Нейрон что такое

Нейрон что такое

Значение слова «нейрон»

Нейрон что такое

[От греч. νευ̃ρον — жила, нерв]

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами. Это взаимодействие представляет собой набор различных сигналов, передаваемых между нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов. Ионы генерируют электрический заряд (потенциал действия), который движется по телу нейрона.

Важное значение для науки имело изобретение метода Гольджи в 1873 году, позволявшего окрашивать отдельные нейроны. Термин «нейрон» (нем. Neuron) для обозначения нервных клеток введён Г. В. Вальдейером в 1891 году.

НЕЙРО’Н, а, м. [греч. neuron — волокно, нерв] (анат.). Нервная клетка.

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

нейро́н

1. биол. нервная клетка, структурно-функциональная единица нервной системы ◆ Каждый нейрон может иметь несколько тысяч синапсов, которые подразделяются на аксодендритические, аксосоматические и аксо-аксональные. Рудольф Самусев, Юрий Селин, «Анатомия человека», 2003 г. (цитата из НКРЯ)

Делаем Карту слов лучше вместе

Нейрон что такоеПривет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: пушкинист — это что-то нейтральное, положительное или отрицательное?

Источник

Нейрон (биология)

Нейрон что такое

Нейрон (нервная клетка) – это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов.

Содержание

Обзор

Сложность и многообразие нервной системы зависит от взаимодействия между нейронами, которые, в свою очередь, представляют собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд, который движется вдоль нейрона.

Строение

Нейрон что такое

Тело клетки

Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро (с большим количеством ядерных пор) и другие органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), и отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Нейрон что такое

Аксон обычно — длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.

Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Cинапс

Си́напс — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона, другие — гиперполяризацию; первые являются возбуждающими, вторые — тормозящими. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Классификация

Структурная классификация

На основании числа и расположения дейндритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Функциональная классификация

По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Морфологическая классификация

Нервные клетки бывают звездчатые и веретенообразные, пирамидальные, зернистые, грушевидные и т.д.

Развитие и рост нейрона

Нейрон что такое

Нейрон развивается из небольшой клетки — предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным. [1] (рус.) ) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении — некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона.

Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста — это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

См. также

Сома · Аксон (Аксонный холмик, Терминаль аксона, Аксоплазма, Аксолемма, Нейрофиламенты)

Источник

Нейроны

Нейрон что такое

Нейрон (нервная клетка) – это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов.

Содержание

Обзор

Сложность и многообразие нервной системы зависит от взаимодействия между нейронами, которые, в свою очередь, представляют собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд, который движется вдоль нейрона.

Строение

Нейрон что такое

Тело клетки

Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро (с большим количеством ядерных пор) и другие органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), и отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Нейрон что такое

Аксон обычно — длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.

Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Cинапс

Си́напс — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона, другие — гиперполяризацию; первые являются возбуждающими, вторые — тормозящими. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Классификация

Структурная классификация

На основании числа и расположения дейндритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Функциональная классификация

По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Морфологическая классификация

Нервные клетки бывают звездчатые и веретенообразные, пирамидальные, зернистые, грушевидные и т.д.

Развитие и рост нейрона

Нейрон что такое

Нейрон развивается из небольшой клетки — предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным. [1] (рус.) ) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении — некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона.

Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста — это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

См. также

Сома · Аксон (Аксонный холмик, Терминаль аксона, Аксоплазма, Аксолемма, Нейрофиламенты)

Источник

Нейрон

Нейрон что такое

Нейрон что такое

Нейрон (от др.-греч. νεῦρον — волокно, нерв) — это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высокоспециализированная и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов.

Содержание

Обзор

Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами, которое, в свою очередь, представляет собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд (потенциал действия), который движется по телу нейрона.

Строение

Нейрон что такое

Тело клетки

Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов (билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый и сложный цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20-30 нм) — состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) — вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) — состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии. В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Нейроны различаются по форме, числу отростков и функциям. В зависимости от функции выделяют чувствительные, эффекторные(двигательные, секреторные) и вставочные. Чувствительные нейроны воспринимают раздражения, преобразуют их в нервные импульсы и передают в мозг. Эффекторные (от лат. эффектус — действие) — вырабатывают и посылают команды к рабочим органам. Вставочные — осуществляют связь между чувствительными и двигательными нейронами, участвуют в обработке информации и выработке команд.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Нейрон что такое

Нейрон что такое

Аксон — обычно длинный отросток, приспособленный для проведения возбуждения и информации от тела нейрона или от нейрона к исполнительному органу. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов), и которые передают возбуждение к телу нейрона. Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.

Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик — образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Синапс

Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

Классификация

Структурная классификация

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.

Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.

Мультиполярные нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.

Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация

По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными, их делят на интризитные, комиссуральные и проекционные.

Секреторные нейроны — нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.

Морфологическая классификация

Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120—150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет около 150 мкм.

По количеству отростков выделяют следующие морфологические типы нейронов [1] :

Развитие и рост нейрона

Нейрон что такое

Нейрон что такое

Нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении — некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона.

Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста — это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Литература

Сома · Аксон (Аксонный холмик, Терминаль аксона, Аксоплазма, Аксолемма, Нейрофиламенты)

Источник

Логика мышления. Часть 1. Нейрон

Нейрон что такое

Года полтора назад я выкладывал на Хабр цикл видеолекций с моим видением того как работает мозг и каковы возможные пути создания искусственного интеллекта. За прошедшее с тех пор время удалось существенно продвинуться вперед. Что-то получилось глубже понять, что-то удалось смоделировать на компьютере. Что приятно, появились единомышленники, активно участвующие в работе над проектом.

В настоящем цикле статей планируется рассказать о той концепции интеллекта над которой мы сейчас работаем и продемонстрировать некоторые решения, являющиеся принципиально новыми в сфере моделирования работы мозга. Но чтобы повествование было понятным и последовательным оно будет содержать не только описание новых идей, но и рассказ о работе мозга вообще. Какие-то вещи, особенно в начале, возможно покажутся простыми и общеизвестными, но я бы советовал не пропускать их, так как они во многом определяют общую доказательность повествования.

Общее представление о мозге

Нервные клетки, они же нейроны, вместе со своими волокнами, передающими сигналы, образуют нервную систему. У позвоночных основная часть нейронов сосредоточена в полости черепа и позвоночном канале. Это называется центральной нервной системой. Соответственно, выделяют головной и спинной мозг как ее составляющие.

Спинной мозг собирает сигналы от большинства рецепторов тела и передает их в головной мозг. Через структуры таламуса они распределяются и проецируются на кору больших полушарий головного мозга.

Нейрон что такое
Проекция информации на кору

Кроме больших полушарий обработкой информации занимается еще и мозжечок, который, по сути, является маленьким самостоятельным мозгом. Мозжечок обеспечивает точную моторику и координацию всех движений.

Зрение, слух и обоняние обеспечивают мозг потоком информации о внешнем мире. Каждая из составляющих этого потока, пройдя по своему тракту, также проецируется на кору. Кора – это слой серого вещества толщиной от 1.3 до 4.5 мм, составляющий наружную поверхность мозга. За счет извилин, образованных складками, кора упакована так, что занимает в три раза меньшую площадь, чем в расправленном виде. Общая площадь коры одного полушария – приблизительно 7000 кв.см.

В итоге все сигналы проецируются на кору. Проекция осуществляется пучками нервных волокон, которые распределяются по ограниченным областям коры. Участок, на который проецируется либо внешняя информация, либо информация с других участков мозга образует зону коры. В зависимости от того, какие сигналы на такую зону поступают, она имеет свою специализацию. Различают моторную зону коры, сенсорную зону, зоны Брока, Вернике, зрительные зоны, затылочную долю, всего около сотни различных зон.

Нейрон что такое
Зоны коры

В вертикальном направлении кору принято делить на шесть слоев. Эти слои не имеют четких границ и определяются по преобладанию того или иного типа клеток. В различных зонах коры эти слои могут быть выражены по-разному, сильнее или слабее. Но, в общем и целом, можно говорить о том, что кора достаточно универсальна, и предполагать, что функционирование разных ее зон подчиняется одним и тем же принципам.

Нейрон что такое
Слои коры

Можно представить себе кору головного мозга как большое полотно, раскроенное на отдельные зоны. Картина активности нейронов каждой из зон кодирует определенную информацию. Пучки нервных волокон, образованные аксонами, выходящими за пределы своей зоны коры, формируют систему проекционных связей. На каждую из зон проецируется определенная информация. Причем на одну зону может поступать одновременно несколько информационных потоков, которые могут приходить как с зон своего, так и противоположного полушария. Каждый поток информации похож на своеобразную картинку, нарисованную активностью аксонов нервного пучка. Функционирование отдельной зоны коры – это получение множества проекций, запоминание информации, ее переработка, формирование собственной картины активности и дальнейшая проекция информации, получившейся в результате работы этой зоны.

