комплексные числа перевод в тригонометрическую форму
Тригонометрическая форма комплексного числа
Рассмотрим комплексное число, заданной в обычной (алгебраической) форме:
Задача заключается в представлении комплексного числа (1) в тригонометрической форме. Для этого на комплексной плоскости введем полярные координаты. Примем за полюс начало координат, а за полярную ось вещественную ось R.
Как известно, полярными координатами точки z являются длина r ее радиус-вектора, равной расстоянию от точки z до полюса, и величина ее полярного угла, т.е. угла, образованного между полярной осью и вектором-радиусом точки z. Отметим, что направление отсчета угла берется от полярной оси до вектора-радиуса против часовой стрелки (Рис.1, Рис.2).
На Рис.3 изображено комплексное число z. Координаты этого числа в декартовой системе координат (a, b). Из определения функций sin и cos любого угла, следует:
Подставляя (2) в (1), получим:
Эта форма записи называется тригонометрической формой записи комплексного числа.
Уравнения (2) возведем в квадрат и сложим:
r−длина радиус-вектора комплексного числа z называется модулем комплексного числа и обозначается |z|. Очевидно |z|≥0, причем |z|=0 тогда и только тогда, когда z=0.
Величина полярного угла точки, соответвующей комплексному числу z, т.е. угла φ, называется аргументом этого числа и обозначается arg z. Заметим, что arg z имеет смысл лишь при z≠0. Аргумент комплексного числа 0 не имеет смысла.
Аргумент комплексного числа определен неоднозначно. Если φ аргумент комплексного числа, то φ+2πk, k=0,1. также является аргументом комплексного числа, т.к. cos(φ+2πk)=cosφ, sin(φ+2πk)=sinφ.
Приведение комплексного числа из алгебраической формы в тригонометрическую
Пусть комплексное число представлено в алгебраической форме: z=a+bi. Представим это число в тригонометрической форме. Вычисляем модуль комплексного числа: . Вычисляем аргумент φ комплексного числа из выражений
или
. Полученные значения вставляем в уравнение (3).
Пример 1. Представить комплексное число z=1 в тригонометрической форме.
Решение. Комплексное число z=1 можно представить так: z=1+0i. Вычислим модуль этого числа: . Вычислим аргумент этого числа: cosφ=1/1. Откуда имеем φ=0. Подставляя значения модуля и аргумента в (3), получим: z=1(cos0+isin0).
Пример 2. Представить комплексное число z=i в тригонометрической форме.
Решение. Комплексное число z=i можно представить так: z=0+1i. Вычислим модуль этого числа: . Вычислим аргумент этого числа: cosφ=0/1. Откуда имеем φ=π/2. Подставляя значения модуля и аргумента в (3), получим:
.
Ответ. .
Пример 3. Представить комплексное число z=4+3i в тригонометрической форме.
Решение. Вычислим модуль этого числа: . Вычислим аргумент этого числа: cosφ=4/5. Откуда имеем φ=arccos(4/5). Подставляя значения модуля и аргумента в (3), получим:
.
Ответ. , где φ=arccos(4/5).
Умножение комплексных чисел в тригонометрической форме записи
В результате умножения комплексных чисел в тригонометрической форме мы получили комплексное число в тригонометрической форме, следовательно |z1z2|=r1r2, или
Пример 4. Умножить комплексные числа и
.
Решение. Воспользуемся формулой (5):
Ответ. .
Деление комплексных чисел в тригонометрической форме записи
Отсюда следует, что или
Далее , или
Пример 5. Делить комплексные числа и
.
Решение. Воспользуемся формулой (8):
Ответ. .
Конвертер величин
Калькулятор преобразования алгебраической формы комплексного числа в тригонометрическую
Этот калькулятор может преобразовывать комплексные числа из алгебраической формы в тригонометрическую (полярную) и наоборот.
Пример 1: Преобразовать импеданс в Z = 5 + j2 Ω из алгебраической формы в полярную.
Преобразование из полярной в алгебраическую
Для преобразования выберите радианы или градусы, введите радиус и угол и нажмите кнопку Преобразовать.
Преобразование из алгебраической формы в полярную
Для преобразования введите действительную и мнимую части и нажмите кнопку Преобразовать.
