Натрия гидроксид что это такое
Натрия гидроксид что это такое
Гидроксид натрия (Е524)
У скандинавских народов к рождественскому столу традиционно подают лютефиск. Дословно это название переводится как «рыба в щелочи», что, по сути, точно характеризует блюдо. Лютефиск – это предварительно высушенная рыба, которую несколько дней выдерживают в щелочном растворе, затем вымачивают в воде, обжаривают и подают к столу. В таком виде рыба приобретает необычную желеобразную консистенцию. В чем секрет? В том, что щелочной раствор скандинавы готовят из каустической соды – того самого агрессивного вещества, который в нашей стране больше знают, как средство для эффективного очищения канализационных труб. Наверное, многие сейчас подумали: «О, ужас! Как они могут это кушать?». Но должны вас еще больше ошеломить. Большинство из нас, если не ежедневно, то регулярно употребляет в пищу, содержащую каустическую соду. Просто в пищевой промышленности она прячется под другим именем – добавка Е524.
Общая характеристика
Научное название добавки Е524 – гидроксид натрия или едкий натр. Это очень агрессивное вещество синтетического происхождения не имеет аналогов в природе. В естественных для себя условиях оно принимает вид белых чешуек или небольших гранул мыльных на ощупь.
В наше время широко используется в разных отраслях жизнедеятельности, в том числе медицине, фармакологии, пищевой индустрии. В сельском хозяйстве, например, каустическую соду используют для проверки коровьего молока на наличие примесей. Это вещество применяют в производстве разных видов бытовой химии (самые популярные – для прочистки водопроводных и канализационных труб). В косметологии едкий натр добавляют в шампуни, мыло, жидкости для снятия лака, кремы, а также в средства для избавления от ороговевшей кожи. Кроме того, гидроксид натрия – незаменимое вещество в нефтеперерабатывающей, целлюлозно-бумажной промышленности и в производстве дизельного топлива.
В пищевой промышленности гидроксид натрия используют для регуляции кислотности, как стабилизатор и эмульгатор. Несмотря на весьма агрессивные свойства и внушительный список побочных эффектов, каустическая сода в качестве пищевой добавки разрешена во всем мире.
Опасные свойства каустической соды
Каустическая сода – довольно опасное вещество. На коже и слизистых оболочках при контакте с ней образуются глубокие и очень болезненные раны. Очень опасен контакт каустической соды с глазами, так как вызывает атрофию зрительного нерва, что ведет к слепоте. Если случайно вдохнуть порошок едкого натра, начнется приступ сильного кашля, одышка, появится боль в горле и даже возможен отек дыхательных легких. И можно только представить себе, что это вещество способно делать с нашими внутренними органами. Если случайно проглотить каустическую соду, очень быстро в животе появится сильная боль и чувство жжения, возможен анафилактический шок. При малейшем подозрении на отравление гидроксидом натрия важно немедленно вызвать скорую помощь. Участки кожи, пораженные едким натром, следует промыть несильным раствором борной или уксусной кислоты, слизистые оболочки – чистой водой, глаза – сначала обработать очень слабым раствором борной кислоты, а затем водой.
Хоть в пищевой промышленности гидроксид натрия используют в микродозах, но при регулярном употреблении пищи, содержащей Е524, возможны побочные эффекты.
В чем может содержаться
Пищевая добавка Е524 может содержаться в самых разных группах продукции, в которых выполняет самые разные функции. Взять хотя бы джемы и мармелады, в составе которых часто содержится гидроксид натрия. В этой группе продуктов добавка играет роль регулятора и стабилизатора уровня кислотности. Если добавить некоторое количество едкого натра в тесто для выпечки, то готовая продукция получит красивую румяную хрустящую корочку.
Самая известная сдоба, приготовленная с использованием каустической соды – это немецкие рогалики. Черные консервированные оливки получают свой темный цвет и характерную консистенцию также благодаря добавке Е524. В изделиях из шоколада, какао, сливочного масла или других видов жиров гидроксид натрия ускоряет расщепление белков. Эта добавка приходит на помощь и тогда, когда необходимо быстро и без труда очистить плоды от кожицы. Для этого фрукты, ягоды или овощи просто обрабатывают каустической содой. Кроме того, регулятор кислотности Е524 используют в производстве кисломолочной продукции, маргаринов, мороженого, разных видов сладостей.
Гидроксид натрия – опасное химическое соединение. И хоть в пищевой промышленности Е524 используется в небольших дозах, которые обычно не представляют опасности для человека, излишняя осторожность не повредит. Если не желаете или не можете отказаться от Е-содержащей пищи сами, то постарайтесь хотя бы минимизировать количество «ешек» в рационе маленьких детей. А для этого не забывайте перед покупкой продукта проверять, из чего он состоит.
Натрия гидроксид
каустическая сода,
едкая щелочь
— 52,2 (20 °C) г/100 мл
Гидроксид натрия лат. Natrii hydroxidum ; другие названия — каустическая сода, каустик, едкий натр, едкая щёлочь. Самая распространенная щёлочь, химическая формула NaOH. В год в мире производится и потребляется более 57 миллионов тонн едкой щёлочи. Гидроксид натрия также используется для мойки пресс-форм автопокрышек, называется Mold Cleaner фирмы «NALCO». Интересна история тривиальных названий как гидроксида натрия, так и других щелочей, название «едкая щёлочь» обусловлено свойством разьедать кожу, бумагу, стекло и вызывать сильные ожоги. До XVII века, щёлочью (фр. alkali) называли также карбонаты натрия и калия. В 1736 французский учёный А. Л. Дюамель дю Монсо впервые различил эти вещества: гидроксид натрия стали называть каустической содой, карбонат натрия — кальцинированной содой (по растению Salsola Soda, из золы которого её добывали), а карбонат калия — поташем. В настоящее время содой принято называть натриевые соли угольной кислоты. В английском и французском языках слово sodium означает натрий, potassium — калий.
Содержание
Физические свойства
ΔH 0 растворения для бесконечно разбавленного водного раствора —44,45 кДж/моль.
Из водных растворов при 12,3 — 61,8 °C кристаллизуется моногидрат (сингония ромбическая), температура плавления 65,1 °C; плотность 1,829 г/см³; ΔH 0 обр −734,96 кДж/моль), в интервале от —28 до —24°С — гептагидрат, от —24 до —17,7°С — пентагидрат, от —17,7 до —5,4°С —тетрагидрат (α-модификация), от —5,4 до 12,3 °C. Растворимость в метаноле 23,6 г/л (t=28 °C), в этаноле 14,7 г/л (t=28 °C). NaOH·3,5Н2О (температура плавления 15,5 °C);
Химические свойства
Гидроксид натрия (едкая щёлочь)— сильное химическое основание (к сильным основаниям относят гидроксиды, молекулы которых полностью диссоциируют в воде), к ним относят гидроксиды щелочных и щёлочно-земельных металлов подгрупп Iа и IIа периодической системы Д. И. Менделеева, KOH (едкий калий), Ba(OH)2 (едкий барит), LiOH, RbOH, CsOH. Щёлочность (основность) определяется валентностью металла, радиусом внешней электронной оболочки и электрохимической активностью: чем больше радиус электронной оболочки (увеличивается с порядковым номером), тем легче металл отдает электроны, и тем выше его электрохимическая активность и тем левее располагается элемент в ряду электрохимической активности металлов, в котором за ноль принята активность водорода.
Гидроксид натрия вступает в реакции:
1.Нейтрализации с различными веществами в любых агрегатных состояниях, от растворов и газов до твердых веществ:
так и с растворами:
(Образующийся анион называется тетрагидроксоцинкат-ионом, а соль, которую можно выделить из раствора — тетрагидроксоцинкатом натрия. В аналогичные реакции гидроксид натрия вступает и c другими амфотерными оксидами.)
(2) H2S + NaOH = NaHS + H2O (кислая соль, при отношении 1:1)
2. Обмена с солями в растворе:
Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия, действуя гидроксидом натрия на сульфат алюминия в водном растворе. Его и используют, в частности, для очистки воды от мелких взвесей.
например, с фосфором — с образованием гипофосфита натрия:
4. С металлами: Гидроксид натрия вступает в реакцию с алюминием, цинком, титаном. Он не реагирует с железом и медью (металлами, которые имеют низкий электрохимический потенциал). Алюминий легко растворяется в едкой щёлочи с образованием хорошо растворимого комплекса — тетрагидроксиалюмината натрия и водорода:
В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла, в зависимости от состава жира.
6. С многоатомными спиртами — с образованием алкоголятов:
7. Со стеклом: в результате длительного воздействия горячей гидроокиси натрия поверхность стекла становится матовой (выщелачивание силикатов):
Качественное определение ионов натрия возможно несколькими способами
1. По цвету пламени горелки — ионы натрия придают пламени жёлтую окраску:
2. С использованием специфических реакций на ионы натрия:
Реагент | Фторид аммония | Нитрит цезия-калия-висмута | Ацетат магния | Ацетат цинка | Пикро- | ||
---|---|---|---|---|---|---|---|
Цвет осадка | белый | бледно-жёлтый | жёлто-зеленый | желто-зеленый | белый | белый | бледно-жёлтый |
Способы получения
Промышленные способы получения
В промышленном масштабе гидроксид натрия получают электролизом растворов галита (каменная соль NaCl) с одновременным получением водорода и хлора:
Едкие щёлочи, полученные при электролизе с жидким ртутным катодом, значительно чище полученных диафрагменным способом. Для некоторых производств это важно. Так, в производстве искусственных волокон можно применять только каустик, полученный при электролизе с жидким ртутным катодом. В мировой практике используются все три метода получения хлора и каустика, при явной тенденции в сторону увеличения доли мембранного электролиза. В России приблизительно 35 % от всего выпускаемого каустика вырабатывается электролизом с ртутным катодом и 65 % — электролизом с твёрдым катодом (диафрагменный и мембранный методы).