Существенный объем мозга – это белое вещество. Оно образовано аксонами нейронов, создающими те самые проекционные пути. На рисунке ниже белое вещество можно увидеть как светлое заполнение между корой и внутренними структурам мозга.

Нейрон что такое
Распределение белого вещества на фронтальном срезе мозга

Используя диффузную спектральную МРТ, удалось отследить направление отдельных волокон и построить трехмерную модель связанности зон коры (проект Connectomics (Коннектом)).

Представление о структуре связей хорошо дают рисунки ниже (Van J. Wedeen, Douglas L. Rosene, Ruopeng Wang, Guangping Dai, Farzad Mortazavi, Patric Hagmann, Jon H. Kaas, Wen-Yih I. Tseng, 2012).

Нейрон что такое
Вид со стороны левого полушария

Нейрон что такое
Вид сзади

Нейрон что такое
Вид справа

Кстати, на виде сзади отчетливо видна асимметрия проекционных путей левого и правого полушария. Эта асимметрия во многом и определяет различия в тех функциях, которые приобретают полушария по мере их обучения.

Нейрон

Основа мозга – нейрон. Естественно, что моделирование мозга с помощью нейронных сетей начинается с ответа на вопрос, каков принцип его работы.

В основе работы реального нейрона лежат химические процессы. В состоянии покоя между внутренней и внешней средой нейрона существует разность потенциалов – мембранный потенциал, составляющий около 75 милливольт. Он образуется за счет работы особых белковых молекул, работающих как натрий-калиевые насосы. Эти насосы за счет энергии нуклеотида АТФ гонят ионы калия внутрь, а ионы натрия — наружу клетки. Поскольку белок при этом действует как АТФ-аза, то есть фермент, гидролизующий АТФ, то он так и называется — «натрий-калиевая АТФ-аза». В результате нейрон превращается в заряженный конденсатор с отрицательным зарядом внутри и положительным снаружи.

Нейрон что такое
Схема нейрона (Mariana Ruiz Villarreal)

Поверхность нейрона покрыта ветвящимися отростками – дендритами. К дендритам примыкают аксонные окончания других нейронов. Места их соединений называются синапсами. Посредством синаптического взаимодействия нейрон способен реагировать на поступающие сигналы и при определенных обстоятельствах генерировать собственный импульс, называемый спайком.

Передача сигнала в синапсах происходит за счет веществ, называемых нейромедиаторами. Когда нервный импульс по аксону поступает в синапс, он высвобождает из специальных пузырьков молекулы нейромедиатора, характерные для этого синапса. На мембране нейрона, получающего сигнал, есть белковые молекулы – рецепторы. Рецепторы взаимодействуют с нейромедиаторами.

Нейрон что такое
Химический синапс

Рецепторы, расположенные в синаптической щели, являются ионотропными. Это название подчеркивает тот факт, что они же являются ионными каналами, способными перемещать ионы. Нейромедиаторы так воздействуют на рецепторы, что их ионные каналы открываются. Соответственно, мембрана либо деполяризуется, либо гиперполяризуется – в зависимости от того, какие каналы затронуты и, соответственно, какого типа этот синапс. В возбуждающих синапсах открываются каналы, пропускающие катионы внутрь клетки, — мембрана деполяризуется. В тормозных синапсах открываются каналы, проводящие анионы, что приводит к гиперполяризации мембраны.

В определенных обстоятельствах синапсы могут менять свою чувствительность, что называется синаптической пластичностью. Это приводит к тому, что синапсы одного нейрона приобретают различную между собой восприимчивость к внешним сигналам.

Одновременно на синапсы нейрона поступает множество сигналов. Тормозящие синапсы тянут потенциал мембраны в сторону накопления заряда внутри клети. Активирующие синапсы, наоборот, стараются разрядить нейрон (рисунок ниже).

Нейрон что такое
Возбуждение (A) и торможение (B) ганглиозной клетки сетчатки (Николлс Дж., Мартин Р., Валлас Б., Фукс П., 2003)

Когда суммарная активность превышает порог инициации, возникает разряд, называемый потенциалом действия или спайком. Спайк – это резкая деполяризация мембраны нейрона, которая и порождает электрический импульс. Весь процесс генерации импульса длится порядка 1 миллисекунды. При этом ни продолжительность, ни амплитуда импульса не зависят от того, насколько были сильны вызвавшие его причины (рисунок ниже).

Нейрон что такое
Регистрация потенциала действия ганглиозной клетки (Николлс Дж., Мартин Р., Валлас Б., Фукс П., 2003)

После спайка ионные насосы обеспечивают обратный захват нейромедиатора и расчистку синаптической щели. В течение рефрактерного периода, наступающего после спайка, нейрон не способен порождать новые импульсы. Продолжительность этого периода определяет максимальную частоту генерации, на которую способен нейрон.

Спайки, которые возникают как следствие активности на синапсах, называют вызванными. Частота следования вызванных спайков кодирует то, насколько хорошо поступающий сигнал соответствует настройке чувствительности синапсов нейрона. Когда поступающие сигналы приходятся именно на чувствительные синапсы, активирующие нейрон, и этому не мешают сигналы, приходящие на тормозные синапсы, то реакция нейрона максимальна. Образ, который описывается такими сигналами, называют характерным для нейрона стимулом.

Конечно, представление о работе нейронов не стоит излишне упрощать. Информация между некоторыми нейронами может передаваться не только спайками, но и за счет каналов, соединяющих их внутриклеточное содержимое и передающих электрический потенциал напрямую. Такое распространение называется градуальным, а само соединение называется электрическим синапсом. Дендриты в зависимости от расстояния до тела нейрона делятся на проксимальные (близкие) и дистальные (удаленные). Дистальные дендриты могут образовывать секции, работающие как полуавтономные элементы. Помимо синаптических путей возбуждения есть внесинаптические механизмы, вызывающие метаботропные спайки. Кроме вызванной активности существует еще и спонтанная активность. И наконец, нейроны мозга окружены глиальными клетками, которые также оказывают существенное влияние на протекающие процессы.

Долгий путь эволюции создал множество механизмов, которые используются мозгом в своей работе. Некоторые из них могут быть поняты сами по себе, смысл других становится ясен только при рассмотрении достаточно сложных взаимодействий. Поэтому не стоит воспринимать сделанное выше описание нейрона как исчерпывающее. Чтобы перейти к более глубоким моделям, нам необходимо сначала разобраться с «базовыми» свойствами нейронов.

В 1952 году Аланом Ллойдом Ходжкином и Эндрю Хаксли были сделаны описания электрических механизмов, которые определяют генерацию и передачу нервного сигнала в гигантском аксоне кальмара (Hodgkin, 1952). Что было оценено Нобелевской премией в области физиологии и медицины в 1963 году. Модель Ходжкина – Хаксли описывает поведение нейрона системой обыкновенных дифференциальных уравнений. Эти уравнения соответствуют автоволновому процессу в активной среде. Они учитывают множество компонент, каждая из которых имеет свой биофизический аналог в реальной клетке (рисунок ниже). Ионные насосы соответствуют источнику тока Ip. Внутренний липидный слой клеточной мембраны образует конденсатор с емкостью Cm. Ионные каналы синаптических рецепторов обеспечивают электрическую проводимость gn, которая зависит от подаваемых сигналов, меняющихся со временем t, и общей величины мембранного потенциала V. Ток утечки мембранных пор создает проводник gL. Движение ионов по ионным каналам происходит под действием электрохимических градиентов, которым соответствуют источники напряжения с электродвижущей силой En и EL.

Нейрон что такое
Основные компоненты модели Ходжкина — Хаксли

Естественно, что при создании нейронных сетей возникает желание упростить модель нейрона, оставив в ней только самые существенные свойства. Наиболее известная и популярная упрощенная модель – это искусственный нейрон Маккалока — Питтса, разработанный в начале 1940-х годов (Маккалох Дж., Питтс У., 1956).
Нейрон что такое
Формальный нейрон Маккалока — Питтса

На входы такого нейрона подаются сигналы. Эти сигналы взвешенно суммируются. Далее к этой линейной комбинации применяется некая нелинейная функция активации, например, сигмоидальная. Часто как сигмоидальную используют логистическую функцию:
Нейрон что такое
Нейрон что такое
Логистическая функция

В этом случае активность формального нейрона записывается как

Нейрон что такое

В итоге такой нейрон превращается в пороговый сумматор. При достаточно крутой пороговой функции сигнал выхода нейрона – либо 0, либо 1. Взвешенная сумма входного сигнала и весов нейрона – это свертка двух образов: образа входного сигнала и образа, описываемого весами нейрона. Результат свертки тем выше, чем точнее соответствие этих образов. То есть нейрон, по сути, определяет, насколько подаваемый сигнал похож на образ, записанный на его синапсах. Когда значение свертки превышает определенный уровень и пороговая функция переключается в единицу, это можно интерпретировать как решительное заявление нейрона о том, что он узнал предъявляемый образ.