Определения и формулы
При изучении колебательных процессов в электротехнике и электронике рассматривают источники гармонических сигналов и реактивные нагрузки. При этом для решения сложных уравнений приходится пользоваться не только вещественными, но и комплексными числами. Комплексные числа позволяют выполнять математические операции с комплексными амплитудами и их удобно применять для анализа цепей с синусоидальными токами и напряжениями. С помощью комплексных чисел можно выполнять арифметические действия с величинами, имеющими амплитуду и фазовый угол, а синусоидальные напряжения и другие параметры цепей переменного тока точно характеризуются амплитудой и фазовым углом. Подробнее о таких расчетах — в нашихКалькуляторах по электротехнике, радиотехнике и электронике and Электротехнических конвертерах.
Комплексное число z можно выразить в форме z = x + jy, где x и y — вещественные числа и j — мнимая единица, определяемая формулой j² = –1. В комплексном числе x + jy, величина x называется вещественной частью, а величина y называется мнимой частью. В электротехнике для обозначения мнимой единицы используется буква j, так как буквой i принято обозначать мгновенное значение тока. В математике вместо j обычно используют букву i.
Комплексные числа визуально представляются в виде вектора на комплексной плоскости, которая является модифицированной прямоугольной системой координат. В ней на горизонтальной оси Re изображается вещественная часть комплексного числа, а на вертикальной оси Im — его мнимая часть. Любое комплексное число можно представить в виде смещения на горизонтальной оси (вещественная часть) и смещения на вертикальной оси (мнимая часть).
Комплексное число можно также представить на комплексной плоскости в полярной системе координат. Полярное представление состоит из вектора с абсолютной величиной r и угловым положением φ относительно горизонтальной оси 0° и выражается как
В электротехнике и электронике для описания изменяющегося во времени гармонического сигнала используется векторное представление в комплексной форме в полярных координатах, называемое также комплексной амплитудой и фазором (от англ. phase vector — фазовый вектор). Длина вектора представляет амплитуду синусоидальной функции, а угол φ представляет угловое положение вектора. Положительные углы измеряются от начальной оси 0° в направлении против часовой стрелки, а отрицательные углы — по часовой стрелке. Особенно популярен этот метод в учебниках по теоретическим основам электротехники и основам теории цепей на английском языке. В этом их отличие от соответствующих учебников на русском языке, где используется иной подход к анализу. Причем, в отличие от учебников на русском языке, в англоязычной литературе принято обозначение комплексных чисел в полярной системе координат с углом: z = x + jy = re jφ = r∠φ.
Поскольку представление комплексного числа в полярных координатах основано на прямоугольном треугольнике, для определения амплитуды и фазового угла комплексного числа можно воспользоваться теоремой Пифагора, как описано ниже.
Для преобразования из прямоугольных координат x, y в полярные координаты r, φ, используйте следующие формулы:
Если эти формулы используются для электротехнических расчетов (см. Калькулятор мощности переменного тока and Калькулятор мощности трехфазного тока), то x всегда положительно, а y положительно для индуктивной нагрузки (ток отстает от напряжения) и отрицательно для емкостной нагрузки (ток опережает напряжение). В этом случае для емкостных нагрузок углы должны получаться отрицательными в диапазоне –90°≤φ≤0 и их не корректируют, как описано в приведенных выше формулах (то есть, не добавляют 360°).
Преобразование из полярных координат r, φ в прямоугольные coordinates x, y, выполняется по формулам:
Комплексные числа перевод в тригонометрическую форму
где x и y – действительные числа, а i так называемая мнимая единица. Соотношение для мнимой единицы
Понятия «больше» и «меньше» для комплексных чисел не вводятся.
Числа z = x + iy и называются комплексно сопряженными.
Алгебраической формой комплексного числа называется з апись числа z в виде z = x + iy.
Модуль r и аргумент φ можно рассматривать как полярные координаты вектора , изображающего комплексное число z = x + iy (см. рис. 7.1). Тогда из соотношений сторон в прямоугольном треугольнике получаем
Равенство (7.3) есть тригонометрическая форма комплексного числа. Модуль r = |z| однозначно определяется по формуле
Аргумент определяется из формул:
Используя формулу Эйлера
комплексное число можно записать в так называемой показательной (или экспоненциальной) форме
где r =| z | — модуль комплексного числа, а угол ( k =0;–1;1;–2;2…).
Пример 7.1. Записать комплексные числа в тригонометрической и показательной формах.
На множестве комплексны х чисел определен ряд операций.
Из (7.11) следует важнейшее соотношение i 2 = –1. Действительно,
Видно, что при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей. Нетрудно видеть, что если есть n множителей и все они одинаковые, то частным случаем равенства (7.12) является формула возведения комплексного числа в натуральную степень:
(7.13) называется первой формулой Муавра.
Произведение двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
На практике при нахождении частного двух комплексных чисел удобно умножить числитель и знаменатель дроби на число, сопряженное знаменателю, с дальнейшим применением равенства i 2 = –1 и формулы разности квадратов.
Деление комплексных чисел осуществляется также и в тригонометрической форме, при этом имеет место формула:
Видно, что при делении комплексных чисел их модули делятся, а аргументы вычитаются соответственно.
Частное двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
Пользуясь формулой (7.11), вычислим их произведение
На основании формулы (7.14) вычислим их частное
Решение. Используя (7.4) и (7.5), получаем:
Аналогично, для z 2 можно записать:
По формулам (7.12) и (7.16) получим в тригонометрической форме:
Пользуясь формулами (7.14) и (7.17), получим в показательной форме:
в натуральную степень, определенному ранее формулой (7.13).
(7.18) называется второй формулой Муавра.
Пример 7.4. Найти все корни уравнения z 4 +16=0.
Теорема 7.1 (основная теорема алгебры). Для всякого многочлена с комплексными коэффициентами
Приведем еще одну теорему, имеющую место над множеством комплексных чисел.
Таким образом, произведение линейных множителей, соответствующих сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, а соответствующее квадратное уравнение будет иметь отрицательный дискриминант.
Комплексные числа
Алгебраическая форма записи комплексных чисел
Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.
Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.
Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
Комплексно сопряженные числа
Модуль комплексного числа
Модулем комплексного числа z = x + i y называют вещественное число, обозначаемое | z | и определенное по формуле
Для произвольного комплексного числа z справедливо равенство:
а для произвольных комплексных чисел z1 и z2 справедливы неравенства:
Деление комплексных чисел, записанных в алгебраической форме
Деление комплексного числа z1 = x1 + i y1 на отличное от нуля комплексное число z2 = x2 + i y2 осуществляется по формуле
Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:
Деление на нуль запрещено.
Изображение комплексных чисел радиус-векторами координатной плоскости
Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.
При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.
Аргумент комплексного числа
Считается, что комплексное число нуль аргумента не имеет.
Тогда оказывается справедливым равенство:
(3) |
(4) |
а аргумент определяется в соответствии со следующей Таблицей 1.
Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.
Таблица 1. – Формулы для определения аргумента числа z = x + i y
Расположение числа z | Знаки x и y | Главное значение аргумента | Аргумент | Примеры |
Положительная вещественная полуось | ||||
Положительная мнимая полуось | ||||
Второй квадрант | ||||
Отрицательная вещественная полуось | Положительная вещественная полуось | |||
Знаки x и y | ||||
Главное значение аргумента | 0 | |||
Аргумент | φ = 2kπ | |||
Примеры |
значение
аргумента
значение
аргумента
значение
аргумента
x z
квадрант
x z
мнимая
полуось
y z
квадрант
Положительная вещественная полуось
Главное значение аргумента:
Расположение числа z :
Главное значение аргумента:
Расположение числа z :
Положительная мнимая полуось
Главное значение аргумента:
Расположение числа z :
Главное значение аргумента:
Расположение числа z :
Отрицательная вещественная полуось
Отрицательная мнимая полуось
x z = x + i y может быть записано в виде
Формула Эйлера. Экспоненциальная форма записи комплексного числа
В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера :
Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число z = x + i y может быть записано в виде
Из формулы (7) вытекают, в частности, следующие равенства:
а из формул (4) и (6) следует, что модуль комплексного числа
Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
Экспоненциальная запись комплексного числа очень удобна для выполнения операций умножения, деления и возведения в натуральную степень комплексных чисел.
Действительно, умножение и деление двух произвольных комплексных чисел и
записанных в экспоненциальной форме, осуществляется по формулам
Таким образом, при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.
При делении двух комплексных чисел модуль их частного равен частному их модулей, а аргумент частного равен разности аргументов делимого и делителя.
Возведение комплексного числа z = r e iφ в натуральную степень осуществляется по формуле
Другими словами, при возведении комплексного числа в степень, являющуюся натуральным числом, модуль числа возводится в эту степень, а аргумент умножается на показатель степени.
Извлечение корня натуральной степени из комплексного числа
Пусть — произвольное комплексное число, отличное от нуля.
Для того, чтобы решить уравнение (8), перепишем его в виде
следствием которых являются равенства
(9) |
Из формул (9) вытекает, что уравнение (8) имеет n различных корней
(10) |
то по формуле (10) получаем:
- комплексные числа перевод в показательную форму
- комплексные числа различные формы представления чисел