Эффективность процесса производства рассчитывается не только по выходу едкого натра, но и по выходу хлора и водорода, получаемых при электролизе, соотношение хлора и гидроксида натрия на выходе 100/110, реакция протекает в следующих соотношениях:
1,8 NaCl + 0, 5 H2O + 2,8 МДж = 1,00 Cl2 + 1,10 NaOH + 0,03 H2,
Основные показатели различных методов производства даны в таблице:
Технологическая схема электролиза с твёрдым катодом
Диафрагменный метод — Полость электролизёра с твёрдым катодом разделена пористой перегородкой — диафрагмой — на катодное и анодное пространство, где соответственно размещены катод и анод электролизёра. Поэтому такой электролизёр часто называют диафрагменным, а метод получения — диафрагменным электролизом [1]. В анодное пространство диафрагменного электролизёра непрерывно поступает поток насыщенного анолита. В результате электрохимического процесса на аноде за счет разложения галита выделяется хлор, а на катоде за счет разложения воды — водород. Хлор и водород выводятся из электролизёра раздельно, не смешиваясь:
При этом прикатодная зона обогащается гидроксидом натрия. Раствор из прикатодной зоны, называемый электролитическим щёлоком, содержащий неразложившийся анолит и гидроксид натрия, непрерывно выводится из электролизёра. На следующей стадии электролитический щёлок упаривают и доводят содержание в нём NaOH до 42—50 % в соответствии со стандартом. Галит и сульфат натрия при повышении концентрации гидроксида натрия выпадают в осадок. Раствор едкой щёлочи декантируют от осадка и передают в качестве готового продукта на склад или на стадию упаривания для получения твёрдого продукта, с последующим плавлением, чешуированием или грануляцией. Кристаллический галит (обратную соль) возвращают на электролиз, приготавливая из неё так называемый обратный рассол. Из него во избежание накапливания сульфата в растворах перед приготовлением обратного рассола извлекают сульфат. Убыль анолита возмещают добавкой свежего рассола, получаемого подземным выщелачиванием соляных пластов или растворением твёрдого галита. Свежий рассол перед смешиванием его с обратным рассолом очищают от механических взвесей и значительной части ионов кальция и магния. Полученный хлор отделяется от паров воды, компримируется и подаётся либо на производство хлорсодержащих продуктов, либо на сжижение.
Мембранный метод — аналогичен диафрагменному, но анодное и катодное пространства разделены катионообменной мембраной. Мембранный электролиз обеспечивает получение наиболее чистого каустика.
который отводится из электролизёра, а на ртутном катоде образуется слабый раствор натрия в ртути, так называемая амальгама:
Амальгама непрерывно перетекает из электролизёра в разлагатель. В разлагатель также непрерывно подаётся хорошо очищенная от примесей вода. В нем амальгама натрия в результате самопроизвольного электрохимического процесса почти полностью разлагается водой с образованием ртути, раствора каустика и водорода:
Полученный таким образом раствор каустика, являющийся товарным продуктом, не содержит примеси галита, вредной в производстве вискозы. Ртуть почти полностью освобождается от амальгамы натрия и возвращается в электролизер. Водород отводится на очистку. Анолит, выходящий из электролизера, донасыщают свежим галитом, извлекают из него примеси, внесенные с ним, а также вымываемые из анодов и конструкционных материалов, и возвращают на электролиз. Перед донасыщением из анолита извлекают двух- или трёхступенчатым процессом растворённый в нём хлор.
Лабораторные способы получения
В лаборатории гидроксид натрия получают химическими способами, которые имеют больше историческое, чем практическое значение.
В результате реакции образуется раствор гидроксида натрия и осадок карбоната кальция. Карбонат кальция отделяется от раствора, который упаривается до получения расплавленного продукта, содержащего около 92 % NaOH. Расплавленный NaOH разливают в железные барабаны, где он застывает.
Ферритный способ описывается двумя реакциями:
(1) — процесс спекания кальцинированной соды с окисью железа при температуре 1100—1200°С. При этом образуется спек-феррит натрия и выделяется двуокись углерода. Далее спек обрабатывают (выщелачивают) водой по реакции (2); получается раствор гидроксида натрия и осадок Fe2O3, который после отделения его от раствора возвращается в процесс. Раствор содержит около 400 г/л NaOH. Его упаривают до получения продукта, содержащего около 92 % NaOH.
Химические методы получения гидроксида натрия имеют существенные недостатки: расходуется большое количество топлива, получаемый едкий натр загрязнен примесями, обслуживание аппаратов трудоемко. В настоящее время эти методы почти полностью вытеснены электрохимическим способом производства.
Гидроксид натрия
С химическим соединением, называемым каустической содой, человек встречается ежедневно. Гидроксид натрия, химическая формула которого обозначается NaOH, относится к разряду едких и сильных щелочей, опасных для кожи и слизистых человека. Одновременно с этим она активно используется пищевой промышленностью, косметологией, фармацевтикой. Ни одно средство личной гигиены не обходится без добавления этого соединения. Химические свойства вещества сделали его самым популярным среди регуляторов кислотности и средств для поддержания консистенции.
Что такое гидроксид натрия
Это соединение – едкая щелочь, которая применяется не только пищевой, фармацевтической и косметической сферами, но и химической промышленностью. Гидроокись натрия, или каустическая сода, выпускается в виде немного скользких твердых гранул желтоватого или белого цвета. При сильной концентрации NaOH разъедает органические соединения, поэтому способен вызвать ожог. Используется как пищевая добавка Е524, необходимая для поддержания консистенции продуктов.
Формула
Вещество имеет химическую формулу NaOH. Соединение взаимодействует с различными веществами любых агрегатных состояний, нейтрализуя их, с кислотами, образуя соль и воду. Реакция с атмосферными оксидами и гидроксидами позволяет получить тетрагидроксоцинкат или алкоголят. Едкий натр применяется для осаждения металлов. Например, при реакции с сульфатом алюминия образуется его гидроксид. Осадок не растворяется и не наблюдается избыточное получение щелочи. Это актуально при очистке воды от мелких взвесей.
Свойства
Соединение растворяется в воде. Технический Sodium Hydroxide представляет собой водный раствор гидроксида натрия в щелочеустойчивой герметичной таре. При взаимодействии с водой каустик выделяет большое количество тепла. Вещество имеет следующие свойства:
Получение
Каустическая сода встречается в составе минерала брусита. Второе по величине месторождение сконцентрировано на территории России. Гидроокись благодаря исследованиям Николы Леблана, проведенным в 1787 г., получают методом синтеза из хлористого натрия. Позже востребованным способом добычи стал электролиз. С 1882 г. ученые разработали ферритный метод получения в лаборатории гидроксида с помощью кальцинированной соды. Электрохимический способ сейчас самый популярный: ионы натрия образуют его раствор едкой ртути – амальгаму, которая растворяется водой.
Применение гидроксида натрия
Нет более распространенной щелочи, чем каустическая сода. Ежегодно потребляется порядка 57 млн т. Едкий натрий используется при получении лекарственных препаратов, фенола, органических красителей, глицерина. Еще одна сфера применения – дезинфекция помещения из-за способности химического соединения нейтрализовать вредные для человека вещества, находящиеся в воздухе. Еще гидроокиси широко используются для поддержания формы продуктов (пищевая промышленность).
В промышленности
Гидроокись натрия относится к сильной основе для химических реакций и активно применяется разными отраслями благодаря своим свойствам:
Пищевая добавка
Каустическая сода очищает овощи, фрукты от кожицы. Применяется вещество для придания цвета карамели. Как пищевая добавка E524 (класс регуляторов кислотности, веществ против комкования наряду с карбонатом натрия) используется при изготовлении какао, мороженого, сливочного масла, маргарина, шоколада, безалкогольных напитков. Оливки и маслины размягчаются, приобретают черный цвет.
Пищевые продукты – рогалики и немецкие крендели (брецели) – обрабатывают едким раствором для хрустящей корочки. В скандинавской кухне существует рыбное блюдо – лютефиск. Технология приготовления включает вымачивание на протяжении 5-6 суток сушеной трески в растворе гидроокиси, пока не будет получена желеобразная консистенция. В пищевой промышленности сода помогает рафинировать растительное масло.
В производстве моющих средств
Способность взаимодействия жиров у каустика была замечена уже давно. С VII века арабы освоили получение твердого мыла с помощью едкого натра и ароматических масел. Эта технология осталась прежней. Каустическая сода добавляется в шампуни, моющие вещества, средства личной гигиены. Косметическая промышленность применяет гидроксид Na для получения мыла против жиров, жидкости для снятия лака, кремов.
В быту
Основной способ применения – гелеобразный гидроксид или его гранулы. Входит в состав средств для устранения засоров канализации, систем отопления. Грязь растворяется, дезагрегируется и проходит дальше по трубе. Изделия из нержавеющей стали очищаются от масляных веществ с помощью каустической соды, разогретой до 50-60°С с добавлением гидроксида калия. Косметология применяет гель на его основе для размягчения ороговевшей кожи, папиллом, бородавок.
Гидроксид натрия в медицине
Соединение добавляется в лекарственные препараты против повышенной кислотности желудка, для слабительного эффекта сильного действия. Такое средство приводит к повышению перистальтики кишечника. Использование вещества восстанавливает кислотно-щелочной баланс. Применяется оно в медицине для достижения успокоительного эффекта, пригодно для очистки воды от примесей. Благодаря хлориду натрия остаются постоянными индикаторы осмотического давления плазмы крови. Не стоит путать его с пищевой содой, поваренной солью.