Реальные нейроны действительно неким образом похожи на нейроны Маккалока — Питтса. Амплитуды их спайков не зависит от того, какие сигналы на синапсах их вызвали. Спайк, либо есть, либо его нет. Но реальные нейроны реагируют на стимул не единичным импульсом, а импульсной последовательностью. При этом частота импульсов тем выше, чем точнее узнан характерный для нейрона образ. Это означает, что если мы построим нейронную сеть из таких пороговых сумматоров, то она при статичном входном сигнале хотя и даст какой-то выходной результат, но этот результат будет далек от воспроизведения того, как работают реальные нейроны. Для того чтобы приблизить нейронную сеть к биологическому прототипу, нам понадобится моделировать работу в динамике, учитывая временные параметры и воспроизводя частотные свойства сигналов.

Но можно пойти и другим путем. Например, можно выделить обобщенную характеристику активности нейрона, которая соответствует частоте его импульсов, то есть количеству спайков за определенный промежуток времени. Если перейти к такому описанию, то можно представить нейрон как простой линейный сумматор.

Нейрон что такое
Линейный сумматор

Сигналы выхода и, соответственно, входа для таких нейронов уже не являются дихатомичными (0 или 1), а выражаются некой скалярной величиной. Функция активации тогда записывается как

Нейрон что такое

Линейный сумматор не стоит воспринимать как что-то принципиально иное по сравнению с импульсным нейроном, просто он позволяет при моделировании или описании перейти к более длинным временным интервалам. И хотя импульсное описание более корректно, переход к линейному сумматору во многих случаях оправдан сильным упрощением модели. Более того, некоторые важные свойства, которые трудно разглядеть в импульсном нейроне, вполне очевидны для линейного сумматора.

Источник

Как работает наш мозг или как смоделировать душу?

Нейрон что такое

Здравствуй, Geektimes! В ранее опубликованной статье, была представлена модель нервной системы, опишу теорию и принципы, которые легли в её основу.

Теория основана на анализе имеющейся информации о биологическом нейроне и нервной системе из современной нейробиологии и физиологии мозга.

Сначала приведу краткую информацию об объекте моделирования, вся информация изложена далее, учтена и использована в модели.

НЕЙРОН

Нейрон что такое

Нейрон является основным функциональным элементом нервной системы, он состоит из тела нервной клетки и её отростков. Существуют два вида отростков: аксоны и дендриты. Аксон – длинный покрытый миелиновой оболочкой отросток, предназначенный для передачи нервного импульса на далекие расстояния. Дендрит – короткий, ветвящийся отросток, благодаря которым происходит взаимосвязь с множеством соседних клеток.

ТРИ ТИПА НЕЙРОНОВ

Нейроны могут сильно отличаться по форме, размерам и конфигурации, не смотря на это, отмечается принципиальное сходство нервной ткани в различных участках нервной системе, отсутствуют и серьезные эволюционные различия. Нервная клетка моллюска Аплизии может выделять такие же нейромедиаторы и белки, что и клетка человека.

В зависимости от конфигурации выделяют три типа нейронов:
Нейрон что такое

а) рецепторные, центростремительные, или афферентные нейроны, данные нейроны имеют центростремительный аксон, на конце которого имеются рецепторы, рецепторные или афферентные окончания. Эти нейроны можно определить, как элементы, передающие внешние сигналы в систему.

б) интернейроны (вставочные, контактные, или промежуточные) нейроны, не имеющие длинных отростков, но имеющие только дендриты. Таких нейронов в человеческом мозгу больше чем остальных. Данный вид нейронов является основным элементом рефлекторной дуги.

в) моторные, центробежные, или эфферентные, они имеют центростремительный аксон, который имеет эфферентные окончания передающий возбуждение мышечным или железистым клеткам. Эфферентные нейроны служат для передачи сигналов из нервной среды во внешнюю среду.

Обычно в статьях по искусственным нейронным сетям оговаривается наличие только моторных нейронов (с центробежным аксоном), которые связаны в слои иерархической структуры. Подобное описание применимо к биологической нервной системе, но является своего рода частным случаем, речь идет о структурах, базовых условных рефлексов. Чем выше в эволюционном значении нервная система, тем меньше в ней превалируют структуры типа «слои» или строгая иерархия.

ПЕРЕДАЧА НЕРВНОГО ВОЗБУЖДЕНИЯ

Передача возбуждения происходит от нейрона к нейрону, через специальные утолщения на концах дендритов, называемых синапсами. По типу передачи синапсы разделяют на два вида: химические и электрические. Электрические синапсы передают нервный импульс непосредственно через место контакта. Таких синапсов в нервных системах очень мало, в моделях не будут учитываться. Химические синапсы передают нервный импульс посредством специального вещества медиатора (нейромедиатора, нейротрансмиттера), данный вид синапса широко распространен и подразумевает вариативность в работе.
Важно отметить, что в биологическом нейроне постоянно происходят изменения, отращиваются новые дендриты и синапсы, возможны миграции нейронов. В местах контактов с другими нейронами образуются новообразования, для передающего нейрона — это синапс, для принимающего — это постсинаптическая мембрана, снабжаемая специальными рецепторами, реагирующими на медиатор, то есть можно говорить, что мембрана нейрона — это приемник, а синапсы на дендритах — это передатчики сигнала.

СИНАПС

Нейрон что такое

При активации синапса он выбрасывает порции медиатора, эти порции могут варьироваться, чем больше выделится медиатора, тем вероятнее, что принимаемая сигнал нервная клетка будет активирована. Медиатор, преодолевая синоптическую щель, попадает на постсинаптическую мембрану, на которой расположены рецепторы, реагирующие на медиатор. Далее медиатор может быть разрушен специальным разрушающим ферментом, либо поглощен обратно синапсом, это происходит для сокращения времени действия медиатора на рецепторы.
Так же помимо побудительного воздействия существуют синапсы, оказывающие тормозящее воздействие на нейрон. Обычно такие синапсы принадлежат определенным нейронам, которые обозначаются, как тормозящие нейроны.
Синапсов связывающих нейрон с одной и той же целевой клеткой, может быть множество. Для упрощения примем, всю совокупность, оказываемого воздействия одним нейроном, на другой целевой нейрон за синапс с определённой силой воздействия. Главной характеристикой синапса будет, является его сила.

СОСТОЯНИЕ ВОЗБУЖДЕНИЯ НЕЙРОНА

В состоянии покоя мембрана нейрона поляризована. Это означает, что по обе стороны мембраны располагаются частицы, несущие противоположные заряды. В состоянии покоя наружная поверхность мембраны заряжена положительно, внутренняя – отрицательно. Основными переносчиками зарядов в организме являются ионы натрия (Na+), калия (K+) и хлора (Cl-).
Разница между зарядами поверхности мембраны и внутри тела клетки составляет мембранный потенциал. Медиатор вызывает нарушения поляризации – деполяризацию. Положительные ионы снаружи мембраны устремляются через открытые каналы в тело клетки, меняя соотношение зарядов между поверхностью мембраны и телом клетки.

Нейрон что такое
Изменение мембранного потенциала при возбуждении нейрона

Характер изменений мембранного потенциала при активации нервной ткани неизменен. Независимо от того кокой силы воздействия оказывается на нейрон, если сила превышает некоторое пороговое значение, ответ будет одинаков.
Забегая вперед, хочу отметить, что в работе нервной системы имеет значение даже следовые потенциалы (см. график выше). Они не появляются, вследствие каких-то гармонических колебаний уравновешивающих заряды, являются строгим проявлением определённой фазы состояния нервной ткани при возбуждении.

ТЕОРИЯ ЭЛЕКТРОМАГНИТНОГО ВЗАИМОДЕЙСТВИЯ

Итак, далее приведу теоретические предположения, которые позволят нам создавать математические модели. Главная идея заключается во взаимодействии между зарядами формирующихся внутри тела клетки, во время её активности, и зарядами с поверхностей мембран других активных клеток. Данные заряды являются разноименными, в связи этим можно предположить, как будут располагаться заряды в теле клетки под воздействием зарядов других активных клеток.

Нейрон что такое

Можно сказать, что нейрон чувствует активность других нейронов на расстоянии, стремится направить распространения возбуждения в направлении других активных участков.
В момент активности нейрона можно рассчитать определённую точку в пространстве, которая определялась бы, как сумма масс зарядов, расположенных на поверхностях других нейронов. Указанную точку назовем точкой паттерна, её месторождение зависит от комбинации фаз активности всех нейронов нервной системы. Паттерном в физиологии нервной системы называется уникальная комбинация активных клеток, то есть можно говорить о влиянии возбуждённых участков мозга на работу отдельного нейрона.
Нужно представлять работу нейрона не просто как вычислителя, а своего рода ретранслятор возбуждения, который выбирает направления распространения возбуждения, таким образом, формируются сложные электрические схемы. Первоначально предполагалось, что нейрон просто избирательно отключает/включает для передачи свои синапсы, в зависимости от предпочитаемого направления возбуждения. Но более детальное изучение природы нейрона, привело к выводам, что нейрон может изменять степень воздействия на целевую клетку через силу своих синапсов, что делает нейрон более гибким и вариативным вычислительным элементом нервной системы.

