям по специфичности азотфиксаторов, а также поиску наиболее удобных для транспортировки и хранения форм бактериальных препаратов, которые способны в дальнейшем жить и размножаться.
Функции клубеньковых бактерий
Учеными установлен целый список функций, которые выполняются этими микроорганизмами:
В этом видео рассказано о клубеньковых бактериях.
Активность выполнения перечисленных функций зависит от ряда причин, среди которых выделяют:
Фиксация прокариотами атмосферного азота зависит от влияния внешних условий. Например, при большом содержании в почве азотнокислых и аммиачных солей, скорость азотной фиксации угасает, а при их дефиците, наоборот, увеличивается. Это обусловлено тем, что находящиеся в растении и почве азотистые соединения блокируют притяжение их новых «порций» из атмосферы. Также на эту способность оказывает влияние и молибден: при его добавлении в почву процесс азотного притяжения активизируется. Это объясняется тем, что молибден является составляющей ферментов, которые осуществляют фиксацию атмосферного азота.
Клубеньковые бактерии: примеры пользы
Этот вид бактериальных форм способен скапливать азот, что очень важно не только для самого растения, но и для сельского хозяйства в целом. Симбиоз посадки и прокариот значительно увеличивает урожайность
Также многие фермеры и дачники дополнительно подкармливают посадки, изготавливая из бактериальных форм, формирующих клубеньки, удобрения. Оно используется для обрабатывания семян бобовых культур. Такая обработка позволяет активизировать процесс дальнейшего инфицирования корневищ.
Еще один пример пользы таких прокариот – участие в круговороте азотистых соединений в природе. Такой вывод обуславливается тем, что по статистике, на 1 гектар высаженных бобовых, достигших плодоносящего периода и вступивших в симбиоз с прокариотами такого типа, связывает в среднем 100-400 килограмм азота.
В процессе своего размножения они синтезирую витамины, антибиотические вещества природного происхождения, что способствует ускоренному развитию корневой системы. Также они ускоряют рост посадки, синтезируя фитогормоны.
Питание клубеньковых бактерий
Эти бактериальные формы питаются соединениями, которые вырабатываются флорой взамен на то, что они улавливают азот из воздуха и формируют его в форму, пригодную для поглощения растительными культурами. Так, из корневой системы они добывают углеводные соединения. Помимо углеводов, они могут поглощать сахара, аминокислоты и иные вещества, которые выделяются корневой системой.
Благодаря такому сожительству вокруг корневой системы формируется ризосфера – слой почвы, который насыщен полезными и питательными веществами, переработанными из отмерших участков флоры. Такие полезные вещества доступны для питания растительных культур и самих бактериальных клеток, что подтверждает факт взаимополезного бактериально-растительного симбиоза.
В этом видео рассказано о симбиозе клубеньковых бактерий и сои. Не забывайте оставлять свои вопросы, пожелания и к статье.
Симбиоз
Роль клубеньковых бактерий в природе
Помимо фиксации атмосферного азота роль клубеньковых бактерий в природе очень велика. В процессе размножения они «занимаются» синтезом витаминов, природных антибиотиков, способствуют развитию сначала корня, а затем и ботвы. Польза заключается в том, что почвенные бактерии азотфиксирующего типа за счет симбиоза с растениями:
Бобовые растения и клубеньковые бактерии
Как взаимодействуют бобовые растения и клубеньковые бактерии? После заражения растения продуценты усваивают азот из воздуха, преобразуя его в соединение, пригодное для питания не только паразита, но и для «хозяина». Есть несколько теорий о том, как отдельные элементы образуют бактериальные клубеньки. Происходит заражение растений:
Симбиотические бактерии рода Ризобиум, проникнув в корень, перемещаются в его ткани, легко преодолевая межклеточное пространство группами или одиночными клетками (как у люпина). Чаще же клетка при размножении образовывают инфекционные нити (тяжи, колонии). Их количество различается по типам растений. Часто встречаются общие нити заражения, формирующие один клубенек.