Вред гидроксида натрия
Вещество относится ко второму классу опасности. Из-за способности гидроокиси разъедать органические соединения применение каустика должно осуществляться с соблюдением всех мер предосторожности. При попадании щелочи на слизистые и кожу она вызывает сильные ожоги, а взаимодействие с глазами приводит к атрофии зрительного нерва. Для нейтрализации гидроксида на коже применяется слабый раствор уксуса и большое количество проточной воды.
Видео
Гидроксид натрия — распространенная и полезная щелочь
Данный реактив, самая распространенная щелочь, более известен под названиями едкий натр или каустическая сода (от французского слова sodium — натрий и греческого слова kaustikos — едкий). Исходя из названия понятно, что вещество опасное, поэтому обращаться с ним надо бережно. Гидроокись натрия — бесцветная кристаллическая масса. Вещество способно разъедать не только материалы органического происхождения, но и определенные металлы, причем при контакте с цинком, свинцом, алюминием, оловом и их сплавами выделяется водород, взрывоопасный газ. Нельзя допускать контакта каустической соды с аммиаком, это пожароопасно.
Важные особенности гидроксида натрия
Их важно знать, чтобы работа с этим реактивом была безопасной, и чтобы его применение принесло ожидаемые результаты.
Основные сферы применения едкого натра
Техника безопасности в работе с гидроксидом натрия
По ГОСТ 12.1.007-76 каустическая сода относится ко II классу токсичности (высокоопасна). Может вызвать сильный ожог кожи и слизистых, необратимое повреждение зрения при попадании в глаза. Именно поэтому работать с ней нужно в перчатках и защитных очках, использовать специальную одежду с виниловой пропиткой или прорезиненную.
При попадании вещества на слизистую ее как можно скорее нужно промыть большим количеством проточной воды, кожу промыть слабым раствором уксуса.
При большой поверхности ожога, при попадании реактива внутрь или в глаз следует не только приянть эти меры, но и незамедлительно обратиться к врачу.
Вы можете купить щелочь гидроксид натрия в нашем магазине, и мы надеемся, что вы будете соблюдать технику безопасности. Товар продается с доставкой, поэтому вы можете купить щелочь в Москве или другом городе России и вскоре получить его в своем городе.
Гидроксид натрия
Гидроксид натрия | ||||||||
Общие | ||||||||
---|---|---|---|---|---|---|---|---|
Традиционные названия | едкий натр, каустик, каустическая сода, едкая щелочь | |||||||
Химическая формула | NaOH | |||||||
Физические свойства | ||||||||
Молярная масса | 39,997 г/моль | |||||||
Плотность | 1,59 г/см³ | |||||||
Термические свойства | ||||||||
Температура плавления | 323 °C | |||||||
Температура кипения | 1403 °C | |||||||
Химические свойства | ||||||||
Растворимость в воде | 108,7 г/100 мл | |||||||
Безопасность | ||||||||
Токсичность | Ацетат уранила-цинка | |||||||
Цвет осадка | белый | бледно-жёлтый | жёлто-зелёный | желто-зелёный | белый | белый | бледно-жёлтый | зеленовато-жёлтый |
Методы получения
Гидроксид натрия может получаться в промышленности химическими и электрохимическими методами.
Химические методы получения гидроксида натрия
К химическим методам получения гидроксида натрия относятся известковый и ферритный.
Химические методы получения гидроксида натрия имеют существенные недостатки: расходуется большое количество энергоносителей, получаемый едкий натр сильно загрязнен примесями.
В настоящее время эти методы почти полностью вытеснены электрохимическими методами производства.
Известковый метод
Известковый метод получения гидроксида натрия заключается во взаимодействии раствора соды с известковым молоком при температуре около 80°С. Этот процесс называется каустификацией; он проходит по реакции:
В результате реакции получается раствор гидроксида натрия и осадок карбоната кальция. Карбонат кальция отделяется от раствора, который упаривается до получения расплавленного продукта, содержащего около 92 % масс. NaOH. Затем NaOH плавят и разливают в железные барабаны, где он застывает.
Ферритный метод
Ферритный метод получения гидроксида натрия состоит из двух этапов:
Реакция 1 представляет собой процесс спекания кальцинированной соды с окисью железа при температуре 1100—1200°С. При этом образуется спек — феррит натрия и выделяется двуокись углерода. Далее спек обрабатывают (выщелачивают) водой по реакции 2; получается раствор гидроксида натрия и осадок Fe2O3*xH2О, который после отделения его от раствора возвращается в процесс. Получаемый раствор щелочи содержит около 400 г/л NaOH. Его упаривают до получения продукта, содержащего около 92 % масс. NaOH, а затем получают твердый продукт в виде гранул или хлопьев.
Электрохимические методы получения гидроксида натрия
Электрохимически гидроксид натрия получают электролизом растворов галита (минерала, состоящего в основном из поваренной соли NaCl) с одновременным получением водорода и хлора. Этот процесс можно представить суммарной формулой:
Едкая щёлочь и хлор вырабатываются тремя электрохимическими методами. Два из них — электролиз с твёрдым катодом (диафрагменный и мембранный методы), третий — электролиз с жидким ртутным катодом (ртутный метод).
В мировой производственной практике используются все три метода получения хлора и каустика с явной тенденцией к увеличению доли мембранного электролиза.
Показатель на 1 тонну NaOH | Ртутный метод | Диафрагменный метод | Мембранный метод |
---|---|---|---|
Выход хлора % | 99 | 96 | 98,5 |
Электроэнергия (кВт·ч) | 3 150 | 3 260 | 2 520 |
Концентрация NaOH | 50 | 12 | 35 |
Чистота хлора | 99,2 | 98 | 99,3 |
Чистота водорода | 99,9 | 99,9 | 99,9 |
Массовая доля O2 в хлоре, % | 0,1 | 1—2 | 0,3 |
Массовая доля Cl − в NaOH, % | 0,003 | 1—1,2 | 0,005 |
В России приблизительно 35 % от всего выпускаемого каустика вырабатывается электролизом с ртутным катодом и 65 % — электролизом с твёрдым катодом (диафрагменный и мембранный методы).
Диафрагменный метод
Наиболее простым, из электрохимических методов, в плане организации процесса и конструкционных материалов для электролизера, является диафрагменный метод получения гидроксида натрия.
Раствор соли в диафрагменном электролизере непрерывно подается в анодное пространство и протекает через, как правило, нанесённую на стальную катодную сетку асбестовую диафрагму, в которую, иногда, добавляют небольшое количество полимерных волокон.
Во многих конструкциях электролизеров катод полностью погружен под слой анолита (электролита из анодного пространства), а выделяющийся на катодной сетке водород отводится из под катода при помощи газоотводных труб, не проникая через диафрагму в анодное пространство благодаря противотоку.
В качестве анода в диафрагменных электролизерах может использоваться графитовый или угольный электроды. На сегодня их в основном заменили титановые аноды с окисно-рутениево-титановым покрытием (аноды ОРТА) или другие малорасходуемые.
На следующей стадии электролитический щёлок упаривают и доводят содержание в нём NaOH до товарной концентрации 42—50 % масс. в соответствии со стандартом.
Поваренная соль, сульфат натрия и другие примеси при повышении их концентрации в растворе выше их предела растворимости выпадают в осадок. Раствор едкой щёлочи декантируют от осадка и передают в качестве готового продукта на склад или продолжают стадию упаривания для получения твёрдого продукта, с последующим плавлением, чешуированием или грануляцией.
Обратную, то есть кристаллизовавшуюся в осадок поваренную соль возвращают назад в процесс, приготавливая из неё так называемый обратный рассол. От неё, во избежание накапливания примесей в растворах, перед приготовлением обратного рассола отделяют примеси.
Убыль анолита восполняют добавкой свежего рассола, получаемого подземным выщелачиванием соляных пластов, минеральных рассолов типа бишофита, предварительно очищенного от примесей или растворением галита. Свежий рассол перед смешиванием его с обратным рассолом очищают от механических взвесей и значительной части ионов кальция и магния.
Полученный хлор отделяется от паров воды, компримируется и подаётся либо на производство хлорсодержащих продуктов, либо на сжижение.
Благодаря относительной простоте и дешевизне диафрагменный метод получения гидроксида натрия до сих пор широко используется в промышленности.
Мембранный метод
Мембранный метод производства гидроксида натрия наиболее энергоэффективен, однако сложен в организации и эксплуатации.
С точки зрения электрохимических процессов мембранный метод подобен диафрагменному, но анодное и катодное пространства полностью разделены непроницаемой для анионов катионообменной мембраной. Благодаря этому свойству становится возможным получение более чистых, чем в случае с диафрагменного метода, щелоков. Поэтому в мембранном электролизере, в отличие от диафрагменного, не один поток, а два.
В анодное пространство поступает, как и в диафрагменном методе, поток раствора соли. А в катодное — деионизированная вода. Из катодного пространства вытекает поток обедненного анолита, содержащего так же примеси гипохлорит- и хлорат-ионов и хлор, а из анодного — щелока и водород, практически не содержащие примесей и близкие к товарной концентрации, что уменьшает затраты энергии на их упаривание и очистку.
Щелочь, получаемая с помощью мембранного электролиза, практически не уступает по качеству получаемой при помощи метода с использованием ртутного катода и постепенно заменяет щелочь, получаемую ртутным методом.
Однако, питающий раствор соли (как свежий так и оборотный) и вода предварительно максимально очищается от любых примесей. Такая тщательная очистка определяется высокой стоимость полимерных катионообменных мембран и их уязвимость к примесям в питающем растворе.
Кроме того, ограниченная геометрическая форма а также низкая механическая прочность и термическая стойкость ионообменных мембран во многом определяют сравнительно сложные конструкции установок мембранного электролиза. По той же причине мембранные установки требуют наиболее сложных систем автоматического контроля и управления.
Ртутный метод с жидким катодом
В ряду электрохимических методов получения щелоков самым эффективным способом является электролиз с ртутным катодом. Щелока, полученные при электролизе с жидким ртутным катодом, значительно чище полученных диафрагменным способом (Для некоторых производств это критично. Например, в производстве искусственных волокон можно применять только высокочистый каустик.), а по сравнению с мембранным методом организация процесса при получении щелочи ртутным методом гораздо проще.
Установка для ртутного электролиза состоит из электролизёра, разлагателя амальгамы и ртутного насоса, объединённых между собой ртутепроводящими коммуникациями.
Катодом электролизёра служит поток ртути, прокачиваемой насосом. Аноды — графитовые, угольные или малоизнашивающиеся (ОРТА, ТДМА или другие). Вместе с ртутью через электролизёр непрерывно течёт поток питающего поваренной соли.
На аноде происходит окисление ионов хлора из электролита, и выделяется хлор:
Хлор и анолит отводится из электролизёра. Анолит, выходящий из электролизера, донасыщают свежим галитом, извлекают из него примеси, внесённые с ним, а также вымываемые из анодов и конструкционных материалов, и возвращают на электролиз. Перед донасыщением из анолита извлекают растворённый в нём хлор.
На катоде восстанавливаются ионы натрия, которые образуют слабый раствор натрия в ртути (амальгаму натрия):
Na + + е = Na 0 nNa + + nHg − = Na + Hg
Амальгама непрерывно перетекает из электролизёра в разлагатель амальгамы. В разлагатель также непрерывно подаётся высоко очищенная вода. В нём амальгама натрия в результате самопроизвольного химического процесса почти полностью разлагается водой с образованием ртути, раствора каустика и водорода:
Полученный таким образом раствор каустика, являющийся товарным продуктом, практически не содержит примесей. Ртуть почти полностью освобождается от натрия и возвращается в электролизер. Водород отводится на очистку.
Растущие требования к экологической безопасности производств и дороговизна металлической ртути ведут к постепенному вытеснению ртутного метода методами получения щелочи с твердым катодом, в особенности мембранным методом.
Лабораторные методы получения
В лаборатории гидроксид натрия иногда получают химическими способами, но чаще используется небольшой электролизер диафрагменного или мембранного типа.
Рынок каустической соды
Мировое производство натра едкого, 2005 год
Производитель | Объём производства, млн.тонн | Доля в мировом производстве |
---|---|---|
DOW | 6.363 | 11.1 |
Occidental Chemical Company | 2.552 | 4.4 |
Formosa Plastics | 2.016 | 3.5 |
PPG | 1.684 | 2.9 |
Bayer | 1.507 | 2.6 |
Solvay | 1.252 | 2.2 |
Akzo Nobel | 1.157 | 2.0 |
Tosoh | 1.110 | 1.9 |
Arkema | 1.049 | 1.8 |
Olin | 0.970 | 1.7 |
Россия | 1.290 | 2.24 |
Китай | 9.138 | 15.88 |
Другие | 27.559 | 47,87 |
Всего: | 57,541 | 100 |
В России согласно ГОСТ 2263-79 производятся следующие марки натра едкого:
ТР — твёрдый ртутный (чешуированный);
ТД — твёрдый диафрагменный (плавленый);
РР — раствор ртутный;
РХ — раствор химический;
РД — раствор диафрагменный.
Наименование показателя | ТР ОКП 21 3211 0400 | ТД ОКП 21 3212 0200 | РР ОКП 21 3211 0100 | РХ 1 сорт ОКП 21 3221 0530 | РХ 2 сорт ОКП 21 3221 0540 | РД Высший сорт ОКП 21 3212 0320 | РД Первый сорт ОКП 21 3212 0330 |
---|---|---|---|---|---|---|---|
Внешний вид | Чешуированная масса белого цвета. Допускается слабая окраска | Плавленая масса белого цвета. Допускается слабая окраска | Бесцветная прозрачная жидкость | Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок | Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок | Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок | Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок |
Массовая доля гидроксида натрия, %, не менее | 98,5 | 94,0 | 42,0 | 45,5 | 43,0 | 46,0 | 44,0 |
Показатели российского рынка жидкого натра едкого в 2005—2006 г.
Наименование предприятия | 2005 г. тыс.тонн | 2006 г. тыс.тонн | доля в 2005 г.% | доля в 2006 г.% |
---|---|---|---|---|
ОАО «Каустик», Стерлитамак | 239 | 249 | 20 | 20 |
ОАО «Каустик», Волгоград | 210 | 216 | 18 | 18 |
ОАО «Саянскхимпласт» | 129 | 111 | 11 | 9 |
ООО «Усольехимпром» | 84 | 99 | 7 | 8 |
ОАО «Сибур-Нефтехим» | 87 | 92 | 7 | 8 |
ОАО «Химпром», Чебоксары | 82 | 92 | 7 | 8 |
ВОАО «Химпром», Волгоград | 87 | 90 | 7 | 7 |
ЗАО «Илимхимпром» | 70 | 84 | 6 | 7 |
ОАО «КЧХК» | 81 | 79 | 7 | 6 |
НАК «АЗОТ» | 73 | 61 | 6 | 5 |
ОАО «Химпром», Кемерово | 42 | 44 | 4 | 4 |
Итого: | 1184 | 1217 | 100 | 100 |
Показатели российского рынка твердого натра едкого в 2005—2006 г.
Наименование предприятия | 2005 г. тонн | 2006 г. тонн | доля в 2005 г.% | доля в 2006 г.% |
---|---|---|---|---|
ОАО «Каустик», Волгоград | 67504 | 63510 | 62 | 60 |
ОАО «Каустик», Стерлитамак | 34105 | 34761 | 31 | 33 |
ОАО «Сибур-Нефтехим» | 1279 | 833 | 1 | 1 |
ВОАО «Химпром», Волгоград | 5768 | 7115 | 5 | 7 |
Итого: | 108565 | 106219 | 100 | 100 |
Применение
Едкий натр применяется во множестве отраслей промышленности и для бытовых нужд:
Меры предосторожности при обращении с гидроксидом натрия
Гидроксид натрия
Гидроксид натрия | |
---|---|
Традиционные названия | едкий натр, каустик, каустическая сода, едкая щёлочь |
Хим. формула | NaOH |
Рац. формула | NaOH |
Молярная масса | 39,997 г/моль |
Плотность | 2,13 г/см³ |
Т. плав. | 323 °C |
Т. кип. | 1403 °C |
Давление пара | 0 ± 1 мм рт.ст. |
Растворимость в воде | 108,7 г/100 мл |
ГОСТ | ГОСТ 4328-77 ГОСТ Р 55064-12 ГОСТ 2263-79 |
Рег. номер CAS | 1310-73-2 |
PubChem | 14798 |
Рег. номер EINECS | 215-185-5 |
SMILES | |
Кодекс Алиментариус | E524 |
RTECS | WB4900000 |
ChEBI | 32145 |
Номер ООН | 1823 |
ChemSpider | 14114 |
Пиктограммы СГС | |
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного. |
Гидроксид натрия (лат. Nátrii hydroxídum ; другие названия — каустическая сода, едкий натр) — самая распространённая щёлочь, химическая формула NaOH. В год в мире производится и потребляется около 57 миллионов тонн едкого натра.
Интересна история тривиальных названий как гидроксида натрия, так и других щелочей. Название «едкая щёлочь» обусловлено свойством разъедать кожу (вызывая сильные ожоги), бумагу и другие органические вещества. До XVII века щёлочью (фр. alkali ) называли также карбонаты натрия и калия. В 1736 году французский учёный Анри Дюамель дю Монсо впервые различил эти вещества: гидроксид натрия стали называть каустической содой, карбонат натрия — кальцинированной содой, а карбонат калия — поташом. В настоящее время содой принято называть натриевые соли угольной кислоты. В английском и французском языках слово sodium означает натрий, potassium — калий.
Содержание
Физические свойства
Гидроксид натрия — белое твёрдое вещество. Сильно гигроскопичен, на воздухе «расплывается», активно поглощая пары воды из воздуха. Хорошо растворяется в воде, при этом выделяется большое количество теплоты. Раствор едкого натра мылок на ощупь.
ΔH 0 растворения для бесконечно разбавленного водного раствора −44,45 кДж/моль.
Из водных растворов при +12,3…+61,8 °C кристаллизуется моногидрат (сингония ромбическая), температура плавления +65,1 °C; плотность 1,829 г/см³; ΔH 0 обр −425,6 кДж/моль), в интервале от −28 до −24 °C — гептагидрат, от −24 до −17,7 °C — пентагидрат, от −17,7 до −5,4 °C — тетрагидрат (α-модификация). Растворимость в метаноле 23,6 г/л (t = +28 °C), в этаноле 14,7 г/л (t = +28 °C). NaOH·3,5H2O (температура плавления +15,5 °C).
Химические свойства
Гидроксид натрия (едкая щёлочь) — сильное химическое основание (к сильным основаниям относят гидроксиды, молекулы которых полностью диссоциируют в воде), к ним относят гидроксиды щелочных и щёлочноземельных металлов подгрупп Iа и IIа периодической системы Д. И. Менделеева, KOH (едкое кали), Ba(OH)2 (едкий барит), LiOH, RbOH, CsOH, а также гидроксид одновалентного таллия TlOH. Щёлочность (основность) определяется валентностью металла, радиусом внешней электронной оболочки и электрохимической активностью: чем больше радиус электронной оболочки (увеличивается с порядковым номером), тем легче металл отдаёт электроны, и тем выше его электрохимическая активность и тем левее располагается элемент в электрохимическом ряду активности металлов, в котором за ноль принята активность водорода.
Водные растворы NaOH имеют сильную щелочную реакцию (pH 1%-раствора = 13,4). Основными методами определения щелочей в растворах являются реакции на гидроксид-ион (OH − ), (c фенолфталеином — малиновое окрашивание и метиловым оранжевым (метилоранжем) — жёлтое окрашивание). Чем больше гидроксид-ионов находится в растворе, тем сильнее щёлочь и тем интенсивнее окраска индикатора.
Гидроксид натрия вступает в следующие реакции:
Общая реакция в ионном виде:
Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия, действуя гидроксидом натрия на сульфат алюминия в водном растворе, при этом избегая избытка щёлочи и растворения осадка. Его и используют, в частности, для очистки воды от мелких взвесей.
например, с фосфором — с образованием гипофосфита натрия:
3S + 6NaOH → 2Na2S + Na2SO3 + 3H2O с галогенами 2NaOH + Cl2 → NaClO + NaCl + H2O (дисмутация хлора при комнатной температуре) 6NaOH + 3Cl2 → NaClO3 + 5NaCl + 3H2O (дисмутация хлора при нагревании раствора) с металлами
Гидроксид натрия вступает в реакцию с алюминием, цинком, титаном. Он не реагирует с железом и медью (металлами, которые имеют низкий электрохимический потенциал). Алюминий легко растворяется в едкой щёлочи с образованием хорошо растворимого комплекса — тетрагидроксоалюмината натрия и водорода:
Эта реакция использовалась в первой половине XX века в воздухоплавании: для заполнения водородом аэростатов и дирижаблей в полевых (в том числе боевых) условиях, так как данная реакция не требует источников электроэнергии, а исходные реагенты для неё могут легко транспортироваться.
с эфирами, амидами и алкилгалогенидами (гидролиз):
с жирами (омыление) такая реакция необратима, так как получающаяся кислота со щёлочью образует мыло и глицерин. Глицерин впоследствии извлекается из подмыльных щёлоков путём вакуум-выпарки и дополнительной дистилляционной очистки полученных продуктов. Этот способ получения мыла был известен на Ближнем Востоке с VII века.
В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла в зависимости от состава жира.
с многоатомными спиртами — с образованием алкоголятов: HOCH2CH2OH + 2NaOH → NaOCH2CH2ONa + 2H2O
Качественное определение ионов натрия
Методы получения
Гидроксид натрия может получаться в промышленности химическими и электрохимическими методами.
Химические методы получения гидроксида натрия
К химическим методам получения гидроксида натрия относятся пиролитический, известковый и ферритный.
Химические методы получения гидроксида натрия имеют существенные недостатки: расходуется большое количество энергоносителей, получаемый едкий натр сильно загрязнён примесями.
В настоящее время эти методы почти полностью вытеснены электрохимическими методами производства.
Пиролитический метод
Пиролитический метод получения гидроксида натрия является наиболее древним и начинается с получения оксида натрия Na2О путём прокаливания карбоната натрия при температуре 1000 °C (например, в муфельной печи):
В качестве сырья может быть использован и гидрокарбонат натрия, разлагающийся при 200 °C на карбонат натрия, углекислый газ и воду.
Полученный оксид натрия охлаждают и очень осторожно (реакция происходит с выделением большого количества тепла) добавляют в воду:
Известковый метод
Известковый метод получения гидроксида натрия заключается во взаимодействии раствора соды с гашеной известью при температуре около 80 °С. Этот процесс называется каустификацией и проходит по реакции:
В результате реакции получается раствор гидроксида натрия и осадок карбоната кальция. Карбонат кальция отделяется от раствора фильтрацией, затем раствор упаривается до получения расплавленного продукта, содержащего около 92 % масс. NaOH. Затем NaOH плавят и разливают в железные барабаны, где он кристаллизуется.
Ферритный метод
Ферритный метод получения гидроксида натрия состоит из двух этапов:
Реакция 1 представляет собой процесс спекания кальцинированной соды с окисью железа при температуре 1100—1200 °С. При этом образуется спек — феррит натрия и выделяется двуокись углерода. Далее спек обрабатывают (выщелачивают) водой по реакции 2; получается раствор гидроксида натрия и осадок Fe2O3*xH2O, который после отделения его от раствора возвращается в процесс. Получаемый раствор щёлочи содержит около 400 г/л NaOH. Его упаривают до получения продукта, содержащего около 92 % масс. NaOH, а затем получают твёрдый продукт в виде гранул или хлопьев.
Электрохимические методы получения гидроксида натрия
Электрохимически гидроксид натрия получают электролизом растворов галита (минерала, состоящего в основном из поваренной соли NaCl) с одновременным получением водорода и хлора. Этот процесс можно представить суммарной формулой:
Едкая щёлочь и хлор вырабатываются тремя электрохимическими методами. Два из них — электролиз с твёрдым катодом (диафрагменный и мембранный методы), третий — электролиз с жидким ртутным катодом (ртутный метод).
В мировой производственной практике используются все три метода получения хлора и каустика с явной тенденцией к увеличению доли мембранного электролиза.
Показатель на 1 тонну NaOH | Ртутный метод | Диафрагменный метод | Мембранный метод |
---|---|---|---|
Выход хлора, % | 99 | 96 | 98,5 |
Электроэнергия, кВт·ч | 3150 | 3260 | 2520 |
Концентрация NaOH, % | 50 | 12 | 35 |
Чистота хлора, % | 99,2 | 98 | 99,3 |
Чистота водорода, % | 99,9 | 99,9 | 99,9 |
Массовая доля O2 в хлоре, % | 0,1 | 1—2 | 0,3 |
Массовая доля Cl − в NaOH, % | 0,003 | 1—1,2 | 0,005 |
В России приблизительно 35 % от всего выпускаемого каустика вырабатывается электролизом с ртутным катодом и 65 % — электролизом с твёрдым катодом.
Диафрагменный метод
Наиболее простым из электрохимических методов в плане организации процесса и конструкционных материалов для электролизера является диафрагменный метод получения гидроксида натрия.
Раствор соли в диафрагменном электролизере непрерывно подаётся в анодное пространство и протекает через, как правило, нанесённую на стальную катодную сетку асбестовую диафрагму, в которую иногда добавляют небольшое количество полимерных волокон.
Во многих конструкциях электролизеров катод полностью погружен под слой анолита (электролита из анодного пространства), а выделяющийся на катодной сетке водород отводится из под катода при помощи газоотводных труб, не проникая через диафрагму в анодное пространство благодаря противотоку.
Анод: 2Cl − → Cl2 + 2e − — основной процесс 2H2O → O2 + 4H + + 4e − 6ClO3 − + 3H2O → 2ClO3 − + 4Cl − + 1,5O2↑ + 6H + + 6e − Катод: 2H2O + 2e − → H2↑ + 2OH − — основной процесс ClO − + H2O + 2e − → Cl − + 2OH − ClO3 − + 3H2O + 6e − → Cl − + 6OH −
В качестве анода в диафрагменных электролизерах может использоваться графитовый или угольный электроды. На сегодня их, в основном, заменили титановые аноды с окисно-рутениево-титановым покрытием (аноды ОРТА) или другие малорасходуемые.
На следующей стадии электролитический щёлок упаривают и доводят содержание в нём NaOH до товарной концентрации 42—50 % масс. в соответствии со стандартом.
Поваренная соль, сульфат натрия и другие примеси при повышении их концентрации в растворе выше их предела растворимости выпадают в осадок. Раствор едкой щёлочи декантируют от осадка и передают в качестве готового продукта на склад или продолжают стадию упаривания для получения твёрдого продукта, с последующим плавлением, чешуированием или грануляцией.
Обратную, то есть кристаллизовавшуюся в осадок, поваренную соль возвращают назад в процесс, приготавливая из неё так называемый обратный рассол. От неё, во избежание накапливания примесей в растворах, перед приготовлением обратного рассола отделяют примеси.
Убыль анолита восполняют добавкой свежего рассола, получаемого подземным выщелачиванием соляных пластов, минеральных рассолов типа бишофита, предварительно очищенного от примесей или растворением галита. Свежий рассол перед смешиванием его с обратным рассолом очищают от механических взвесей и значительной части ионов кальция и магния.
Полученный хлор отделяется от паров воды, компримируется и подаётся либо на производство хлорсодержащих продуктов, либо на сжижение.
Благодаря относительной простоте и дешевизне диафрагменный метод получения гидроксида натрия до сих пор широко используется в промышленности.
Мембранный метод
Мембранный метод производства гидроксида натрия наиболее энергоэффективен, однако сложен в организации и эксплуатации.
С точки зрения электрохимических процессов мембранный метод подобен диафрагменному, но анодное и катодное пространства полностью разделены непроницаемой для анионов катионообменной мембраной. Благодаря этому свойству становится возможным получение более чистых, чем в случае с диафрагменного метода, щелоков. Поэтому в мембранном электролизере, в отличие от диафрагменного, не один поток, а два.
В анодное пространство поступает, как и в диафрагменном методе, поток раствора соли. А в катодное — деионизированная вода. Из анодного пространства вытекает поток обеднённого анолита, содержащего также примеси гипохлорит- и хлорат-ионов и хлор, а из катодного — щёлока и водород, практически не содержащие примесей и близкие к товарной концентрации, что уменьшает затраты энергии на их упаривание и очистку.
Щёлочь, получаемая с помощью мембранного электролиза, практически не уступает по качеству получаемой при помощи метода с использованием ртутного катода и постепенно заменяет щёлочь, получаемую ртутным методом.
Однако, питающий раствор соли (как свежий, так и оборотный) и вода предварительно максимально очищается от любых примесей. Такая тщательная очистка объясняется высокой стоимостью полимерных катионообменных мембран и их уязвимостью к примесям в питающем растворе.