Нейрон что такое

Какое же направление для передачи возбуждения является предпочтительным? В различных экспериментах связанных с образованием безусловных рефлексов, можно определить, что в нервной системе образуются пути или рефлекторные дуги, которые связывают активируемые участки мозга при формировании безусловных рефлексов, создаются ассоциативные связи. Значит, нейрон должен передавать возбуждения к другим активным участкам мозга, запоминать направление и использовать его в дальнейшем.
Представим вектор начало, которого находится в центре активной клети, а конец направлен в точку паттерна определённую для данного нейрона. Обозначим, как вектор предпочитаемого направления распространения возбуждения (T, trend). В биологическом нейроне вектор Т может проявляться в структуре самой нейроплазмы, возможно, это каналы для движения ионов в теле клетки, или другие изменения в структуре нейрона.
Нейрон обладает свойством памяти, он может запоминать вектор Т, направление этого вектора, может меняться и перезаписываться в зависимости от внешних факторов. Степень с которой вектор Т может подвергается изменениям, называется нейропластичность.
Этот вектор в свою очередь оказывает влияние на работу синапсов нейрона. Для каждого синапса определим вектор S начало, которого находится в центре клетки, а конец направлен в центр целевого нейрона, с которым связан синапс. Теперь степень влияния для каждого синапса можно определить следующим образом: чем меньше угол между вектором T и S, тем больше синапс будет, усиливается; чем меньше угол, тем сильнее синапс будет ослабевать и возможно может прекратить передачу возбуждения. Каждый синапс имеет независимое свойство памяти, он помнит значение своей силы. Указанные значения изменяются при каждой активизации нейрона, под влиянием вектора Т, они либо увеличиваются, либо уменьшаются на определённое значение.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Нейрон что такое

Входные сигналы (x1, x2,…xn) нейрона представляют собой вещественные числа, которые характеризуют силу синапсов нейронов, оказывающих воздействие на нейрон.
Положительное значение входа означает побудительное воздействие, оказываемое на нейрон, а отрицательное значение – тормозящее воздействие.
Для биологического нейрона не имеет значение, откуда поступил возбуждающий его сигнал, результат его активности будет идентичен. Нейрон будет активизирован, когда сумма воздействий на него будет превышать определённое пороговое значение. Поэтому, все сигналы проходят через сумматор (а), а поскольку нейроны и нервная система работают в реальном времени, следовательно, воздействие входов должно оцениваться в короткий промежуток времени, то есть воздействие синапса имеет временный характер.
Результат сумматора проходит пороговую функцию (б), если сумма превосходит пороговое значение, то это приводит к активности нейрона.
При активации нейрон сигнализирует о своей активности системе, передовая информацию о своём положении в пространстве нервной системы и заряде, изменяемом во времени (в).
Через определённое время, после активации нейрон передает возбуждение по всем имеющимся синапсам, предварительно производя пересчет их силы. Весь период активации нейрон перестает реагировать на внешние раздражители, то есть все воздействия синапсов других нейронов игнорируются. В период активации входит так же период восстановления нейрона.
Происходит корректировка вектора Т (г) с учётом значения точки паттерна Pp и уровнем нейропластичности. Далее происходит переоценка значений всех сил синапсов в нейроне(д).
Обратите внимание, что блоки (г) и (д) выполняются параллельно с блоком (в).

ЭФФЕКТ ВОЛНЫ

Если внимательно проанализировать предложенную модель, то можно увидеть, что источник возбуждения должен оказывать большее влияние на нейрон, чем другой удалённый, активный участок мозга. Следовательно возникает вопрос: почему же все равно происходит передача в направлении другого активного участка?
Данную проблему я смог определить, только создав компьютерную модель. Решение подсказал график изменения мембранного потенциала при активности нейрона.

Нейрон что такое

Усиленная реполяризация нейрона, как говорилось ранее, имеет важное значение для нервной системы, благодаря ей создается эффект волны, стремление нервного возбуждения распространятся от источника возбуждения.
При работе с моделью я наблюдал два эффекта, ели пренебречь следовым потенциалом или сделать его недостаточно большим, то возбуждение не распространяется от источников, а в большей степени стремится к локализации. Если сделать следовой потенциал сильно большим, то возбуждение стремится «разбежаться» в разные стороны, не только от своего источника, но и от других.

КОГНИТИВНАЯ КАРТА

Используя теорию электромагнитного взаимодействия, можно объяснить многие явления и сложные процессы, протекающие в нервной системе. К примеру, одним из последних открытий, которое широко обсуждается в науках о мозге, является открытие когнитивных карт в гиппокампе.
Гиппокамп – это отдел мозга, которому отвечает за кратковременную память. Эксперименты на крысах выявили, что определённому месту в лабиринте соответствует своя локализованная группа клеток в гиппокампе, причем, не имеет значение, как животное попадает в это место, все равно будет активирован соответствующий этому месту участок нервной ткани. Естественно, животное должно помнить данный лабиринт, не стоит рассчитывать на топологическое соответствие пространства лабиринта и когнитивной карты.

Нейрон что такое

Каждое место в лабиринте представляется в мозге, как совокупность раздражителей различного характера: запахи, цвет стен, возможные примечательные объекты, характерные звуки и т. д. Указанные раздражители отражаются на коре, различных представительствах органов чувств, в виде всплесков активности в определённых комбинациях. Мозг одновременно обрабатывает информацию в нескольких отделах, зачастую информационные каналы разделяются, одна и та же информация поступает в различные участки мозга.

Нейрон что такое
Активация нейронов места в зависимости от положения в лабиринте (активность разных нейронов показана разным цветом). источник

Гиппокамп расположен в центре мозга, вся кара и её области удалены от него, на одинаковые расстояния. Если определить для каждой уникальной комбинации раздражителей точку масс зарядов поверхностей нейронов, то можно увидеть, что указанные точки будут различны, и будут находиться примерно в центре мозга. К этим точкам будет стремиться и распространятся возбуждение в гиппокампе, формируя устойчивые участки возбуждения. Более того, поочередная смена комбинаций раздражителей, будет приводить к смещению точки паттерна. Участки когнитивной карты будут ассоциативно связываться друг с другом последовательно, что приведет к тому, что животное, помещенное в начало знакомого ей лабиринта, может вспомнить весь последующий путь.

Заключение

У многих возникнет вопрос, где в данной работе предпосылки к элементу разумности или проявления высшей интеллектуальной деятельности?
Важно отметить, что феномен человеческого поведения, есть следствие функционирования биологической структуры. Следовательно, чтобы имитировать разумное поведение, необходимо хорошо понимать принципы и особенности функционирования биологических структур. К сожалению, в науке биологии пока не представлен четкий алгоритм: как работает нейрон, как понимает, куда необходимо отращивать свои дендриты, как настроить свои синапсы, что бы в нервной системе смог сформироваться простой условный рефлекс, на подобие тех, которые демонстрировал и описывал в своих работах академик И.П. Павлов.
С другой стороны в науке об искусственном интеллекте, в восходящем (биологическом) подходе, сложилось парадоксальная ситуация, а именно: когда используемые в исследованиях модели основаны на устаревших представлениях о биологическом нейроне, консерватизм, в основе которого берётся персептрон без переосмысления его основных принципов, без обращения к биологическому первоисточнику, придумывается все более хитроумные алгоритмы и структуры, не имеющих биологических корней.
Конечно, никто не уменьшает достоинств классических нейронных сетей, которые дали множество полезных программных продуктов, но игра с ними не является путем к созданию интеллектуально действующей системы.
Более того, не редки заявления, о том, что нейрон подобен мощной вычислительной машине, приписывают свойство квантовых компьютеров. Из-за этой сверхсложности, нервной системе приписывается невозможность её повторения, ведь это соизмеримо с желанием смоделировать человеческую душу. Однако, в реальности природа идет по пути простоты и элегантности своих решений, перемещение зарядов на мембране клетки может служить, как для передачи нервного возбуждения, так и для трансляции информации о том, где происходит данная передача.
Несмотря на то, что указанная работа демонстрирует, как образуются элементарные условные рефлексы в нервной системе, она приближает к пониманию того, что такое интеллект и разумная деятельность.

Существуют еще множество аспектов работы нервной системы: механизмы торможения, принципы построения эмоций, организация безусловных рефлексов и обучение, без которых невозможно построить качественную модель нервной системы. Есть понимание, на интуитивном уровне, как работает нервная система, принципы которой возможно воплотить в моделях.
Создание первой модели помогли отработать и откорректировать представление об электромагнитном взаимодействии нейронов. Понять, как происходит формирование рефлекторных дуг, как каждый отдельный нейрон понимает, каким образом ему настроить свои синапсы для получения ассоциативных связей.
На данный момент я начал разрабатывать новую версию программы, которая позволит смоделировать многие другие аспекты работы нейрона и нервной системы.

Прошу принять активное участие в обсуждении выдвинутых здесь гипотез и предположений, так как я могу относиться к своим идеям предвзято. Ваше мнение очень важно для меня.

Источник

Нейрон что такое

Специалист приемной комиссии свяжется с Вами
в ближайшее время в рабочие часы с Пн-Вс с 9:00-21:00 МСК

Перезвоните мне

Нейрон что такое

Ваш персональный менеджер: Валерия
Ответственная и отзывчивая! 😊

Ожидайте

Перезвоните мне

Нейрон что такое

В теле человека бессчетное количество клеток, каждая из которых имеет собственную функцию.

Бесплатные занятия с логопедом

Бесплатный курс ИКТ для детей

В теле человека бессчетное количество клеток, каждая из которых имеет собственную функцию. Среди них самые загадочные – нейроны, отвечающие за любое совершаемое нами действие. Попробуем разобраться как работают нейроны и в чем их предназначение.

Что такое нейрон (нейронные связи)

Нейроны работают при помощи электрических сигналов и способствуют обработке мозгом поступающей информации для дальнейшей координации производимых телом действий.

Эти клетки являются составляющей частью нервной системы человека, предназначение которой состоит в том, чтобы собрать все сигналы, поступающие из вне или от собственного организма и принять решение о необходимости того или иного действия. Именно нейроны помогают справиться с такой задачей.

Каждый из нейронов имеет связь с огромным количеством таких же клеток, создаётся своеобразная «паутина», которая называется нейронной сетью. Посредством данной связи в организме передаются электрические и химические импульсы, приводящие всю нервную систему в состояние покоя либо, наоборот, возбуждения.

К примеру, человек столкнулся с неким значимым событием. Возникает электрохимический толчок (импульс) нейронов, приводящий к возбуждению неровной системы. У человека начинает чаще биться сердце, потеют руки или возникают другие физиологические реакции.

Мы рождаемся с заданным количеством нейронов, но связи между ними еще не сформированы. Нейронная сеть строится постепенно в результате поступающих из вне импульсов. Новые толчки формируют новые нейронные пути, именно по ним в течение жизни побежит аналогичная информация. Мозг воспринимает индивидуальный опыт каждого человека и реагирует на него. К примеру, ребенок, схватился за горячий утюг и отдернул руку. Так у него появилась новая нейронная связь.

Стабильная нейронная сеть выстраивается у ребенка уже к двум годам. Удивительно, но уже с этого возраста те клетки, которые не используются, начинают ослабевать. Но это никак не мешает развитию интеллекта. Наоборот, ребенок познает мир через уже устоявшиеся нейронные связи, а не анализирует бесцельно все вокруг.

Познание нового опыта на протяжении всей жизни приводит к отмиранию ненужных нейронных связей и формированию новых и полезных. Этот процесс оптимизирует головной мозг наиболее эффективным для нас образом. Например, люди, проживающие в жарких странах, учатся жить в определенном климате, а северянам нужен совсем другой опыт для выживания.

Сколько нейронов в мозге

Нервные клетки в составе головного мозга занимают порядка 10 процентов, остальные 90 процентов это астроциты и глиальные клетки, но их задача заключается лишь в обслуживании нейронов.

Подсчитать «вручную» численность клеток в головном мозге также сложно, как узнать количество звезд на небе.

Тем не менее ученые придумали сразу несколько способов для определения количества нейронов у человека:

Строение нейрона

На рисунке приведено строение нейрона. Он состоит из основного тела и ядра. От клеточного тела идет ответвление многочисленных волокон, которые именуются дендритами.

Нейрон что такое

Мощные и длинные дендриты называются аксонами, которые в действительности намного длиннее, чем на картинке. Их протяженность варьируется от нескольких миллиметров до более метра.

Аксоны играют ведущую роль в передаче информации между нейронами и обеспечивают работу всей нервной системы.

Место соединения дендрита (аксона) с другим нейроном называется синапсом. Дендриты при наличии раздражителей могут разрастись настолько сильно, что станут улавливать импульсы от других клеток, что приводит к образованию новых синаптических связей.

Синаптические связи играют существенную роль в формировании личности человека. Так, личность с устоявшимся позитивным опытом будет смотреть на жизнь с любовью и надеждой, человек, у которого нейронные связи с негативным зарядом, станет со временем пессимистом.

Виды нейронов и нейронных связей

Нейроны можно обнаружить в различных органах человека, а не исключительно в головном мозге. Большое их количество расположено в рецепторах (глаза, уши, язык, пальцы рук – органы чувств). Совокупность нервных клеток, которые пронизывают наш организм составляет основу периферической нервной системы. Выделим основные виды нейронов.

Слаженная работа нейронов трех типов выглядит так: человек «слышит» запах шашлыка, нейрон передает информацию в соответствующий раздел мозга, мозг передает сигнал желудку, который выделяет желудочный сок, человек принимает решение «хочу есть» и бежит покупать шашлык. Упрощенно так это действует.

Самыми загадочными являются промежуточные нейроны. С одной стороны, их работа обуславливает наличие рефлекса: дотронулся до электричества – отдернул руку, полетела пыль –зажмурился. Однако, пока не объяснимо как обмен между волокнами рождает идеи, образы, мысли?

Единственное, что установили ученые, это тот факт, что любой вид мыслительной деятельности (чтение книг, рисование, решение математических задач) сопровождается особой активностью (вспышкой) нервных клеток определенного участка головного мозга.

Есть особая разновидность нейронов, которые именуются зеркальными. Их особенность заключается в том, что они не только приходят в возбуждение от внешних сигналов, но и начинают «шевелиться», наблюдая за действиями своих собратьев – других нейронов.

Функции нейронов

Без нейронов невозможна работа организма человека. Мы увидели, что эти наноклетки отвечают буквально за каждое наше движение, любой поступок. Выполняемые ими функции до настоящего времени в полной мере не изучены и не определены.

Существует несколько классификаций функций нейронов. Мы остановимся на общепринятой в научном мире.

Функция распространения информации

Данная функция:

Суть ее в том, что нейронами обрабатываются и переносятся в головной мозг все импульсы, которые поступают из окружающего мира или собственного тела. Далее происходит их обработка, подобно тому, как работает поисковик в браузере.

По результатам сканирования сведений из вне, головной мозг в форме обратной связи передает обработанную информацию к органам чувств или мышцам.

Мы не подозреваем, что в нашем теле происходит ежесекундная доставка и переработка информации, не только в голове и на уровне периферической нервной системы.

До настоящего времени создать искусственный интеллект, который бы приблизился к работе нейронных сетей человека, не удалось. У каждого из 85 миллиардов нейронов имеется, как минимум, 10 тысяч обусловленных опытом связей, и все они работают на передачу и обработку информации.

Функция аккумуляции знаний (сохранения опыта)

Человек обладает памятью, возможностью понимать суть вещей, явлений и действий, которые он единожды или многократно повторял. За формирование памяти отвечают именно нейронные клетки, точнее нейротрансмиттеры, связующие звенья между соседними нейронами.

Таким образом, за память отвечает не какая-то отдельная часть мозга, а маленькие белковые мостики между клетками. Человек может потерять память, когда произошло крушение этих нервных связей.

Функция интеграции

Данная функция позволяет взаимодействовать между собой отдельным долям головного мозга. Как мы уже сказали, сигналы от разных органов чувств поступают в разные отделы мозга.

Нейроны посредством «вспышек» активности передают и принимают импульсы в разных частях мозга. Так происходит процесс появления мыслей, эмоций и чувств. Чем больше таких разноплановых связей, тем эффективнее человек мыслит. Если человек способен к размышлениям и аналитике в определенном направлении, то он будет хорошо соображать и в другом вопросе.

Функция производства белков

Нейроны – настолько полезные клетки, что не ограничиваются только передаточными функциями. Нервные клетки вырабатывают необходимые для жизни человека белки. Опять же ключевую роль в производстве белков имеют нейротрансмиттеры, которые отвечают за память.

Всего в невронах индуцируется порядка 80 белков, вот основные из них, влияющие на самочувствие человека:

Прекращение выработки белков или их выпуск в недостаточном количестве способны привести к тяжелым заболеваниям.

Восстанавливаются ли нервные клетки

При нормальном состоянии организма нейроны могут жить и функционировать очень долго. К сожалению, случается так, что они начинают массово погибать. Причин разрушения нервных волокон может быть много, но до конца механизм их деструкции не изучен.

Установлено, что нервные клетки погибают из-за гипоксии (кислородное голодание). Нейронные сети рушатся при отдельных травмах головного мозга, человек теряет память или утрачивает способность к хранению информации. В этом случае сами нейроны сохранены, но теряется их передаточная функция.

Отсутствие допамина ведет к развитию болезни Паркинсона, а его переизбыток является причиной шизофрении. Почему прекращается выработка белка не известно, спусковой механизм не выявлен.

Гибель нервных клеток происходит при алкоголизации личности. Алкоголик со временем может совершенно деградировать и утратить вкус к жизни.

Формирование нервных клеток происходит при рождении. Долгое время ученые полагали, что со временем нейроны отмирают. Поэтому с возрастом человек утрачивает способность накапливать информацию, хуже соображает. Нарушение функции по выработке допамина и серотонина связывается с наличием практически у всех пожилых людей депрессивных состояний.

Гибель нейронов, действительно неизбежна, в год исчезает примерно 1 процент от их количества. Но есть и хорошие новости. Последние исследования показали, что в коре головного мозга есть особенный участок, именуемый гипокаммом. Именно в нем генерируются новые чистые нейроны. Подсчитано примерное количество генерируемых ежедневно нервных клеток – 1400.

В науке обозначилось новое понятие «нейропластичность», обозначающее возможность мозга регенерироваться и перестраиваться. Но есть одна тонкость: новые нейроны еще не имеют никакого опыта и наработанных связей. Поэтому с возрастом или после заболевания мозг нужно тренировать, как и все иные мышцы тела: получать новые знания, анализировать происходящие события и явления.

Подобно тому, как мы усиливаем бицепс при помощи гантели, активизировать процесс включения новых нервных клеток можно следующими способами:

Механизм возрождения прост. У нас имеются совершенно не задействованные новые клетки, которые нужно заставить работать, а сделать это можно лишь путем постановки новых задач и изучения неизвестных предметных сфер.

Источник

НЕЙРОН

Нейрон что такое

Полезное

Смотреть что такое «НЕЙРОН» в других словарях:

Нейрон И9.69 — Нейрон И9.66 советский IBM PC/XT совместимый персональный компьютер. Разработан в Киевском Научно Исследовательском Институте Радиоизмерительной Аппаратуры в середине 1980 х годов. Производством компьютера занималось ПО имени С.П. Королёва.… … Википедия

нейрон — (от греч. n ё u гоп нерв) зрелая отросчатая клетка, являющаяся морфофункциональной единицей нервной ткани. В Н. выделяют тело и отростки. Существенной особенностью мембраны Н. является способность к проведению возбуждения своеобразного… … Большая психологическая энциклопедия

НЕЙРОН — (от греч. neuron нерв) нервная клетка, состоящая из тела и отходящих от него отростков относительно коротких дендритов и длинного аксона; основная структурная и функциональная единица нервной системы (см. схему). Нейроны проводят нервные импульсы … Большой Энциклопедический словарь

НЕЙРОН — (нервная клетка), основная структурная и функциональная единица НЕРВНОЙ СИСТЕМЫ, осуществляющая быструю передачу НЕРВНЫХ ИМПУЛЬСОВ между различными органами. Состоит из тела клетки, содержащей ядро, и нескольких ветвящихся пальцеобразных… … Научно-технический энциклопедический словарь

нейрон — неврон, нервная клетка, нейроцит Словарь русских синонимов. нейрон сущ., кол во синонимов: 5 • клетка (126) • … Словарь синонимов

НЕЙРОН — (от греческого neuron нерв), нервная клетка, состоящая из тела и отходящих от него отростков дендритов и аксона. Нейроны проводят нервные импульсы от рецепторов в центральную нервную систему, от центральной нервной системы к исполнительным… … Современная энциклопедия

НЕЙРОН — НЕЙРОН, нейрона, муж. (греч. neuron волокно, нерв) (анат.). Нервная клетка. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

НЕЙРОН — НЕЙРОН, а, муж. (спец.). Клетка 2, способная вырабатывать нервные импульсы и передавать их другим клеткам. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

нейрон — нейрон. См. нервная клетка. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.

Источник

нейрон

Полезное

Смотреть что такое «нейрон» в других словарях:

Нейрон И9.69 — Нейрон И9.66 советский IBM PC/XT совместимый персональный компьютер. Разработан в Киевском Научно Исследовательском Институте Радиоизмерительной Аппаратуры в середине 1980 х годов. Производством компьютера занималось ПО имени С.П. Королёва.… … Википедия

нейрон — (от греч. n ё u гоп нерв) зрелая отросчатая клетка, являющаяся морфофункциональной единицей нервной ткани. В Н. выделяют тело и отростки. Существенной особенностью мембраны Н. является способность к проведению возбуждения своеобразного… … Большая психологическая энциклопедия

НЕЙРОН — (от греч. neuron нерв) нервная клетка, состоящая из тела и отходящих от него отростков относительно коротких дендритов и длинного аксона; основная структурная и функциональная единица нервной системы (см. схему). Нейроны проводят нервные импульсы … Большой Энциклопедический словарь

НЕЙРОН — (нервная клетка), основная структурная и функциональная единица НЕРВНОЙ СИСТЕМЫ, осуществляющая быструю передачу НЕРВНЫХ ИМПУЛЬСОВ между различными органами. Состоит из тела клетки, содержащей ядро, и нескольких ветвящихся пальцеобразных… … Научно-технический энциклопедический словарь

НЕЙРОН — (от греч. neuron жила, нерв), нервная клетка, нейроцит, осн. структурная и функциональная единица нервной системы, обладающая специфич. проявлениями возбудимости. Способен принимать сигналы, перерабатывать их в нервные импульсы и проводить к… … Биологический энциклопедический словарь

нейрон — неврон, нервная клетка, нейроцит Словарь русских синонимов. нейрон сущ., кол во синонимов: 5 • клетка (126) • … Словарь синонимов

НЕЙРОН — (от греческого neuron нерв), нервная клетка, состоящая из тела и отходящих от него отростков дендритов и аксона. Нейроны проводят нервные импульсы от рецепторов в центральную нервную систему, от центральной нервной системы к исполнительным… … Современная энциклопедия

НЕЙРОН — НЕЙРОН, нейрона, муж. (греч. neuron волокно, нерв) (анат.). Нервная клетка. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

НЕЙРОН — НЕЙРОН, а, муж. (спец.). Клетка 2, способная вырабатывать нервные импульсы и передавать их другим клеткам. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

нейрон — нейрон. См. нервная клетка. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.

Источник

Нейрон

Нейрон что такое

Нейрон что такое

Нейрон что такое

Полезное

Смотреть что такое «Нейрон» в других словарях:

Нейрон И9.69 — Нейрон И9.66 советский IBM PC/XT совместимый персональный компьютер. Разработан в Киевском Научно Исследовательском Институте Радиоизмерительной Аппаратуры в середине 1980 х годов. Производством компьютера занималось ПО имени С.П. Королёва.… … Википедия

нейрон — (от греч. n ё u гоп нерв) зрелая отросчатая клетка, являющаяся морфофункциональной единицей нервной ткани. В Н. выделяют тело и отростки. Существенной особенностью мембраны Н. является способность к проведению возбуждения своеобразного… … Большая психологическая энциклопедия

НЕЙРОН — (от греч. neuron нерв) нервная клетка, состоящая из тела и отходящих от него отростков относительно коротких дендритов и длинного аксона; основная структурная и функциональная единица нервной системы (см. схему). Нейроны проводят нервные импульсы … Большой Энциклопедический словарь

НЕЙРОН — (нервная клетка), основная структурная и функциональная единица НЕРВНОЙ СИСТЕМЫ, осуществляющая быструю передачу НЕРВНЫХ ИМПУЛЬСОВ между различными органами. Состоит из тела клетки, содержащей ядро, и нескольких ветвящихся пальцеобразных… … Научно-технический энциклопедический словарь

НЕЙРОН — (от греч. neuron жила, нерв), нервная клетка, нейроцит, осн. структурная и функциональная единица нервной системы, обладающая специфич. проявлениями возбудимости. Способен принимать сигналы, перерабатывать их в нервные импульсы и проводить к… … Биологический энциклопедический словарь

нейрон — неврон, нервная клетка, нейроцит Словарь русских синонимов. нейрон сущ., кол во синонимов: 5 • клетка (126) • … Словарь синонимов

НЕЙРОН — (от греческого neuron нерв), нервная клетка, состоящая из тела и отходящих от него отростков дендритов и аксона. Нейроны проводят нервные импульсы от рецепторов в центральную нервную систему, от центральной нервной системы к исполнительным… … Современная энциклопедия

НЕЙРОН — НЕЙРОН, нейрона, муж. (греч. neuron волокно, нерв) (анат.). Нервная клетка. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

НЕЙРОН — НЕЙРОН, а, муж. (спец.). Клетка 2, способная вырабатывать нервные импульсы и передавать их другим клеткам. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

нейрон — нейрон. См. нервная клетка. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) … Молекулярная биология и генетика. Толковый словарь.

Источник

Нейрон что такое

Неврология. Общие данные. Нейрон. Нейроцит. Синапс.

Нейрон что такое

Одним из основных свойств живого вещества является раздражимость. Каждый живой организм получает раздражения из окружающего его мира и отвечает на них соответствующими реакциями, которые связывают организм с внешней средой. Протекающий в самом организме обмен веществ в свою очередь обусловливает ряд раздражений, на которые организм также реагирует. Связь между участком, на который падает раздражение, и реагирующим органом в высшем многоклеточном организме осуществляется нервной системой.

Проникая своими разветвлениями во все органы и ткани, нервная система связывает все части организма в единое целое, осуществляя его объединение, интеграцию.

Следовательно, нервная система есть «невыразимо сложнейший и тончайший инструмент сношений, связи многочисленных частей организма между собой и организма как сложнейшей системы с бесконечным числом внешних влияний» (И. П. Павлов).

Нейрон что такое

Основным анатомическим элементом нервной системы является нервная клетка, которая вместе со всеми отходящими от нее отростками носит название нейрона, или нейроцита. От тела клетки отходят в одну сторону один длинный (осевоцилиндрический) отросток — аксон, или нейрит, в другую сторону — короткие ветвящиеся отростки — дендриты.

Передача нервного возбуждения внутри нейрона идет в направлении от дендритов к телу клетки от нее к аксону; аксоны проводят возбуждение в направлении от тела клетки. Передача нервного импульса с одного нейрона на другой осуществляется посредством особым образом построенных концевых аппаратов, или синапсов (от греч. synapsis — соединение). Различают аксосоматические связи нейронов, при которых разветвления одного нейрона подходят к телу клетки другого нейрона, и филогенетически более новые аксодендритические связи, когда контакт осуществляется с дендритами нервных клеток.

Источник

Нейрон что такое

Рекомендуем:Неврология:НеврологияАневризма сосуда мозгаГоловная больГоловокружениеДетская неврологияКомыМенингитНейроанатомияПоражения ЦНСПоражения подкоркиМышечные болиЛечение в неврологииШейный остеохондрозФорум

Строение и физиология нейрона. Внутриклеточный транспорт нейрона

Функциональная единица нервной системы — нервная клетка, нейрон. Нейроны способны генерировать электрические импульсы и передавать их в виде нервных импульсов. Нейроны образуют между собой химические связи — синапсы. Соединительная ткань нервной системы представлена нейроглией (дословно— «нервная глия»). Клетки нейроглии так же многочисленны, как и нейроны, и выполняют трофическую и опорную функции.

Миллиарды нейронов формируют поверхностный слой — кору— полушарий головного мозга и полушарий мозжечка. Кроме того, в толще белого вещества нейроны образуют скопления—ядра.

Практически все нейроны ЦНС мультиполярны: сома (тело) нейронов характеризуется наличием нескольких полюсов (вершин). От каждого полюса, за исключением одного, отходят отростки — дендриты, которые образуют многочисленные разветвления. Дендритные стволы могут быть гладкими или образовывать многочисленные шипики. Дендриты образуют синапсы с другими нейронами в области шипиков или ствола дендритного дерева.

От оставшегося полюса сомы отходит отросток, проводящий нервные импульсы,— аксон. Большинство аксонов формирует коллатеральные ветви. Концевые ветви образуют синапсы с нейронами-мишенями.

Нейроны образуют два основных типа синаптических контактов: аксодендритические и аксосоматические. Аксодендритические синапсы в большинстве случаев передают возбуждающие импульсы, а аксосоматические — тормозящие.

Нейрон что такоеФормы нейронов мозга.
(1) Пирамидальные нейроны коры полушарий.
(2) Нейроэндокринные нейроны гипоталамуса.
(3) Шипиковые нейроны полосатого тела.
(4) Корзинчатые нейроны мозжечка. Дендриты нейронов 1 и 3 образуют шипики.
А — аксон; Д — дендрит; КА — коллатерали аксона.
Нейрон что такоеДендритные шипики.
Срез мозжечка, на котором имеются дендриты гигантских клеток Пуркинье, образующие шипики.
В поле зрения различимы три шипика (Ш), образующие синаптические контакты с булавовидными расширениями аксонов (А).
Четвертый аксон (слева вверху) образует синапс с дендритным стволом.
Нейрон что такое(А) Двигательный нейрон переднего рога серого вещества спинного мозга.
(Б) Увеличенное изображение (А). Миелиновые оболочки участков 1 и 2, располагающихся в белом веществе ЦНС, образованы олигодендроцитами.
Возвратная коллатеральная ветвь аксона начинается от немиелинизированного участка.
Миелиновые оболочки участков 3 и 4, относящихся к периферической части нервной системы, образованы шванновскими клетками.
Утолщение аксона в области вхождения в спинной мозг (переходного участка) соприкасается с одной стороны с олигодендроцитом, а с другой—со шванновской клеткой.
(В) Нейрофибриллы, состоящие из нейрофиламентов, видны после окрашивания солями серебра.
(Г) Тельца Ниссля (глыбки гранулярной эндоплазматической сети) видны при окрашивании катионными красителями (например, тионином).

Внутреннее строение нейронов

Цитоскелет всех структур нейрона образован микротрубочками и нейрофиламентами. Тело нейрона содержит ядро и окружающую его цитоплазму— перикарион (греч.peri— вокруг и karyon—ядро). В перикарионе расположены цистерны гранулярной (шероховатой) эндоплазматической сети — тельца Ниссля, а также комплекс Гольджи, свободные рибосомы, митохондрии и агранулярная (гладкая) эндоплазматическая сеть.

1. Внутриклеточный транспорт. В нейронах происходит обмен веществ между мембранными структурами и компонентами цитоскелета: непрерывно синтезируемые в соме новые клеточные компоненты перемещаются в аксоны и дендриты путем антероградного транспорта, а продукты метаболизма поступают путем ретроградного транспорта в сому, где происходит их лизосомальное разрушение (распознавание клеток-мишеней).

Выделяют быстрый и медленный антероградный транспорт. Быстрый транспорт (300-400 мм в сутки) осуществляют свободные клеточные элементы: синаптические пузырьки, медиаторы (или их предшественники), митохондрии, а также липидные и белковые молекулы (в том числе и белки-рецепторы), погруженные в плазматическую мембрану клетки. Медленный транспорт (5-10 мм в сутки) обеспечивают компоненты цнто-скелета и растворимые белки, в том числе и некоторые белки, задействованные в процессе высвобождения медиаторов в нервных окончаниях.

Аксон формирует множество микротрубочек: они начинаются от сомы короткими пучками, которые продвигаются вперед относительно друг друга вдоль начального сегмента аксона; в дальнейшем аксон формируется за счет элонгации (до 1 мм однократно). Процесс элонгации происходит за счет присоединения тубулиновых полимеров на дистальном конце и частичной деполимеризации («разборки») на проксимальном конце. В дистальной части продвижение нейрофиламентов практически полностью замедляется: в этом участке происходит процесс их достраивания за счет присоединения филаментных полимеров, поступающих в этот отдел из сомы посредством медленного транспорта.

Ретроградный транспорт метаболитов митохондрий, агранулярной эндоплазматической сети и плазматической мембраны с расположенными в ней рецепторами осуществляется с достаточно высокой скоростью (150-200 мм в сутки). Помимо выведения продуктов клеточного метаболизма, ретроградный транспорт участвует в процессе распознавания клеток-мишеней. В синапсе аксоны захватывают с поверхности плазматической мембраны клетки-мишени сигнальные эндосомы, содержащие белки,— нейротрофины («пища для нейронов»). Затем нейротрофины транспортируются в сому, где встраиваются в комплекс Гольджи.

Кроме того, захват таких «маркерных» молекул клеток-мишеней играет важную роль в распознавании клеток в процессе их развития. В дальнейшем этот процесс обеспечивает выживание нейронов, поскольку со временем их объем уменьшается, что может привести к гибели клеток в случае разрыва аксона вблизи его первых ответвлений.

Первым среди нейротрофинов был изучен фактор роста нервов, выполняющий особенно важные функции в развитии периферической чувствительной и вегетативной нервной системы. В соме нейронов зрелого мозга синтезируется фактор роста, выделенный из головного мозга (BDNF), который транспортируется антероградно в их нервные окончания. Согласно данным, полученным в результате исследований на животных, фактор роста, выделенный из головного мозга, обеспечивает жизнедеятельность нейронов, принимая участие в обмене веществ, проведении импульсов и синаптической передаче.

Нейрон что такоеВнутреннее строение двигательного нейрона.
Изображены пять дендритных стволов, три возбуждающих синапса (выделены красным цветом) и пять тормозных синапсов.

2. Механизмы транспорта. В процессе нейронального транспорта роль поддерживающих структур выполняют микротрубочки. Связанные с микротрубочками белки перемещают органеллы и молекулы вдоль внешней поверхности миктротрубочек за счет энергии АТФ. Антероградный и ретроградный транспорт обеспечивают разные виды АТФаз. Ретроградный транспорт осуществляется за счет динеиновых АТФаз. Нарушение функционирования динеинов приводит к болезни двигательного нейрона.
Ниже описано клиническое значение нейронального транспорта.

Столбняк. При загрязнении раны почвой возможно заражение столбнячной палочкой (Clostridium tetani). Этот микроорганизм продуцирует токсин, который связывается с плазматическими мембранами нервных окончаний, проникает путем эндоцитоза в клетки и посредством ретроградного транспорта попадает в нейроны спинного мозга. Нейроны, расположенные на более высоких уровнях, также захватывают этот токсин путем эндоцитоза. Среди этих клеток необходимо особенно отметить клетки Реншоу, которые в норме оказывают тормозное действие на двигательные нейроны путем выделения тормозного медиатора—глицина.

При поглощении клетками токсина выделение глицина нарушается, вследствие чего прекращаются тормозные влияния на нейроны, осуществляющие двигательную иннервацию мышц лица, челюстей и позвоночника. Клинически это проявляется длительными и изнурительными спазмами этих мышц и в половине случаев заканчивается гибелью пациентов от истощения в течение нескольких дней. Предотвратить столбняк возможно, проведя своевременную иммунизацию в должном объеме.

Вирусы и токсичные металлы. Считают, что за счет ретроградного аксонального транспорта происходит распространение вирусов (например, вируса простого герпеса) из носоглотки в ЦНС, а также перенос токсичных металлов—алюминия и свинца. В частности, распространение вирусов по структурам мозга осуществляется за счет ретроградного межнейронального переноса.

Периферические нейропатии. Нарушение антероградного транспорта — одна из причин дистальных аксональных нейропатий, при которых развивается прогрессирующая атрофия дистальных участков длинных периферических нервов.

Нейрон что такоеТельце Ниссля в соме двигательного нейрона.
Эндоплазматическая сеть имеет многоуровневую структуру. Полирибосомы образуют выросты на внешних поверхностях цистерн или свободно лежат в цитоплазме.
(Примечание: для лучшей визуализации структуры слабо окрашены).

Редактор: Искандер Милевски. Дата публикации: 11.11.2018

Источник

Нейроны для «чайников»

Нейроны – особая группа клеток организма, распространяющих информацию по всему телу. Используя электрические и химические сигналы, они помогают мозгу координировать все жизненно необходимые функции.

Если упростить, задачи нервной системы – собрать сигналы, поступающие из окружающей среды или из организма, оценить ситуацию, принять решение, как на них отреагировать (например, изменить частоту сердечных сокращений), а также подумать о происходящем и запомнить это. Основной инструмент для выполнения этих задач – нейроны, сплетенные по всему организму сложной сетью.

По средним оценкам, количество нейронов в головном мозге составляет 86 миллиардов, каждый из них связан еще с 1000 нейронов. Это создает невероятную сеть взаимодействия. Нейрон – основная единица нервной системы.

Нейроны (нервные клетки) составляют около 10% мозга, остальное – глиальные клетки и астроциты, функция которых заключается в поддержании и питании нейронов.

Как выглядит нейрон?

В строении нейрона можно выделить три части:

· Тело нейрона (сома) – получает информацию. Содержит ядро клетки.

· Дендриты – короткие отростки, принимающие информацию от других нейронов.

· Аксон – длинный отросток, несет информацию от тела нейрона в другие клетки. Чаще всего аксон оканчивается синапсом (контактом) с дендритами других нейронов.

Нейрон что такое
Схема строения нейрона (здесь и далее рисунки из Википедии).

Дендриты и аксоны называют нервными волокнами.

Аксоны сильно варьируют по длине, от нескольких миллиметров до метра и более. Самыми длинными являются аксоны спинномозговых ганглиев.

Классификацию нейронов можно провести по нескольким параметрам, например, по строению или выполняемой функции.

Типы нейронов в зависимости от функции:

· Эфферентные (двигательные) нейроны – несут информацию от центральной нервной системы (головного и спинного мозга) к клеткам других частей тела.

· Афферентные (чувствительные) нейроны – собирают информацию от всего организма и несут ее в центральную нервную систему.

· Вставочные нейроны – передают информацию между нейронами, чаще в пределах центральной нервной системы.

Как нейроны передают информацию?

Нейрон, получая информацию от других клеток, накапливает ее до тех пор, пока она не превысит определенный порог. После этого нейрон посылает по аксону электрический импульс – потенциал действия.

Потенциал действия формируется движением электрически заряженных частиц через мембрану аксона.

В состоянии покоя электрический заряд внутри нейрона отрицательный относительно окружающей его межклеточной жидкости. Эта разница называется мембранным потенциалом. Обычно он составляет 70 милливольт.

Когда тело нейрона получает достаточно заряда, и он «выстреливает», в соседнем участке аксона происходит деполяризация – мембранный потенциал быстро растет, а затем падает примерно за 1/1000 секунды. Этот процесс запускает деполяризацию соседнего участка аксона, и так далее, пока импульс не пройдет по всей длине аксона. После процесса деполяризации наступает гиперполяризация – кратковременное состояние отдыха, в этот момент передача импульса невозможна.

Нейрон что такое

Потенциал действия чаще всего генерируют ионы калия (К+) и натрия (Na+), которые по ионным каналам перемещаются из межклеточной жидкости внутрь клетки и обратно, меняя заряд нейрона и делая его сначала положительным, а затем снижая его.

Потенциал действия обеспечивает работу клетки по принципу «все или ничего», то есть импульс или передается, или нет. Слабые сигналы будут накапливаться в теле нейрона до тех пор, пока их заряда не будет достаточно для передачи по отросткам.

Миелин

Нейрон что такое
Миелинизированное волокно в сравнении с немиелинизированным.

Миелин вырабатывается шванновскими клетками на периферии и олигодендроцитами в центральной нервной системе. По ходу волокна миелиновая оболочка прерывается – это перехваты Ранвье. Потенциал действия перемещается от перехвата к перехвату, что обеспечивает быструю передачу импульса.

Такое распространенное и серьезное заболевание, как рассеянный склероз, вызвано разрушением миелиновой оболочки.

Как работают синапсы

Нейроны и ткани, которым они передают импульс, физически не соприкасаются, между клетками всегда существует пространство – синапс.

В зависимости от способа передачи информации, синапсы могут быть химическими и электрическими.

После того как сигнал, передвигаясь по отростку нейрона, достигает синапса, происходит высвобождение химических веществ – нейромедиаторов (нейротрансмиттеров) в пространство между двумя нейронами. Это пространство называют синаптической щелью.

Нейрон что такое
Схема строения химического синапса.

Нейромедиатор из передающего (пресинаптического) нейрона, попадая в синаптическую щель, взаимодействует с рецепторами на мембране принимающего (постсинаптического) нейрона, запуская целую цепь процессов.

Виды химических синапсов:

· глютаматэргический – медиатором является глютаминовая кислота, обладает возбуждающим эффектом на синапс;

· ГАМК-эргический – медиатором является гамма-аминомасляная кислота (ГАМК), обладает тормозящим эффектом на синапс;

· холинергический – медиатором является ацетилхолин, осуществляет нервно-мышечную передачу информации;

· адренергический – медиатором является адреналин.

Электрические синапсы встречаются реже, распространены в центральной нервной системе. Клетки сообщаются посредством особых белковых каналов. Пресинаптическая и постсинаптическая мембраны в электрических синапсах расположены близко друг к другу, поэтому импульс способен проходить непосредственно от клетки к клетке.

Скорость передачи импульса по электрическим синапсам гораздо выше, чем по химическим, поэтому они расположены преимущественно в тех отделах, где необходима быстрая реакция, например, отвечающих за защитные рефлексы.

Еще одно отличие двух типов синапсов в направлении передачи информации: если химические синапсы могут передавать импульс только в одном направлении, то электрические в этом смысле универсальны.

Заключение

Нейроны – это, пожалуй, самые необычные клетки организма. Каждое действие, которое осуществляет тело человека, обеспечивается работой нейронов. Сложная нейронная сеть формирует личность и сознание. Они отвечают как за самые примитивные рефлексы, так и за самые сложные процессы, связанные с мышлением.

Аминат Аджиева, портал «Вечная молодость» http://vechnayamolodost.ru по материалам Medical News Today: Neurons: The basics.

Читать статьи по темам:

Читать также:

Они восстанавливаются

Как нейробиологи-«революционеры» опровергали продержавшуюся 100 лет догму, гласившую, что нервные клетки не восстанавливаются.

Регенерация спинного мозга

Ткань, содержащая человеческие стволовые клетки, позволила парализованным крысам ходить и вернула чувство осязания конечностям.

Проспиртованные нейроны не восстанавливаются

Употребление алкоголя ведет не только к гибели уже существующих нервных клеток, но и к замедлению формирования новых.

Не спи за рулём!

Когда водитель утомлён, его внимание рассеивается, поскольку нейроны не реагируют на внешние стимулы так эффективно, как должны.

Фибриноген тормозит ремиелинизацию

Исследователи из Института Глэдстоун обнаружили интересную взаимосвязь восстановления миелина с белками плазмы крови.

Электронное СМИ зарегистрировано 12.03.2009

Свидетельство о регистрации Эл № ФС 77-35618

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *