комплексные числа алгебраическая форма комплексного числа
Комплексные числа. Алгебраическая форма комплексного числа
Комплексными числами называются выражения вида
где a и b− вещественные числа, i− некоторый символ, удовлетворяющий следующему равенству: i 2 =−1.
Комплексное число можно представить как упорядоченная пара вещественных чисел.
Определение 1. Комплексными числами называются упорядоченные пары вещественных чисел, для которых понятия равенства, суммы, произведения и отожествления некоторых пар с вещестенными числами подчиняются следующим правилам:
1. Пары (a,b) и (c,d) считаются равными тогда и только тогда, когда равны их соответствующие компоненты:
2. Суммой пар (a, b) и (c, d) называется пара (a+c, b+d), т.е.
3. Произведение пар (a, b) и (c, d) называется пара (ac−bd, ad+bc), т.е.
4. Пара (a, 0) отождествляется с вещественным числом a, т.е. (a, 0)=a.
Правило 4 определения 1 представляет связь между вещественными и комплексными числами. Точнее указывает на то, что множество вещественных чисел является частью комплексных чисел.
Сопоставим правило 4 с 1. Пусть вещественные числа a и c равны, тогда по правилу 4 этим числам соответствуют комплексные числа (a, 0) и (c, 0). Поскольку a=c, имеем (a, 0)=(c, 0), т.е. выполнено правило 1.
Сопоставим правило 4 с 2. Сумма пар (a, 0) и (c, 0) согласно правилу 2 равна (a, 0)+(c, 0)=(a+c, 0), которая, согласно правилу 4 отождествляется с суммой вещественных чисел a и c.
Сопоставим правило 4 с 3. Согласно правилу 3 произведение пар (a, 0) и (c, 0) равно (a, 0)(c, 0)=(ac−0·0, a0+0c)=(ac, 0), которая, согласно правилу 4 отождествляется с произведением вещественных чисел a и c.
Из правил 3 и 4 вытекает следующая формула
Проверим теперь, что привычные свойства вещественных чисел сохраняются при переходе к комплексным числам, т.е. комплексные числа образуют поле.
1.(a,b)+(c,d)=(c,d)+(a,b). (коммутативность сложения). Действительно, левая часть равна (a+с,b+d), правая часть равна (с+a,d+b). Из коммутативности сложения вещественных чисел следует, что левая и правая части равны.
2. ((a,b)+(c,d))+(e,f)=(a,b)+((c,d)+(e,f)) (ассоциативность сложения). Действительно, из ассоциативности сложения вещественных чисел следует, что левая и правая части равны (a+c+e, b+d+f).
3. (a,b)+(0, 0)=(a,b). Следовательно пара (0, 0) (отожествляемая с вещественным числом 0) соответствует нулю при сложении пар.
4. (a,b)+ (−a,−b)=(0, 0). Т.е. для кажддой пары (a,b) существует противоположная пара (−a,−b).
5. (a,b)(c,d)=(c,d)(a,b)(коммутативность множения). Действительно, левая часть равна (ac−bd, ad+bc), правая часть равна (ca−db, da+cb). Следовательно они равны.
Проверм свойство 6. Левая часть уравнения равна
Правая часть уравнения равна
Следовательно левая и правая части равны.
Из коммутативности умножения следует справедливость свойства 6′.
7. (ассоциативность умножения).
Правая часть равна
Левая и правая части равны. Следовательно свойство 7 выполняется.
8. .
Свойство 8 определяет пару (1, 0), которая отожествляется с вещественным числом 1.
Итак из свойств 1−8 следует, что комплексные числа составляют коммутативное ассоциативное кольцо с единицей.
Умножив сопряженные пары
является обратной парой (и обозначается через (a, b) −1 ), т.е. выполняется следующее равенство
Представим следующее свойство.
9. Для любой пары (a,b) отличной от нуля, существует обратная (a, b) −1 :
Итак, свойства 1−9 показывают что комплексные числа образуют поле.
Алгебраическая форма записи комплексного числа
Представим, теперь, комплексное число в алгебаической форме записи. Комплексное число (a,b) можно представить так:
Из правила 3 определения 1 следует:
Таким образом алгебраическая форма комплексного числа имеет вид:
Первая компонента комплексного числа называется вещественной частью комплексного числа α и обозначается Reα, а вторая компонента называется мнимой частью и обозначается Imα. Отметим, что как вещественная часть (a), так и мнимая часть (b) комплексного числа вещественные числа.
Говоря о комплексных числах надо помнить, что вещественные числа являются частным случаем комплексных, которые имеют нулевую вторую компоненту. К примеру a вещественное число, которое соответствует комплексному числу α=a+0i.
Вычитание и деление комплексных чисел
Вычитание и деление определяются как обратные к действиям сложения и умножения.
Утверждение 1. Пусть α и β − комплексные числа. Тогда существует одно и только одно комплексное число γ=(−α)+β так, что α+γ=β.