Кроме того, ограниченная геометрическая форма а также низкая механическая прочность и термическая стойкость ионообменных мембран во многом определяют сравнительно сложные конструкции установок мембранного электролиза. По той же причине мембранные установки требуют наиболее сложных систем автоматического контроля и управления.
Ртутный метод с жидким катодом
В ряду электрохимических методов получения щёлоков самым эффективным способом является электролиз с ртутным катодом. Щёлоки, полученные при электролизе с жидким ртутным катодом, значительно чище полученных диафрагменным способом (для некоторых производств это критично). Например, в производстве искусственных волокон можно применять только высокочистый каустик), а по сравнению с мембранным методом организация процесса при получении щёлочи ртутным методом гораздо проще.
Установка для ртутного электролиза состоит из электролизёра, разлагателя амальгамы и ртутного насоса, объединённых между собой ртутепроводящими коммуникациями.
Катодом электролизёра служит поток ртути, прокачиваемой насосом. Аноды — графитовые, угольные или малоизнашивающиеся (ОРТА, ТДМА или другие). Вместе с ртутью через электролизёр непрерывно течёт поток питающего поваренной соли.
На аноде происходит окисление ионов хлора из электролита, и выделяется хлор:
2Cl − → Cl2 + 2e − — основной процесс 2H2O → O2 + 4H + + 4e − 6ClO3 − + 3H2O → 2ClO3 − + 4Cl − + 1,5O2 + 6H + + 6e −
Хлор и анолит отводится из электролизёра. Анолит, выходящий из электролизёра, донасыщают свежим галитом, извлекают из него примеси, внесённые с ним, а также вымываемые из анодов и конструкционных материалов, и возвращают на электролиз. Перед донасыщением из анолита извлекают растворённый в нём хлор.
На катоде восстанавливаются ионы натрия, которые образуют слабый раствор натрия в ртути (амальгаму натрия):
Na + + e − → Hg NaHg
Амальгама непрерывно перетекает из электролизёра в разлагатель амальгамы. В разлагатель также непрерывно подаётся высоко очищенная вода. В нём амальгама натрия в результате самопроизвольного химического процесса почти полностью разлагается водой с образованием ртути, раствора каустика и водорода:
Полученный таким образом раствор каустика, являющийся товарным продуктом, практически не содержит примесей. Ртуть почти полностью освобождается от натрия и возвращается в электролизер. Водород отводится на очистку.
Растущие требования к экологической безопасности производств и дороговизна металлической ртути ведут к постепенному вытеснению ртутного метода методами получения щёлочи с твёрдым катодом, в особенности мембранным методом.
Лабораторные методы получения
В лаборатории гидроксид натрия иногда получают химическими способами, но чаще используется небольшой электролизёр диафрагменного или мембранного типа.
Рынок каустической соды
В России, согласно ГОСТ 2263-79, производятся следующие марки натра едкого:
Применение
Едкий натр применяется во множестве отраслей промышленности и для бытовых нужд:
Меры предосторожности при обращении с гидроксидом натрия
Гидроксид натрия — едкое, токсическое и коррозионно-активное вещество. Оно относится к веществам второго класса опасности. Поэтому при работе с ним требуется соблюдать осторожность. При попадании на кожу, слизистые оболочки и в глаза образуются серьёзные химические ожоги. Попадание в глаза вызывает необратимые изменения зрительного нерва (атрофию) и, как следствие, потерю зрения. При контакте слизистых поверхностей с едкой щёлочью необходимо промыть поражённый участок струёй воды, а при попадании на кожу — слабым раствором уксусной или борной кислоты. При попадании едкого натра в глаза следует немедленно промыть их сначала слабым раствором борной кислоты, а затем водой.
При работе с едким натром рекомендуется следующие защитные средства: химические брызгозащитные очки для защиты глаз, резиновые перчатки или перчатки с прорезиненной поверхностью для защиты рук, для защиты тела — химически стойкая одежда, пропитанная винилом или прорезиненные костюмы.
Предельно допустимая концентрация гидроксида натрия в воздухе 0,5 мг/м³.
Натрия гидроксид
Гидроксид натрия (пищевая добавка Е524, едкий натр, гидроокись натрия, каустическая сода) – твердая сплавленная масса желтоватого или белого цвета. По своим химическим свойствам гидроксид натрия относится к сильной щелочи.
Общие свойства гидроксида натрия
Едкий натр обычно выпускается в виде прозрачного бесцветного раствора или в виде пасты.
Каустическая сода отлично растворяется в воде, выделяя тепло. При взаимодействии с воздухом это вещество расплывается, поэтому в продажу оно поступает в герметически закрытой таре. В природных условиях гидроокись натрия входит в состав минерала брусита. Температура кипения гидроокиси натрия составляет 1390 °C, температура плавления – 322 °C.
Получение гидроксида натрия
В 1787 году врач Никола Леблан разработал удобный метол получения гидроксида натрия из хлористого натрия. Позднее метод Леблана был вытеснен электролитическим способом получения едкого натра. В 1882 году был разработан ферритный способ получения гидроксида натрия, основанный на использовании кальцинированной соды.
В настоящее время гидроксид натрия чаще всего получают путем электролиза солевых растворов. Ферритный способ получения каустической соды сейчас используется достаточно редко.
Применение гидроксида натрия
Гидроокись натрия – невероятно популярное и широко используемое химическое соединение. Ежегодно производится около семидесяти миллионов тонн едкого натра.
Каустическая сода используется в фармацевтической, химической, пищевой промышленности, а также в косметической и текстильной. Едкий натр применяют при изготовлении синтетического фенола, глицерина, органических красителей, лекарственных препаратов. Данное соединение может нейтрализовать содержащиеся в воздухе вредные для организма человека компоненты. Поэтому растворы гидроксида натрия нередко используют для дезинфекции помещений.
В пищевой промышленности гидроокись натрия используется как регулятор кислотности, препятствующий комкованию и слеживанию. Пищевая добавка Е524 поддерживает необходимую консистенцию продуктов при производстве маргарина, шоколада, мороженого, сливочного масла, карамели, желе, джема.
Хлебобулочные изделия перед выпечкой обрабатывают раствором каустической соды для получения темно-коричневой хрустящей корочки. Кроме того, пищевую добавку Е524 применяют для рафинирования растительного масла.
Вред гидроксида натрия
Едкий натр – токсичное вещество, разрушающее слизистую оболочку и кожные покровы. Ожоги от гидроксида натрия очень медленно заживают, оставляя рубцы. Попадание вещества в глаза чаще всего приводит к потере зрения. При попадании щелочи на кожные покровы следует промыть пораженные области струей воды. При попадании внутрь организма едкий натр вызывает ожоги гортани, полости рта, желудка и пищевода.
Все работы с гидроокисью натрия надо проводить в защитных очках и в спецодежде.
Нашли ошибку в тексте? Выделите ее и нажмите Ctrl + Enter.
Ученые из Оксфордского университета провели ряд исследований, в ходе которых пришли к выводу, что вегетарианство может быть вредно для человеческого мозга, так как приводит к снижению его массы. Поэтому ученые рекомендуют не исключать полностью из своего рациона рыбу и мясо.
В стремлении вытащить больного, доктора часто перегибают палку. Так, например, некий Чарльз Йенсен в период с 1954 по 1994 гг. пережил более 900 операций по удалению новообразований.
Работа, которая человеку не по душе, гораздо вреднее для его психики, чем отсутствие работы вообще.
Первый вибратор изобрели в 19 веке. Работал он на паровом двигателе и предназначался для лечения женской истерии.
Каждый человек имеет не только уникальные отпечатки пальцев, но и языка.
Согласно мнению многих ученых, витаминные комплексы практически бесполезны для человека.
В нашем кишечнике рождаются, живут и умирают миллионы бактерий. Их можно увидеть только при сильном увеличении, но, если бы они собрались вместе, то поместились бы в обычной кофейной чашке.
Кроме людей, от простатита страдает всего одно живое существо на планете Земля – собаки. Вот уж действительно наши самые верные друзья.
Если улыбаться всего два раза в день – можно понизить кровяное давление и снизить риск возникновения инфарктов и инсультов.
Даже если сердце человека не бьется, то он все равно может жить в течение долгого промежутка времени, что и продемонстрировал нам норвежский рыбак Ян Ревсдал. Его «мотор» остановился на 4 часа после того как рыбак заблудился и заснул в снегу.
Образованный человек меньше подвержен заболеваниям мозга. Интеллектуальная активность способствует образованию дополнительной ткани, компенсирующей заболевшую.
Люди, которые привыкли регулярно завтракать, гораздо реже страдают ожирением.
Вес человеческого мозга составляет около 2% от всей массы тела, однако потребляет он около 20% кислорода, поступающего в кровь. Этот факт делает человеческий мозг чрезвычайно восприимчивым к повреждениям, вызванным нехваткой кислорода.
Для того чтобы сказать даже самые короткие и простые слова, мы задействуем 72 мышцы.
НАТРИЯ ГИДРОКСИД
Н. г.- сильное основание, относится к щелочам. Со спиртами образует алкоголяты. Расплавленный Н. г. раств. Na и NaH. Разрушает материалы орг. происхождения (бумагу, кожу и др.).
Полезное
Смотреть что такое «НАТРИЯ ГИДРОКСИД» в других словарях:
Натрия гидроксид — Гидроксид натрия [править] Наименование едкий натр, каустик, каустическая сода, едкая щелочь Химическая формула Na OH Молярная масса 39.9971 г/моль … Википедия
НАТРИЯ ГИДРОКСИД — (едкий натр каустическая сода), NaOH, сильное основание (щелочь). Бесцветные кристаллы (технический продукт белая непрозрачная масса). Гигроскопичен, легко и с сильным разогреванием растворяется в воде. Применяют в химической, текстильной,… … Большой Энциклопедический словарь
Натрия гидроксид — НАТРИЯ ГИДРОКСИД, NaOH, кристаллы, tпл 323°C. Сильное основание, относится к щелочам. Применяют для очистки нефти, масел, в производстве бумаги, мыла, искусственных волокон, как осушающий агент для газов и органических жидкостей, водные растворы… … Иллюстрированный энциклопедический словарь
натрия гидроксид — (натр едкий, каустическая сода), NaOH, сильное основание (щёлочь). Бесцветные кристаллы (технический продукт белая непрозрачная масса). Гигроскопичен, хорошо растворяется в воде, выделяя большое количество теплоты. Получают электролизом раствора … Энциклопедический словарь
натрия гидроксид — natrio hidroksidas statusas T sritis chemija formulė NaOH atitikmenys: angl. caustic soda; sodium hydroxide rus. каустик; каустическая сода; натрий едкий; натрия гидроксид ryšiai: sinonimas – natrio šarmas sinonimas – kaustinė soda … Chemijos terminų aiškinamasis žodynas
НАТРИЯ ГИДРОКСИД — (натр едкий, каустическая сода), NaОН, сильное основание (щёлочь). Бесцв. кристаллы (техн. продукт белая непрозрачная масса). Гигроскопичен, хорошо растворяется в воде, выделяя большое кол во теплоты. Получают электролизом раствора натрия хлорида … Естествознание. Энциклопедический словарь
Натрия Гидроксид (Sodium Hydroxide), Сода Каустическая (Caustic Soda) — сильная щелочь, широко применяемая в качестве очищающего вещества. При попадании гидроксида натрия на поверхность кожи он вызывает ее сильный химический ожог; в этом случае необходимо сразу же промыть пораженный участок кожи большим количеством… … Медицинские термины
НАТРИЯ ГИДРОКСИД, СОДА КАУСТИЧЕСКАЯ — (caustic soda) сильная щелочь, широко применяемая в качестве очищающего вещества. При попадании гидроксида натрия на поверхность кожи он вызывает ее сильный химический ожог; в этом случае необходимо сразу же промыть пораженный участок кожи… … Толковый словарь по медицине
НАТРИЯ ГИДРОКСИД — каустическая сода, каустик, NaOH бесцветная кристаллич. масса, плотн. 2130 кг/м3, t Пл 320 °С, растворимость в воде 52,2% (при 20 °С). Сильное основание, на животную ткань действует разрушающе; особенно опасно попадание капель Н. г. в глаза.… … Большой энциклопедический политехнический словарь
Свойства гидроксида натрия и применение вещества в промышленности и быту
Гидроксид натрия является неорганическим токсичным соединением, которое широко применяется при изготовлении различных продуктов ежедневного пользования, в промышленных и бытовых целях.
Основные свойства гидроксида натрия
Наименование неорганического соединения произошло из физических и химических свойств едкого натра, который оказывает сильно разъедающее действие при соприкосновении с различными поверхностями, включая кожу, бумагу, ткани и другие органические вещества. В технических сферах вещество также именуют каустической содой, применение которой распространяется на область быта, промышленность.
Физические свойства гидроксида натрия
По физическим свойствам едкий натр – твердый реагент белого цвета, который плавится при температуре выше 322 градусов. Характеризуется сильной гигроскопичностью. При взаимодействии с воздухом «расплывается» из-за активного поглощения паров воды. При взаимодействии с водой – растворяется, выделяя тепло из-за образования гидратов. Полученный раствор получается мылким.
Химические свойства гидроксида натрия
При взаимодействии с воздухом образует гидраты различного состава, которые при нагревании начинают разлагаться. Вещество хорошо распадается при сочетании с растворами и проявляет свойства щелочей.
Легко вступает в реакции с некоторыми веществами, включая:
Под воздействием высокой температуры может вступать в реакцию с металлами, а при смешивании с солями – образовывать гидроксиды. В ходе реакции с монооксидом углерода образуется формиат натрия.
Меры безопасности (класс опасности)
Хранение и перевозка
При транспортировке реагента используют II и III группы упаковок. Если же необходима совместная упаковка, используют марки MP15 (II группа упаковки), MP19 (III группа упаковки). Для перевозки используют транспорты 2 или 3 категории.
Для хранения используют герметичную тару, которую помещают в сухое складское помещение. Рядом с веществом нельзя хранить кислоты, включая органические, легкие металлы и их сплавы.
Применение гидроксида натрия
На производственные и бытовые цели распространяется использование:
Применение едкого натра распространяется на множество областей:
При проявке фотографий едкий натр ускоряет процесс, что позволяет в разы сократить время на обработку фотоматериалов.
Чтобы купить гидроксид натрия, свяжитесь с нами по телефону или заполните форму на сайте.
Гидроксид натрия: способы получения и химические свойства
Гидроксид натрия (едкий натр) NaOH — белый, гигроскопичный, плавится и кипит без разложения. Хорошо растворяется в воде.
Относительная молекулярная масса Mr = 40; относительная плотность для тв. и ж. состояния d = 2,130; tпл = 321º C; tкип = 1390º C;
Способы получения
1. Гидроксид натрия получают электролизом раствора хлорида натрия :
2NaCl + 2H2O → 2NaOH + H2 + Cl2
2. При взаимодействии натрия, оксида натрия, гидрида натрия и пероксида натрия с водой также образуется гидроксид натрия:
2Na + 2H2O → 2NaOH + H2
Na2O + H2O → 2NaOH
2NaH + 2H2O → 2NaOH + H2
3. Карбонат натрия при взаимодействии с гидроксидом кальция образует гидроксид натрия:
Качественная реакция
Химические свойства
1. Гидроксид натрия реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов:
в растворе образуется комплексная соль — тетрагидроксоалюминат:
4. С кислыми солями гидроксид натрия также может взаимодействовать. При этом образуются средние соли, или менее кислые соли:
5. Гидроксид натрия взаимодействует с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).
При этом кремний окисляется до силиката и водорода:
Фтор окисляет щелочь. При этом выделяется молекулярный кислород:
Другие галогены, сера и фосфор — диспропорционируют в растворе гидроксида натрия:
Сера взаимодействует с гидроксидом натрия только при нагревании:
В растворе образуются комплексная соль и водород:
2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2
Хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):
2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl
NH4Cl + NaOH = NH3 + H2O + NaCl
8. Гидроксид натрия разлагается при нагревании до температуры 600°С:
2NaOH → Na2O + H2O
NaOH ↔ Na + + OH —
4NaOH → 4Na + O2 + 2H2O
Гидроксид натрия (NaOH) свойства, риски и применение
гидроксид натрия, также известный как отбеливатель, едкий натр или едкий натр, представляет собой химическое соединение формулы NaOH, которое образует сильно щелочной раствор при растворении в растворителе, таком как вода.
Каустическая сода широко используется во многих отраслях промышленности, особенно в качестве сильной химической основы при производстве целлюлозы и бумаги, текстиля, питьевой воды, мыла и моющих средств. Его структура показана на рисунке 1.
По словам Рэйчел Голеарн, мировое производство в 1998 году составило около 45 миллионов тонн. Гидроксид натрия также является наиболее распространенной основой, используемой в химических лабораториях, и широко используется в качестве очистителя сточных вод..
Способы производства гидроксида натрия
Гидроксид натрия и хлор производятся вместе электролизом хлорида натрия. Большие залежи хлорида натрия (каменная соль) обнаружены во многих частях мира..
Например, в Европе моря создают месторождения, которые распространяются, хотя и не непрерывно, от Чешира, Ланкашира, Стаффордшира и Кливленда в Соединенном Королевстве до Польши. Они также встречаются на всей территории Соединенных Штатов, особенно в Луизиане и Техасе..
Небольшое количество добывается в виде каменной соли, большая часть добывается в растворе путем контролируемой перекачки воды под высоким давлением в соляную жилу. Часть полученного таким образом рассола, добытого в растворе, выпаривают с получением сухой соли..
Солнечная соль, получаемая в результате испарения морской воды с помощью солнечного нагрева, также является источником хлорида натрия.
Насыщенный рассол перед электролизом очищают для осаждения кальция, магния и других вредных катионов путем добавления карбоната натрия, гидроксида натрия и других реагентов. Твердые вещества в суспензии отделяются от рассола путем седиментации и фильтрации..
В настоящее время используются три электролитических процесса. Концентрация едкого натра, полученного в результате каждого из процессов, варьируется:
Мембранные клетки
Каустическая сода производится в виде чистого раствора приблизительно 30% (вес / вес), который обычно концентрируется выпариванием до 50% (вес / вес) раствора с использованием пара под давлением.
Ртутные клетки
Каустическая сода производится в виде 50% чистого раствора (вес / вес), который является концентрацией, наиболее часто продаваемой на мировом рынке. В некоторых процессах их концентрируют выпариванием до 75%, а затем нагревают до 750-850 К до получения твердого гидроксида натрия..
Клетки диафрагмы
Каустическая сода производится в виде нечистого раствора, называемого «щелочной раствор диафрагмы» (DCL) с типичными концентрациями гидроксида натрия 10-12% (вес / вес) и 15% хлорида натрия (п / п). р).
Чтобы получить сопротивление 50% (мас. / Мас.), Которое обычно требуется, DCL должен быть сконцентрирован с использованием испарительных блоков, которые намного больше и сложнее, чем те, которые используются на мембранных клеточных растениях..
Во время этого процесса осаждается большое количество соли, которую обычно используют для получения насыщенного рассола, поступающего в клетки..
Дополнительным аспектом гидроксида натрия, образующегося в диафрагменном элементе, является то, что продукт содержит небольшое количество (1%) соли, присутствующей в качестве загрязняющего вещества, что может сделать материал непригодным для некоторых целей (гидроксид натрия, 2013).
Физико-химические свойства
При комнатной температуре гидроксид натрия представляет собой твердое вещество (хлопья, зерна, гранулированная форма) от бесцветного до белого цвета, без запаха. Он распущен и легко поглощает углекислый газ из воздуха, поэтому его следует хранить в герметичном контейнере. Его внешний вид показан на рисунке 2 (Национальный центр биотехнологической информации..
Раствор гидроксида натрия представляет собой бесцветную жидкость, более плотную, чем вода. Соединение имеет молекулярную массу 39,9971 г / моль и плотность 2,13 г / мл..
Температура его плавления составляет 318 ° С, а температура кипения составляет 1390 ° С. Гидроксид натрия очень хорошо растворяется в воде и способен растворять 1110 граммов соединения на литр этого растворителя, выделяя тепло в процессе. Он также растворим в глицерине, аммонии и нерастворим в эфире и в неполярных растворителях (Royal Society of Chemistry, 2015).
Гидроксид-ион делает гидроксид натрия сильным основанием, которое реагирует с кислотами с образованием воды и соответствующих солей
Этот тип реакции выделяет тепло при использовании сильной кислоты. Такие кислотно-основные реакции также могут быть использованы для титрования. На самом деле, это распространенный способ измерения концентрации кислот.
Оксиды кислот, такие как диоксид серы (SO)2) Они тоже реагируют полностью. Такие реакции часто используются для «очистки» вредных кислотных газов (как SO2 и H2S) и предотвратить его выброс в атмосферу.
Гидроксид натрия медленно реагирует со стеклом с образованием силиката натрия, поэтому стеклянные соединения и краны, подверженные воздействию NaOH, имеют тенденцию «замерзать».
Гидроксид натрия не атакует железо. Ни к меди. Однако многие другие металлы, такие как алюминий, цинк и титан, страдают от повреждений, быстро выделяющих горючий водород. По этой же причине алюминиевые поддоны никогда не следует чистить отбеливателем (Sodium hydroxide, 2015).
Реактивность и опасности
Гидроксид натрия является сильным основанием. Быстро и экзотермически реагирует с кислотами, как органическими, так и неорганическими. Он катализирует полимеризацию ацетальдегида и других полимеризуемых соединений. Эти реакции могут происходить бурно.
Реагирует с большим бешенством с пентаоксидом фосфора, когда он начинается с локального нагревания. Контакт (в качестве осушающего агента) с тетрагидрофураном, который часто содержит пероксиды, может быть опасным. Взрывы произошли при таком использовании гидроксида калия, химически похожего.
Соединение очень опасно при попадании на кожу, попадании в глаза, проглатывании и вдыхании. Попадание в глаза может привести к повреждению роговицы или слепоте. Контакт с кожей может вызвать воспаление и волдыри.
Вдыхание пыли вызывает раздражение желудочно-кишечного тракта или дыхательных путей, для которого характерны жжение, чихание и кашель (отравление гидроксидом натрия, 2015 г.).
Зрительный контакт
Если соединение попало в глаза, контактные линзы должны быть проверены и удалены. Глаза следует немедленно промыть большим количеством воды в течение не менее 15 минут холодной водой.
Контакт с кожей
При попадании на кожу пораженный участок следует немедленно промыть в течение не менее 15 минут большим количеством воды или слабой кислоты, например, уксуса, при снятии загрязненной одежды и обуви. Покройте раздраженную кожу смягчающим средством.
Стирайте одежду и обувь перед тем, как использовать их снова. Если контакт сильный, промойте дезинфицирующим мылом и покройте кожу, загрязненную антибактериальным кремом.
ингаляция
В случае вдыхания пострадавшего следует перенести в прохладное место. Если вы не дышите, вам дадут искусственное дыхание. Если дыхание затруднено, обеспечьте кислород.
прием пищи
При проглатывании соединения не следует вызывать рвоту. Ослабьте тесную одежду, такую как воротник рубашки, ремень или галстук.
Во всех случаях требуется немедленная медицинская помощь (паспорт безопасности материала Гидроксид натрия, 2013 г.).
приложений
Гидроксид натрия является чрезвычайно важным соединением, потому что он имеет многократное использование. Это очень распространенная база, используемая в химической промышленности. Как сильное основание, он обычно используется при титровании кислот в лабораториях..
Одним из наиболее известных применений гидроксида натрия является его использование для очистки сточных вод. Это входит во многие различные бренды чистящих средств. Это может также быть представлено в форме отбеливающего мыла, которое имеет многократное использование; можно мыть от посуды до лица.
Гидроксид натрия также широко используется в пищевой промышленности. Состав часто используется в стадиях для очистки фруктов и овощей, обработки какао и шоколада, сгущения мороженого, бланширования домашней птицы и обработки соды..
Оливки замачивают в гидроксиде натрия вместе с другими веществами, чтобы сделать их черными, а мягкие крендельки также покрывают составом, чтобы придать им жевательную текстуру.
Другое использование включает в себя:
Каустическая сода: ее свойства и применение
Описание средства
Каустическая сода — сильная ядовитая щелочь. Если ее раствор попадет на кожу, то могут возникнуть ожоги, язвы. Она относится ко 2 классу опасности, поэтому при использовании необходимо соблюдать меры предосторожности:
Каустическая сода — продукт химического синтеза, в природе такого вещества не существует. Продается она в хозяйственных магазинах, отделах бытовой химии, расфасована в пластиковые банки или плотные полиэтиленовые мешки весом от 250 г до 30 кг.
Применение
У едкого натра очень широкий спектр применения в различных отраслях производства: текстильной, химической, пищевой, нефтяной и пр. Большая часть стиральных порошков, шампуней, моющих, чистящих средств содержит каустик. Его используют в производстве бумаги, вискозы, оливок, мороженого, какао, шоколада. В пищевой промышленности он известен как пищевая добавка Е524.
В быту основное назначение гидроксида натрия — борьба с жировыми и органическими загрязнениями. Его применяют для чистки канализации, обезжиривания поверхностей, в изготовлении мыла ручным способом, отбеливании и стирке белья, борьбе с садовыми вредителями, для санитарной обработки помещений.
Чистка канализации
Канализационные трубы имеют свойство засоряться: на их внутренней поверхности оседает жир, мыльная пена, органические остатки. Все это спрессовывается, уменьшая просвет трубы, вода плохо уходит, появляется неприятный запах из сливного отверстия. Причины могут быть как технические, так и эксплуатационные:
Перед работой желательно на несколько минут открыть горячую воду для того, чтобы канализационная система прогрелась, и загрязнения лучше поддавались обработке щелочью. Для очистки канализации от жировых и органических загрязнений с помощью каустической соды существует несколько методов:
Раствор гидроксида натрия используют в качестве профилактического средства 1 раз в 3 месяца для промывки труб от накопившихся частичек жира и органических загрязнений.
Чистка выгребных ям
В выгребные ямы на даче или в частном доме сливаются все нечистоты. Большая их часть имеет жидкую фракцию, которая уходит через земляные стенки, а густая скапливается на дне и по мере необходимости удаляется.
Очень часто стенки выгребных ям покрываются плотной органической пленкой, вода перестает уходить. В результате канализационные отходы быстро переполняют яму. Для растворения пленки и очистки земляных стенок используют каустическую соду. Количество ее берут из расчета 4 кг на 1 кубометр выгребной ямы. Предварительно растворив соду в воде, аккуратно выливают раствор едкой щелочи в яму. Эффект наступает через 2-3 дня. Пленка постепенно растворяется, уровень жидкости уменьшается, на дне остается илистый осадок.
Очистка загрязненных поверхностей
Каустическая сода применяется для чистки эмалированных раковин, поверхностей плит, сильнозагрязненной кухонной посуды от жира, копоти, нагара. Для этого нужно смешать ее с жидким моющим средством или со стиральным порошком, развести водой до консистенции пасты, нанести на поверхность. Через 20–30 минут смыть большим количеством воды.
Использовать каустическую соду на оцинкованных, алюминиевых и тефлоновых поверхностях нельзя. Их можно испортить.
Стирка белья
Раствор каустика используют для замачивания, ручной и машинной стирки хлопчатобумажного, льняного белья. При добавлении щелочи вода становится мягкой, пятна хорошо удаляются, особенно с кухонных полотенец. Раствор готовят следующим образом: в 5 л воды нужно развести 3 ст. л. NaOH. Замочить белье на 1–2 часа. После этого постирать обычным порошком.
При стирке белья в стиральной машине к порошку добавляют 2–3 ложки каустической соды. Пятна, даже застарелые, легко отстирываются. Перед стиркой белье желательно замочить, стирать при температуре 40–60°С.
Изделия из шелковых и шерстяных тканей стирать с помощью щелочи не рекомендуется, она может повредить их структуру.
Изготовление мыла
Способов изготовления домашнего мыла с помощью каустической соды множество. Необходимые ингредиенты:
1 л любого растительного масла;
300 мл дистиллированной воды;
эфирные ароматические масла;
порошки, настои различных трав.
Через 4-5 дней можно вынуть мыло из формочек, дать ему»дозреть» и подсохнуть. На это понадобится время (иногда несколько недель). Признаком готовности мыла считается появление на его поверхности белого порошкообразного налета.
Борьба с вредителями и болезнями растений
Гидроксид натрия применяют в борьбе с садовыми вредителями и болезнями растений, для обеззараживания овощехранилищ, амбаров, клеток для животных, теплиц.
Для обработки растений делают раствор: в 2 л воды добавляют 1 ложку каустика, тщательно размешивают, опрыскивают деревья и кустарники. Это помогает избавиться от тли, долгоносика, грибковых поражений: фитофтороза, мучнистой росы.
Для обеззараживания помещений используют 4%-ный раствор NaOH. Для этого берут 10 ст. л.соды растворяют в 5 л воды и несколько раз обрабатывают зараженные поверхности.