Выбор языка сайта
Afrikaans Albanian Amharic Arabic Armenian Azerbaijani Basque Belarusian Bengali Bosnian Bulgarian Catalan Cebuano Chichewa Chinese (Simplified) Chinese (Traditional) Corsican Croatian Czech Danish Dutch English Esperanto Estonian Filipino Finnish French Frisian Galician Georgian German Greek Gujarati Haitian Creole Hausa Hawaiian Hebrew Hindi Hmong Hungarian Icelandic Igbo Indonesian Irish Italian Japanese Javanese Kannada Kazakh Khmer Korean Kurdish (Kurmanji) Kyrgyz Lao Latin Latvian Lithuanian Luxembourgish Macedonian Malagasy Malay Malayalam Maltese Maori Marathi Mongolian Myanmar (Burmese) Nepali Norwegian Pashto Persian Polish Portuguese Punjabi Romanian Russian Samoan Scottish Gaelic Serbian Sesotho Shona Sindhi Sinhala Slovak Slovenian Somali Spanish Sudanese Swahili Swedish Tajik Tamil Thai Turkish Ukrainian Urdu Uzbek Vietnamese Welsh Xhosa Yiddish
Пути проникновения бактерий в корень
Существует несколько способов внедрения бактериальных клеток в ткани корневой системы. Это может произойти вследствие повреждения покровных тканей или в местах, где клетки корня молодые. Зона корневых волосков также является путем проникновения хемотрофов внутрь растения. Далее корневые волоски инфицируются и в результате активного деления бактериальных клеток образуются клубеньки. Внедрившиеся клетки образуют инфекционные нити, которые продолжают процесс проникновения в растительные ткани. С помощью проводящей системы бактериальные клубеньки связаны с корнем. С течением времени в них появляется особое вещество — легоглобин.
К моменту проявления оптимальной активности клубеньки приобретают розовую окраску (благодаря пигменту легоглобину). Фиксировать азот способны лишь те бактерии, которые содержат легоглобин.
Взаимодействие с человеком
Человек постоянно живет в содружестве с многочисленным бактериальным сообществом, представленным нескольким десятком основных семейств. Отсутствуют микробы только в крови и лимфе. Все остальные органы и ткани, так или иначе, вступают в контакт либо с самими бактериями, либо с продуктами их жизнедеятельности.
Желудочно-кишечный тракт
ЖКТ населен симбионтами семейства Энтеробактерии (Enterobacteriaceae). Это самое многочисленное сообщество, которое включает в себя роды кишечных патогенных и условно патогенных микроорганизмов. Также в ЖКТ имеется большое количество представителей семейства Лактобацилл (Lactobacillus) – эти микроорганизмы создают кислотную среду, которая подавляет деятельность бактериальных и вирусных патогенов; также лактобактерии очищают кишечник от гнили.
Кожные покровы
Кожа человека населена микроорганизмами в не меньшей степени, нежели ЖКТ. На коже присутствуют стафилококки эпидермидис, коринеформные бактерии, протеи, пропионибактерии, псевдомонады, кишечные микробы и другие.
Бактерии на коже человека
Активность микробов, которые населяют кожу, зависит от наличия многих подавляющих факторов, а также факторов, которые стимулируют развитие благоприятной среды для роста определенного вида бактерий. Как только такая среда создается, сразу в этом бактериальном сообществе начинает преобладать определенная бактериальная форма, что чаще всего сопровождается инфицированием кожных покровов. При нормальных условиях, когда одна группа сдерживает другую, подобное взаимодействие является естественным биологическим щитом.
Ротовая полость
Во рту также установлено наличие бактериального симбиоза, который регулирует внутреннюю среду ротовой полости и не дает возможности активизироваться патогенной микрофлоре, тем самым защищая ткани самой ротовой полости и верхних дыхательных путей от инфекционных заражений.