Доказательство. Возьмем комплексное число γ=(−α)+β и подставим в уравнение α+γ=β. Имеем α+γ=α+(−α)+β=β. Так что γ=(−α)+β удовлетворяет требованию утверждения.
Обратно. Пусть α+γ=β. Добавим в обе части уравнения число −α. Тогда
Таким образом всякое число, отличное от (−α)+β не удовлетворяет требованию утверждения.
Число (−α)+β является разностью чисел β и α и обозначается β−α.
Утверждение 2. Пусть α и β − комплексные числа и α≠0. Тогда существует одно и только одно комплексное число γ=α −1 β так, что αγ=β.
Доказательство. При γ=α −1 β, имеем
Число =α −1 β является частным от деления β на α. Частное обычно записывается так: . Как известно значение дроби не меняется при умножении числителя и знаменателя на одно и то же ненулевое число. Поэтому можно записать:
Вычислять частное от деления комплексных чисел удобно умножая числитель и знаменатель на комплексное сопряженное с знаменателем:
где вещественное число.
Для сложения вычитания умножения и деления комплексных чисел, пользуйтесь онлайн калькулятором комплексных чисел.
Геометрическое представление комплексных чисел
Число, противоположное числу α=a+bi будет точкой комплексной плоскости, симметричной с точкой α относительно начала координат (−α=−a−bi).
Сложение и вычитание комплексных чисел можно представить на комплексной плоскости в виде сложения и вычитания радиус векторов соответствующих точек. Сложение векторов α и β выполняется по правилу параллелограма (рис.2).
Вычитание векторов α и β эквивалентна сложению векторов α и −β, поэтому сначала строится противоположная к вектору β, далее слагаются векторы α и −β (рис.3).
Комплексные числа
Алгебраическая форма записи комплексных чисел
Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.
Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.
Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
Комплексно сопряженные числа
Модуль комплексного числа
Модулем комплексного числа z = x + i y называют вещественное число, обозначаемое | z | и определенное по формуле
Для произвольного комплексного числа z справедливо равенство:
а для произвольных комплексных чисел z1 и z2 справедливы неравенства:
Деление комплексных чисел, записанных в алгебраической форме
Деление комплексного числа z1 = x1 + i y1 на отличное от нуля комплексное число z2 = x2 + i y2 осуществляется по формуле
Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:
Деление на нуль запрещено.
Изображение комплексных чисел радиус-векторами координатной плоскости
Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.
При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.
Аргумент комплексного числа
Считается, что комплексное число нуль аргумента не имеет.
Тогда оказывается справедливым равенство:
(3) |
(4) |
а аргумент определяется в соответствии со следующей Таблицей 1.
Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.
Таблица 1. – Формулы для определения аргумента числа z = x + i y
Расположение числа z | Знаки x и y | Главное значение аргумента | Аргумент | Примеры |
Положительная вещественная полуось | ||||
Положительная мнимая полуось | ||||
Второй квадрант | ||||
Отрицательная вещественная полуось | Положительная вещественная полуось | |||
Знаки x и y | ||||
Главное значение аргумента | 0 | |||
Аргумент | φ = 2kπ | |||
Примеры |
значение
аргумента
значение
аргумента
значение
аргумента
x z
квадрант
x z
мнимая
полуось
y z
квадрант
Положительная вещественная полуось
Главное значение аргумента:
Расположение числа z :
Главное значение аргумента:
Расположение числа z :
Положительная мнимая полуось
Главное значение аргумента:
Расположение числа z :
Главное значение аргумента:
Расположение числа z :
Отрицательная вещественная полуось
Отрицательная мнимая полуось
x z = x + i y может быть записано в виде
Формула Эйлера. Экспоненциальная форма записи комплексного числа
В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера :
Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число z = x + i y может быть записано в виде
Из формулы (7) вытекают, в частности, следующие равенства:
а из формул (4) и (6) следует, что модуль комплексного числа
Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
Экспоненциальная запись комплексного числа очень удобна для выполнения операций умножения, деления и возведения в натуральную степень комплексных чисел.
Действительно, умножение и деление двух произвольных комплексных чисел и
записанных в экспоненциальной форме, осуществляется по формулам
Таким образом, при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.
При делении двух комплексных чисел модуль их частного равен частному их модулей, а аргумент частного равен разности аргументов делимого и делителя.
Возведение комплексного числа z = r e iφ в натуральную степень осуществляется по формуле
Другими словами, при возведении комплексного числа в степень, являющуюся натуральным числом, модуль числа возводится в эту степень, а аргумент умножается на показатель степени.
Извлечение корня натуральной степени из комплексного числа
Пусть — произвольное комплексное число, отличное от нуля.
Для того, чтобы решить уравнение (8), перепишем его в виде
следствием которых являются равенства
(9) |
Из формул (9) вытекает, что уравнение (8) имеет n различных корней
(10) |
то по формуле (10) получаем:
- комплексные формы библиотечного обслуживания это
- комплексные числа в алгебраической форме свойства и действия с ними