компенсация холодных концов термопары

Схемы включения и компенсации термопар

Как известно, термопара содержит два спая, поэтому для правильного и точного измерения температуры на одном (первом) из спаев, необходимо поддерживать другой (второй) спай при известной постоянной температуре, чтобы измеренная ЭДС оказывалась явной функцией температуры только первого спая — главного рабочего спая.

Так, с целью поддержания в термоизмерительном контуре условий, при которых паразитное влияние ЭДС второго («холодного спая») было бы исключено, необходимо как-то компенсировать в любой рабочий момент времени напряжение на нем. Как это сделать? Как привести схему к такому состоянию, чтобы измеряемое напряжение термопары менялось бы только в зависимости от изменений температуры первого спая, независимо от текущей температуры второго?

компенсация холодных концов термопары

С целью достижения правильных условий, можно прибегнуть к незамысловатой хитрости: поместить второй спай (места присоединения проводов первого спая с измерительным прибором) в емкость с ледяной водой — в заполненную водой ванночку, в которой еще плавает лед. Таким образом получим на втором спае фактически постоянную температуру таяния льда.

После чего останется, отслеживая результирующее напряжение на термопаре, вычислять температуру первого (рабочего) спая, ибо второй спай будет находится в неизменном состоянии, напряжение на нем будет константой. Цель в итоге будет достигнута, влияние «холодного спая» окажется скомпенсировано. Но если так делать, то получится громоздко и не удобно.

компенсация холодных концов термопары

Чаще термопары применяются все же в мобильных портативных устройствах, в переносных лабораторных приборах, поэтому нежен другой вариант, ванночка с ледяной водой разумеется нам не подходит.

И такой иной способ есть — метод компенсации напряжения от изменяющейся температуры «холодного спая»: присоединить последовательно к измерительному контуру источник дополнительного напряжения, ЭДС которого будет иметь противоположное направление и по величине будет всегда точно равна ЭДС «холодного спая».

компенсация холодных концов термопары

Но чем же можно непрерывно измерять температуру «холодного спая», чтобы получать непрерывные значения напряжений для автоматической компенсации?

Для этого подойдет термистор или термометр сопротивления, соединенный с типовой электроникой, которая и будет автоматически формировать компенсирующее напряжение необходимой величины. И хотя «холодный спай» не обязательно может быть буквально холодным, его температура, как правило, не такая уж экстремальная, какая может быть у рабочего спая, поэтому обычно подходит даже термистор.

компенсация холодных концов термопары

Доступны специальные электронные компенсирующие модули «температуры таяния льда» для термопар, задача которых в том и состоит, чтобы подавать точное противоположное напряжение в измерительную цепь.

Значение компенсирующего напряжения от такого модуля поддерживается на таком значении, чтобы точно компенсировать температуру точек присоединения проводников термопары к модулю.

Температура точек присоединения (на терминале) измеряется термистором или термометром сопротивления, и точно необходимое напряжение автоматически прикладывается последовательно в цепь.

Неискушенному читателю может показаться, что слишком много нагромождений ради просто точного использования термопары. Может быть целесообразнее, да и проще, сразу пользоваться термометром сопротивления или тем же термистором? Нет, не проще и не целесообразнее.

Термисторы и термометры сопротивления не так механически прочны как термопары, да и безопасный рабочий температурный диапазон у них не велик. Дело в том, что термопары обладают рядом преимуществ, два из которых основные: очень широкий температурный диапазон (от −250 °C до +2500 °C) и высокое быстродействие, которое недостижимо на сегодняшний день ни термисторами, ни термометрами сопротивления, ни датчиками иных типов аналогичной ценовой категории.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Компенсация холодного спая в практике применения термоэлектрических преобразователей

компенсация холодных концов термопары

На сегодняшний день термопары получили наибольшее распространение среди датчиков измерения температуры. Использование термопар в большом диапазоне температур более эффективно по сравнению с такими решениями, как термопреобразователь сопротивления (ТПС), термистор, или интегральный датчик температуры (ИДТ). Термопары используются, например, в автомобилях или бытовой технике. Вдобавок, их надежность, стабильность и малое время отклика делают термопары наилучшим выбором для многих видов оборудования.