Процессы жизнедеятельности
Все азотфиксирующие бактерии по особенностям процессов жизнедеятельности можно объединить в две группы. Первая группа является нитрифицирующей. Суть обмена веществ в этом случае заключается в цепочке химических превращений. Аммоний, или аммиак, превращается в нитриты — соли азотной кислоты. Нитриты, в свою очередь, превращаются в нитраты, тоже являющиеся солями этого соединения. В виде нитратов азот лучше усваивается корневой системой растений.
Вторая группа называется денитрификаторами. Они осуществляют обратный процесс: нитраты, содержащиеся в почве, превращают в газообразный азот. Таким образом происходит круговорот азота в природе.
К процессам жизнедеятельности также относят и процесс размножения. Происходит он путем деления клеток надвое. Гораздо реже — путем почкования. Характерен для бактерий и половой процесс, который называется конъюгация. При этом происходит обмен генетической информацией.
Поскольку корневая система выделяет много ценных веществ, бактерий на ней поселяется очень много. Они преобразуют растительные остатки в вещества, которые способны впитать растения. В результате слой почвы вокруг приобретает определенные свойства. Его называют ризосферой.
Желательно и обязательно
Отношения, при которых растительные организмы получают обоюдную выгоду, можно отнести к мутуалистическим (мутуализм – от лат. mutuus – «взаимный»). Обычно разделяют факультативный и облигатный (от лат. obligatus – «непременный», «обязательный») мутуализм.
Если при этом сосуществующие партнеры неразделимы и зависят друг от друга, то подобные связи называют симбиотическими (симбиоз – от греч. symbiosis – «совместная жизнь»).
Что такое клубеньковые бактерии
Больше 2 тыс. лет назад земледельцы заметили, что бедные, выработавшие ресурс почвы дают урожаи после возделывания на них бобовых культур. Следующие попытки раскрыть секрет были в 1838 г.: Ж.-Б. Буссенго решил, что листья бобовых фиксируют азот, однако опыты с неблагоприятной водной средой не подтвердили это. В 1901 г. была открыта Azotobacter chroococcum (6 видов из рода азотобактер). Первый препарат на основе «земляных» бактерий Нитрагин был создан в 1897-м.
Все клубеньковые бактерии – это микроаэрофилы. Им свойственна палочковидная/овальная форма. Относятся Rhizobium (Rhizobiales) к способным переводить газообразную форму азота в усвояемую растениями – растворимую. Факты:
Значение хемотрофов
Люди давно заметили, что, если перекопать бобовые растения с почвой, урожай на этом месте будет лучше. На самом деле суть не в процессе вспахивания. Такая почва больше обогащается азотом, столь необходимым для роста и развития растений.
Если лист называют фабрикой по производству кислорода, то азотфиксирующие бактерии могут по праву называться фабрикой по производству нитратов.
Еще в 19 веке ученые обратили внимание на удивительные способности бобовых растений. Из-за недостатка знаний их приписывали только растениям и не связывали с другими организмами
Было высказано предположение, что листья могут фиксировать атмосферный азот. В ходе экспериментов было выяснено, что бобовые, которые выросли в воде, такую способность утрачивают. Более 15 лет этот вопрос оставался загадкой. Никто не догадывался, что осуществляют все это азотфиксирующие бактерии, среда обитания которых не была изучена. Оказалось, что дело в симбиозе организмов. Только вместе бобовые и бактерии могут производить нитраты для растений.
Сейчас ученые выявили более 200 растений, которые не относятся к семейству бобовых, но способны образовать симбиоз с азотфиксирующими бактериями. Картофель, сорго, пшеница также обладают ценными свойствами.
Совместная жизнь
Еще один классический пример тесных мутуалистических отношений в фитоценозе – симбиоз растений (например, бобовых и мимозовых – около 90 % изученных видов) с азотфиксирующими бактериями, способными усваивать атмосферный азот и переводить его в доступную для высших растений форму. Колонии бактерий поселяются на корневых волосках растения-хозяина, вызывая разрастание тканей корня с образованием утолщений – клубеньков. В результате такого «сожительства» бактериям достаются растительные ассимиляты, а к растениям поступает фиксированный азот (чаще всего в виде аспарагина).
Аналогичные симбиотические связи с корнями различных деревьев и кустарников образуют актиномицеты. Симбиоз с азотфиксирующими микроорганизмами дает возможность растениям-партнерам успешно расти в условиях азотного дефицита (например, на торфяниках или песчаных участках).
Срастание корней дает деревьям возможность обмениваться между собой влагой, минеральными и органическими веществами
Часто у близко растущих деревьев (одного вида или близкородственных) наблюдают срастание корней, что дает им возможность обмениваться между собой влагой, минеральными и органическими веществами. Такой своеобразный симбиоз делает их более устойчивыми к засухе, морозу, повреждению насекомыми и т. д.
При отмирании надземных частей у отдельных деревьев их сохранившаяся корневая система используется соседними, что улучшает рост и устойчивость всей группы в целом. После вырубок в таких случаях могут образовываться «живые» пни, у которых длительное время сохраняется камбиальный прирост.
Существенный минус корневого срастания – возможность более легкого распространения токсинов и возбудителей вирусных и грибных заболеваний. Однако для сближенных деревьев такое взаимоинфицирование в любом случае может происходить достаточно быстро.
Срастание корневых систем выявлено у деревьев разных возрастов, причем у представителей как голосеменных, так и покрытосеменных. Наиболее часто это явление отмечают для березы повислой, ясеня зеленого, дуба черешчатого, вяза обыкновенного, клена остролистного, различных хвойных – сосны, ели, лиственницы, пихты. Корневое срастание характерно также для плодовых (груши, яблони, сливы, рябины). Садоводы создают искусственные системы «многокорневых» деревьев за счет прививок корней для улучшения роста и повышения урожайности.
Типы мутуализма
Мутуалистические отношения могут быть классифицированы как обязательные или факультативные. При обязательной взаимности выживание одного или обоих вовлеченных организмов зависит от этих отношений. При факультативной взаимности оба организма получают выгоду, но не зависят от отношений для выживания.
Ряд примеров взаимности можно наблюдать между различными организмами (бактериями, грибами, водорослями, растениями и животными) в различных биомах. Общие взаимные отношения происходят между организмами, когда один организм получает питание, в то время как другой получает определенный вид обслуживания. Другие взаимные отношения многогранны и включают в себя сочетание нескольких преимуществ для обоих видов. В то же время некоторые взаимоисключающие отношения связаны с одним видом, живущим внутри другого вида. Ниже приведены примеры взаимных отношений.
Классификация
Размеры бактерий можно сопоставить с величиной частичек глины. В чайной ложке почвы можно обнаружить от ста миллионов до миллиарда различных микроорганизмов, основным местом жительства которых являются тонкие пленки, обволакивающие почвенные частицы и корни растений. Простота строения позволила ученым назвать эти бактерии «мешком ферментов».
Существующие классификации основаны на характерных особенностях этих микроорганизмов – их форме, поведении при окрашивании препаратов, способу питания, а также генетическом родстве.
Форма клеток
Такое примитивное деление было разработано тогда, когда о генетическом анализе никто даже не догадывался. Различают микроорганизмы округлой формы (кокки), продолговатые или стержневые (их называют бациллами), спиральные (спириллы) и имеющие разветвленную структуру (актиномицеты). Кроме того, существуют промежуточные формы, или агрегаты, состоящие из пар, цепочек или гроздьев.
Поведение при окраске по Граму
Было разработано после начала изучения бактерий при помощи их окрашенных препаратов. Грамположительные организмы имеют большие размеры, толстые клеточные стенки и высокую устойчивость к водному стрессу. Их внешняя стенка несет отрицательный электрический заряд. Грамотрицательные же мельче, и быстрее гибнут при отсутствии воды.
Аэробные и анаэробные
Первые не могут жить без кислорода, вторые же отлично обходятся без него, перерабатывая, например, соединения серы или углеводороды.
Аутотрофы и гетеротрофы
Первые способны самостоятельно перерабатывать углекислый газ, превращая его в необходимые для них органические вещества с использованием солнечного света. Ко вторым относятся те, что получают питание, разлагая готовую органику.
Характеристики
Кораллы Было обнаружено, что образуют характерные ассоциации с симбиотических азотфиксирующих бактерий. Кораллы развивались в олиготрофных водах, которые, как правило, бедны азотом. Поэтому кораллы должны образовывать мутуалистических отношения с фиксирующим азота организма, в данном случае предметом данного исследования, а именно Symbiodinium. В дополнении к этому фитопланктону динофлагеллату, кораллы также образуют отношения с бактериями, Archae и грибами. Проблема заключается в том, что эти динофлагеллятах также азот ограничены и должны образовывать симбиотические отношения с другим организмом; здесь предлагается быть диазотрофы. Кроме того, цианобактерии были обнаружены, что обладают генами, которые позволяют им пройти фиксацию азота. Данное исследование идет дальше, чтобы исследовать возможность того, что в дополнении к названному фитопланктону динофлагеллату и некоторым цианобактерий, эндосимбиотическим водорослям и кораллам содержат ферменты, позволяющие им и претерпевать ассимиляции аммония.
Из-за небольшого размера генома большинства эндосимбионтов, они не могут существовать в течение длительного времени вне клетки-хозяина, тем самым предотвращая долгосрочные симбиотических отношений. Однако, в случае endonuclear симбиотических бактерий Holospora, было обнаружено, что виды Holospora могут сохранять свою инфекционность в течение ограниченного времени и образуют симбиотические отношения с видами Paramecium.
Организмы, как правило, устанавливают симбиотические отношения из-за их ограниченную доступность ресурсов в их среде обитания или в связи с ограничением их источник пищи. Триатомовые клопы векторы имеют только один хост и, следовательно, должны установить связь с бактериями, чтобы дать им возможность получить питательные вещества, необходимые для поддержания себя.
Фиксация азота: разнообразие форм
Азотфиксирующие бактерии выполняют огромную работу, помогая растениям усваивать атмосферный азот. Их работа на несколько порядков производительнее всех фабрик по производству минеральных удобрений, вместе взятых.
К числу таких азотфиксирующих бактерий относятся клубеньковые симбиотические, поселяющиеся на корнях растений семейства бобовых, и свободноживущие нитрифицирующие. Особняком держатся микроорганизмы-денитрификаторы.
Азотфиксирующие бактерии встречаются среди различных родов прокариот (Клостридиум, Азотобактер, Азоспириллум, Псевдомонас, Ацетобактер, Агробактериум, Эрвиния, Клебсиелла, Бациллюс, Алкалигенес), а также среди сине-зеленых водорослей.
Многие из этих азотфиксирующих бактерий длительное время считались свободноживущими, пока не было обнаружено, что их количество в прикорневой зоне злаковых растений существенно превышает обычную численность в земле без растений. Доказан факт их функциональных и пространственных связей с корнями растений, что делает эти микроорганизмы похожими на клубеньковые бактерии, являющиеся признанными симбионтами растений.
Кто такие бактерии?
Представители этого царства живой природы представляют собой единственную группу прокариот — организмов, клетки которых лишены ядра. Но это не значит, что они совсем не содержат наследственной информации. Молекулы ДНК свободно находятся в цитоплазме клетки и не окружены оболочкой.
Поскольку размеры их микроскопические — до 20 мкм, бактерии изучает наука микробиология. Ученые выяснили, что прокариоты могут быть одноклеточными или объединяться в колонии. Они имеют достаточно примитивное строение. Помимо ядра бактерии лишены всех типов пластид, комплекса Гольджи, ЭПС, лизосом и митохондрий. Но несмотря на это, бактериальная клетка способна осуществлять важнейшие процессы жизнедеятельности: анаэробное дыхание без использования кислорода, гетеротрофное и автотрофное питание, бесполое размножение и образование цисты во время переживания неблагоприятных условий.