Однако и в применении термопар есть некоторые сложности, в первую очередь — значительная нелинейность характеристик. К тому же, ТПС и ИДТ обычно обладают лучшими характеристиками по чувствительности и точности, что важно для прецизионных решений. Выходной сигнал термопары имеет очень малый уровень и требует усиления или применения цифровых преобразователей высокой разрядности для обработки сигнала.

Но, несмотря на все перечисленные недостатки, низкая стоимость, легкость применения и широкий температурный диапазон до сих пор являются причинами популярности термоэлектрических преобразователей.

Основные сведения о термопарах

Термопары относятся к дифференциальным измерителям температуры. Конструктивно они представляют из себя два термоэлектрода из разных металлов, один из которых принимается за положительный, другой – за отрицательный. В таблице 1 представлены наиболее распостраненные типы термопар, используемые металлы или сплавы и температурный диапазон для каждого варианта. Каждый тип термопар обладает уникальными термоэлектрическими свойствами в определенном для них температурном диапазоне.

Таблица 1. Основные характеристики термопар

ТипПоложительный
Металл/Сплав
Отрицательный
Металл/Сплав
Температурный
диапазон, °С
TМедьКонстантан-200…350
JЖелезоКонстантан0…750
KХромоникелевый сплавАлюмель-200…1250
EХромоникелевый сплавКонстантан-200…900

При соединении двух металлов (пайкой или сваркой) получают два перехода (спая), как показано на рис. 1а, разность потенциалов образуется в цепи вследствие разности температур спаев. Это явление называется эффектом Зеебека, он состоит в преобразовании тепловой энергии в электрическую. Эффект Зеебека обратен эффекту Пельтье, заключающемуся в преобразовании электрической энергии в тепловую, что применяется в частности в термоэлектрических охладителях. На рис. 1 показано, что выходное напряжение Vвых — это разница между потенциалами холодного и горячего спаев. Т.к. Vгор и Vхол образуются за счет разности температур спаев, Vвых является функцией этой разности. Коэффициент, равный отношению разности потенциалов к разности температур, известен как коэффициент Зеебека.

компенсация холодных концов термопары

Рис. 1а. Напряжение в цепи в результате эффекта Зеебека

компенсация холодных концов термопары

Рис. 1б. Наиболее распространенная схема реализации термопары

На рисунке 1б показана наиболее часто употребляемая схема использования термопары. Здесь использован третий металл (т.н. металл-посредник), что дает дополнительный спай. В этом примере каждый термоэлектрод соединен с медным проводом. Пока между ними нет разности температур, металл-посредник не оказывает никакого влияния на выходное напряжение. Эта схема позволяет использовать термопару без отдельного опорного спая. Напряжение Vвых так и остается функцией от разности температур холодного и горячего спаев, определяемой коэффициентом Зеебека. Однако до тех пор, пока измеряется именно разница температур, для определения актуальной температуры горячего спая необходимо знать температуру холодного.

Самый простой метод — поддержание температуры холодного спая на уровне 0°C. В этом случае Vвых = Vгор, и измерение напряжения дает непосредственную информацию о температуре горячего спая.

Раньше этот вариант считался стандартом при использовании термопар, однако сейчас обеспечение такого охлаждения холодного спая зачастую непрактично. Для получения результатов измерения в абсолютных величинах необходимо знать температуру холодного спая. Выходное напряжение термопары должно быть компенсировано с учетом влияния потенциала холодного спая при ненулевой температуре. Это и называется — компенсация холодного спая.

Выбор устройства для измерения температуры холодного спая

Данные о температуре холодного спая можно получить с помощью различных датчиков и устройств. Среди самых распространенных — резистивный температурный преобразователь (РТП), термистор и интегральный датчик температуры (ИДТ). Каждое из этих устройств имеет свои достоинства и недостатки, поэтому применение того или иного датчика определяется условиями конкретной задачи.

Для устройств с высокими требованиями по точности лучшим выбором будет калиброванный платиновый РТП с его широким температурным диапазоном. Однако это решение – дорогостоящее.

Термисторы и ИДТ – недорогая альтернатива РТП в случаях, когда требования к точности не столь строгие. У термисторов рабочий температурный диапазон шире, однако ИДТ используются чаще из-за линейности характеристик. Корректировка нелинейности термисторов может требовать слишком много ресурсов от микроконтроллера устройства. ИДТ обладают превосходной линейностью характеристик, но узким диапазоном измерений.

Итак, измеритель температуры холодного спая выбирается, исходя из требований к системе. На выбор оказывают влияние точность, диапазон измерения температур, линейность характеристик и стоимость.

Решение числовых задач

Когда вы определились с методом компенсации холодного спая, скомпенсированное выходное напряжение должно быть преобразовано в данные о температуре. Самый простой метод — воспользоваться таблицами, предоставленными Национальным Бюро Стандартов США (NBS) (в России значения расчетных коэффициентов можно найти в справочной литературе, базирующейся на ГОСТ Р 8.585-2001 ГСИ. «Термопары. Номинальные статические характеристики преобразования» прим. ред.). Поиск данных в этих таблицах программным путем требует определенного объема памяти для их хранения, но это быстрое и точное решение в случаях, когда измерения повторяются с большой частотой. Два других метода для преобразования напряжения в данные требуют больших ресурсов, чем поиск данных в таблицах: 1) линейная аппроксимация с помощью полиномов; 2) аналоговая линеаризация выходного сигнала термопары.

Линейная аппроксимация программным путем популярна, т.к. необходима память только для хранения заранее известных коэффициентов полинома. Недостаток этого метода в том, что время измерения зависит от скорости расчета полиномов высокой степени. Время на расчет растет с возрастанием степени полинома, что обычно происходит при увеличении диапазона измерений прибора. Для температур, при измерении которых требуется использование полиномов высоких степеней, применение таблиц может оказаться более эффективным и точным.

До того, как появилось программное обеспечение современного уровня, аналоговая линеаризация достаточно часто применялась для преобразования напряжения в температурные данные (в дополнение к ручному поиску данных в таблицах). Этот аппаратный метод основывался на использовании аналоговых схем для корректировки нелинейности сигнала термопары. Точность зависела от реализации аналоговой корректировки. Такой подход до сих пор используется в мультиметрах, принимающих сигнал с термопар.

Схемы устройств

компенсация холодных концов термопары

Рис. 2. Термочувствительная ИМС (MAX6610)

Пример 1

На схеме, показанной на рис. 2, термочувствительная ИМС (MAX6610) измеряет температуру холодного спая. ИДТ располагается в непосредственной близости от спая.

16-битный сигма-дельта АЦП (MX7705) преобразует низковольтный сигнал с термопары в выходной цифровой сигнал разрядностью 16 бит. Интегрированный усилитель с программируемым коэффициентом усиления позволяет увеличить разрешающую способность АЦП, что часто необходимо при работе с малыми напряжениями, генерируемыми термопарами. Интегральный датчик температуры, помещенный в непосредственной близости от соединителей термопары, измеряет температуру около холодного спая. Этот метод основан на допущении, что температура микросхемы в этом случае будет близка к температуре холодного спая. Выходное напряжение с датчика на холодном спае подается на канал 2 АЦП. Опорное напряжение термодатчика (2,56 В) должно быть развязано с напряжением питания микросхемы.

Работая в биполярном режиме, АЦП преобразует отрицательный и положительный уровни напряжения с выхода термопары, поступающие на канал 1. Канал 2 работает в однополярном режиме, АЦП преобразует выходное напряжение с интегральной микросхемы MAX6610 в данные, используемые впоследствии в работе микроконтроллера. Выходное напряжение интегрального датчика температуры изменяется пропорционально изменению температуры холодного спая.

Таблица 2. Измерения для схемы на рисунке 2

Температура
холодного спая, °С
Измеренная температура
горячего спая, °С
Изм. 1-39,9+101,4
Изм. 20,0+101,5
Изм. 3+25,2+100,2
Изм. 4+85,0+99,0

Пример 2

Как показано на рис. 3, ИДТ на выносном диоде используется для измерения температуры холодного спая. Этот диод может быть смонтирован непосредственно на контактах термопары. MAX6002 обеспечивает опорное напряжение 2,5 В для АЦП. В отличие от предыдущего примера, датчик с использованием удаленного диода не должен обязательно находиться в непосредственной близости от термопары, для измерения используется диодно-включенный транзистор типа NPN. Этот транзистор монтируется непосредственно в месте соединения выходов термопары и медных выводов. ИДТ в свою очередь преобразует сигнал с транзистора в цифровой: на канал 1 АЦП поступает выходное напряжение термопары и преобразуется в цифровой сигнал. Канал 2 не используется и заземлен. Опорное напряжение АЦП 2,5 В обеспечивает отдельная интегральная микросхема.

компенсация холодных концов термопары

Рис. 3. ИДТ с использованием удаленного диода

Таблица 3. Измерения для схемы на рисунке 3

Температура
холодного спая, °С
Измеренная температура
горячего спая, °С
Изм. 1-39,8+99,1
Изм. 2-0,3+98,4
Изм. 3+25,0+99,7
Изм. 4+85,1+101,5

Пример 3

На рис. 4 представлена схема с использованием 12-битной АЦП с интегрированным термочувствительным диодом, который преобразует температуру окружающей среды в напряжение. Используя это напряжение и напряжение непосредственно с термопары, ИМС вычисляет компенсированную температуру горячего спая. Эти данные в виде цифрового сигнала поступают на цифровой выход микросхемы. Гарантированная температурная погрешность данного устройства ±9 LSB (младший значащий бит АЦП) в диапазоне температур горячего спая от 0 до 700°C. Хотя это устройство имеет широкий диапазон измеряемых температур, измерения ниже 0°C невозможны.

компенсация холодных концов термопары

Рис. 4. Применение АЦП с интегрированной схемой компенсации

В табл. 4 представлены результаты измерений, полученные с помощью схемы на рис. 4 при изменении температуры холодного спая от 0 до 70°C при сохранении постоянной температуры на горячем, равной 100 °C.

Таблица 4. Измерения для схемы на рисунке 4

Температура
холодного спая, °С
Измеренная температура
горячего спая, °С
Изм. 10,0+100,25
Изм. 2+25,2+100,25
Изм. 3+50,1+101,00
Изм. 4+70,0+101,25

компенсация холодных концов термопары

Получение технической информации, заказ образцов, поставка —
e-mail: analog.vesti@compel.ru

Новый драйвер Ethernet с коррекцией предыскажений

Компания Maxim Integrated Products представила MAX3984 — одноканальный драйвер Ethernet с коррекцией предыскажений на выходе и компенсацией на входе, способный работать с быстродействием 1…10,3 Гбит/сек. Устройство компенсирует затухания в медных линиях связи (оптоволоконные каналы 8,5 Гбит/сек, Ethernet 10 Гбит/сек), позволяя достичь длины линии до 10 м при использовании провода 24 AWG. Драйвер предусматривает выбор четырех уровней коррекции предыскажений и возможность коррекции на входе. Это позволяет компенсировать потери сигнала при его передаче по проводникам длиной до 10 дюймов на текстолите FR-4.

MAX3984 также поддерживает SFP-совместимую функцию обнаружения потери сигнала (LOS) и имеет вход отключения передачи TX_DISABLE. Возможность выбора размаха выходного сигнала позволяет оптимизировать электромагнитные излучения и потребляемую мощность. MAX3984 выпускается в 16-выводном корпусе TQFN (3х3 мм) без содержания свинца и рассчитан на работу в пределах температурного диапазона 0…85°C.

Отличительные особенности:

Источник

Термопары и компенсация холодного спая

Лекция 7. Датчики температуры

7.2. Термопары и компенсация холодного спая

7.3. Резистивные датчики температуры

7.5. Полупроводниковые датчики температуры

7.6. Датчики температуры с цифровым выходом

7.7. Термореле и регуляторы с установкой температуры

Общие сведения

Различают следующие датчики и направления при построении температурных контрольно-измерительных устройств:

для мониторирования (наблюдения)

• температуры центрального процессора,

• температуры аккумуляторной батареи,

• температуры окружающей среды; для компенсации

• дрейфа генератора в сотовых телефонах,

• температуры холодного спая термопар; для управления

• зарядом аккумуляторной батареи,

• процессом удержания температуры.

Практически все температурные датчики достаточно нелинейны, исключение составляют интегральные датчики. Резистивные датчики достаточно точны, но требуют внешнего тока возбуждения и, следовательно, оптимальной схемой включения такого датчика будет мостовая схема. Термисторы наиболее чувствительны, но и наиболее нелинейны. Полупроводниковые датчики температуры являются самыми точными, но имеют узкий диапазон применения (от –55 °С до +150 °С).

Таблица 2.5 Типы датчиков температуры

ТермопарыРДТТермисторыПолупроводниковые датчики температуры
Самый широкий диапазон температур (от –184 °С до +2300 °С)Диапазон от –200 °С до +850 °СДиапазон от 0 °С до +100 °СДиапазон от –55 °С до +150 °С
Высокая точность и повторяемостьВысокая линейностьНизкая линейностьЛинейность 1 °С Точность 1 °С
Необходимость компенсации холодного спаяТребует внешнего возбужденияТребует внешнего возбужденияТребует внешнего возбуждения
Низкое выходное напряжениеНизкая стои- мостьВысокая чувствительностьТиповой выходной сигнал 10 мВ/К, 20 мВ/К или 1 мА/К

В табл. 2.5 приведены наиболее популярные типы температурных датчиков.

Термопары и компенсация холодного спая

Термопары являются относительно недорогими датчиками, причем они функционируют в широком диапазоне температур, а при измерении высоких температур (до + 2300 °С) и в агрессивных средах термопары практически незаменимы. Тем не менее они дают на выходе милливольтные сигналы и требуют точного усиления для проведения дальнейшей их обработки. Еще одним недостатком при применении термопар является компенсация температуры холодного спая (см. ниже). Как правило, термопары достаточно линейны. Наиболее известные термопары приведены в табл. 2.6, а на рис. 2.17 показаны кривые зависимости напряжения от температуры для трех широко используемых термопар.

Термопары изготавливают из следующих металлов: железо, платина, родий, рений, вольфрам, медь, алюмель (сплав никеля и алюминия), хромел (сплав никеля и хрома) и константан (сплав меди и никеля).

Рассмотрим основы функционирования термопар. Известно, что при соединении двух разнородных металлов при температуре выше абсолютного нуля между ними появляется разность потенциалов (термоЭДС), которая является функцией температуры спая (соединения) (рис. 2.17, а). Другими словами, каждая пара разнородных металлов, находящихся в контакте друг с другом, генерирует термоэлектрическую ЭДС.

Таблица 2.6 Термопары

Материал контактаТиповой температурный диапазон, °СНоминальная чувствительность, мкВ/°СОбозначение по ANSI
Платина (6 %) Родий-платина (30 %) РодийОт 38 до 18007.7B
Вольфрам (5 %) Рений-вольфрам (26 %) РенийОт 0 до 2300C
Хромел-константанОт 0 до 982E
Железо-константанОт 0 до 760J
Хромел-алюмельОт –184 до 1260K
Платина (13 %) Родий-платинаОт 0 до 159311,7R
Платина (10 %) Родий-платинаОт 0 до 153810,4S
Медь-константанОт 184 до 400T

V1 компенсация холодных концов термопары V1 компенсация холодных концов термопарыV2 а в

компенсация холодных концов термопарыV1 компенсация холодных концов термопарыV2 V1 V2

Рис. 2.17. Основы работы термопары: а – термоэлектрическое напряжение; б – термопара; в – измерение с помощью термопары; г – измерение с помощью термопары

Для того чтобы сформировать два спая (рис. 2.17, б), соединим между собой два термопарных провода с обоих концов. Если оба спая находятся при различных температурах, то в цепи появится результирующая ЭДС и потечет ток, определяемый величиной ЭДС и полным сопротивлением цепи. Если разорвать один из проводов, то напряжение в точках разрыва будет равно величине результирующей термоЭДС в цепи, и если измерить это напряжение, то можно использовать его для расчета разности температур двух спаев

Примечание. Термопара измеряет разницу температур двух спаев, а не абсолютную температуру одного из спаев.

Замер температуры на измерительном спае можно проводить только в том случае, если известна температура другого спая (называемого часто опорным или холодным спаем).

Подключим вольтметр к цепи термопар (рис. 2.17, г). В местах подключения образуются дополнительные термопары из проводов вольтметра и проводов цепи. Если эти подключения находятся при разных температурах, то они будут вносить ошибки.

Следовательно, необходимо, чтобы все пары контактов в цепи, содержащей термопару, находились при одной и той же температуре, кроме, разумеется, измерительных контактов термопар.

Термопары не требуют внешнего возбуждения. Как правило, для измерения используются два спая (рис. 2.18): Т1 измерительный спай и Т2 опорный (холодный) спай. Если Т1 = T2,то V1= V2и выходное напряжение V = 0. Выходные напряжения термопар определяются по отношению к температуре опорного спая при 0 °С (см. рис. 2.18).

Именно отсюда произошел термин холодный спай или спай точки таяния льда. Из вышеизложенного следует, что термопара дает выходное напряжение 0 В при температуре измерительного спая 0 °С. Однако необязательно иметь температуру холодного спая, равную 0 °С. Достаточно знать его текущую температуру (рис. 2.19). На рисунке показано, что вместо ванны таящего льда используется другой температурный датчик, который измеряет температуру холодного спая, и его сигнал используется для введения напряжения в измерительную цепь термопары. Этот сигнал компенсирует разницу между действительной температурой холодного спая и ее идеальной величиной (0

Как правило, для компенсации холодного спая свободные концы термопары устанавливаются в специальном изотермическом блоке (рис. 2.20).

компенсация холодных концов термопары

Рис. 2.18. Классическая компенсация температуры холодного спая при использовании опорного спая, находящегося при температуре таяния льда (0 °С)

компенсация холодных концов термопары

Рис. 2.19. Использование датчика температуры для компенсации холодного спая

Рассмотрим схему сопряжения микропроцессорной системы с термопарой типа К (рис. 2.21). Здесь обеспечивается компенсация холодного спая для температур от 0 °С до 250 °С [9]. Схема работает от одного источника питания от +3,3 В до +12 В и формирует передаточную характеристику выходного напряжения 10 мВ/°С. Термопара типа К имеет коэффициент Зеебека приблизительно 41 мкВ/°С (см. ниже), поэтому на холодном спае устанавливается датчик температуры с температурным коэффициентом 10 мВ/°С – микросхема ТМР35. Он используется совместно с делителем RR2 для того, чтобы ввести компенсирующий температурный коэффициент холодного спая противоположного знака величиной –41мкВ/°С.

компенсация холодных концов термопары

Рис. 2.20. Установка термопарных проводников непосредственно в изотермическом блоке

Указанное включение препятствует появлению ошибки измерения температуры, обусловленной непосредственным соединением между проводниками термопары и трассами печатных проводников платы. Данная компенсация работает исключительно хорошо в диапазоне температур окружающей среды от 20 °С до 50 °С.

По диапазону измерения 250 °С термопара дает изменение выходного напряжения в 10.151 мВ. Поскольку требуемое изменение выходного сигнала по верхнему пределу составляет 2.5 В, усиление в цепи будет 246.3. Выбор R4 = 4.99 кОм даст величину К5 = 1.22 MОм. Поскольку ближайшая величина 1 % резистора R5составляет 1.21 MОм, используется дополнительный потенциометр 50 кОм для точной настройки выходного напряжения по верхнему пределу. Интегральная схема ОР193 является операционным усилителем с однополярным питанием, его выходной каскад не работает в режиме от питания до питания, и его выходной сигнал доходит только до потенциала +0.1 В относительно земли. По этой причине для смещения выходного напряжения приблизительно на 0.1 В устанавливается дополнительный резистор R3на источник питания 5 В. Это напряжение смещения (10 °С) вычитается при расчетах результатов измерений. Резистор R3также обеспечивает определение обрыва цепи термопары, устанавливая величину выходного напряжения больше 3 В, если термопара оборвана. Резистор R7балансирует входной импеданс операционного усилителя ОР193, а пленочный конденсатор 0.1 мкФ уменьшает величину шума на неинвертирующем входе.

Зарубежной промышленностью выпускаются интегральные схемы инструментальных усилителей с компенсацией холодного спая. Например, ИС AD594/AD595 от AnalogDevices (рис. 2.22) [9]. Он включает в себя компенсатор холодного спая на температуру таяния льда и калиброванный усилитель с непосредственным подключением к выходу термопары и выходным сигналом высокого уровня (10 мВ/°С). Переключение перемычек на выводах установки режима позволяет использовать ИС в качестве линейного усилителя-компенсатора или релейного регулятора температуры, использующего фиксированное значение или дистанционное управление точкой установки температуры. ИС можно использовать для прямого усиления напряжения компенсации, получая тем самым отдельный преобразователь температуры в градусах Цельсия с выходным сигналом 10 мВ/°С. Важно помнить, что ЧИП ИС был при той же самой температуре, что и холодный спай термопары, что обычно достигается установкой их обоих в непосредственной близости друг от друга и изолированием от источников тепла.

компенсация холодных концов термопары

Рис. 2.21. Использование датчика температуры (ТМР35) для компенсации холодного спая термопары

Более совершенные ИС AD596/AD597 являются релейными регуляторами с установкой температуры, которые используются при высоких температурах, например в устройствах, связанных с управлением печами. Для получения внутреннего сигнала, пропорционального температуре, устройство выполняет компенсацию холодного спая и усиливает сигналы термопар типа

компенсация холодных концов термопары

Рис. 2.22. Монолитные усилители термопар AD594/AD595 с компенсацией холодного спая

компенсация холодных концов термопары

Рис. 2.23. АЦП семейства AD77XX, используемый совместно с температурным датчиком ТМР35 для компенсации температуры холодного спая

компенсация холодных концов термопары

Рис. 2.24. Выходные напряжения для термопар типов J, К, S

компенсация холодных концов термопары

Рис. 2.25. Зависимость коэффициента Зеебека для термопары от температуры

Однако вышеперечисленные устройства не производят компенсацию нелинейности термопар (рис. 2.24). Для компенсации нелинейности термопары рекомендуется использовать высокоточный АЦП и последующую программную обработку сигнала. На рис. 2.23 представлена микропроцессорная система, предназначенная для квантования напряжения с термопары. Для анализа выхода температурного датчика холодного спая используются два мультиплексных входа АЦП. Входной усилитель программируется на усиление от 1 до 128, а разрешение АЦП составляет от 16 до 22 разрядов (в зависимости от выбранного конкретного АЦП). Микроконтроллер выполняет арифметические действия по компенсации температуры холодного спая и линеаризации характеристики термопары [11].

Известно, что коэффициент Зеебека (изменение выходного напряжения при изменении температуры чувствительного спая) меняется с температурой измерительного спая, поэтому при выборе термопары для выполнения измерений в заданном диапазоне температур необходимо выбирать термопару, коэффициент Зеебека которой в меньшей степени меняется в заданном рабочем диапазоне (рис. 2.25) [8].

Например, для измерения температуры в диапазоне от 200 °С до 500 °С необходимо применять термопару J-типа, так как она имеет коэффициент Зеебека, меняющийся менее чем на 1 мкВ/°С в данном промежутке.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *