Нейтрино что это простыми словами
Нейтрино что это простыми словами
Почему так тяжело изучать нейтрино и что эта частица расскажет об истории Вселенной
Нейтрино является одной из самых распространенных частиц во Вселенной, при этом ее невероятно сложно обнаружить. Изучать нейтрино важно, потому что они содержат в себе информацию о явлениях и процессах, которые их порождают: это значит, что с помощью частицы можно узнать о происхождении Вселенной. Рассказываем обо всех тайнах, которые хранят в себе нейтрино.
Читайте «Хайтек» в
Что такое нейтрино?
Нейтрино — это сверхлегкие частицы, образующиеся в процессе ядерных реакций. Большинство из тех, что были обнаружены на Земле, исходят от Солнца, которое превращает водород в гелий. Но в 1930-х годах было предсказано, что Солнце должно также производить нейтрино другого типа посредством реакций с участием углерода, азота и кислорода — так называемые «нейтрино CNO». И лишь почти век спустя детектор Borexino впервые обнаружил эти частицы.
До недавнего времени было вообще непонятно, есть ли у нее масса. В последние годы стало ясно, что есть, но очень маленькая. Ее точное значение неизвестно по сию пору, а имеющиеся оценки в общем сводятся к тому, что нейтрино примерно на 10 порядков легче протона. Примерно так же соотносится вес кузнечика (около 1 грамма) с водоизмещением современного атомного авианосца George Bush (около 100 тыс. тонн).
Частица не имеет или почти не имеет электрического заряда — эксперименты пока не дали однозначного ответа, а из всех фундаментальных физических взаимодействий достоверно участвует только в слабом и гравитационном.
Нейтрино подразделяются на три поколения: электронные, мюонные и тау-нейтрино. Они обычно перечисляются именно в таком порядке, и это не случайно: так отображается последовательность их открытия. Кроме этого, есть еще антинейтрино — это античастицы трех разных типов, соответствующих «обычным». Нейтрино разных поколений могут самопроизвольно превращаться друг в друга. Ученые называют это нейтринными осцилляциями, за их открытие присудили Нобелевскую премию по физике 2015 года.
Нейтрино — результат ядерных (и термоядерных, мы далее не будем выделять их отдельно) реакций. Их, неуловимых, очень много. По подсчетам физиков-теоретиков, на каждый нуклон (то есть протон или нейтрон) во Вселенной приходится около 10 9 нейтрино. Тем не менее, мы совершенно его не замечаем: частицы проходят сквозь нас.
Как ученые ищут нейтрино?
Современные детекторы регистрируют не сами нейтрино — это пока невозможно. Объектом регистрации оказываются результаты взаимодействия частицы с веществом, заполняющим детектор. Его выбирают так, чтобы с ним реагировали нейтрино определенных, интересующих разработчиков, энергий. Поскольку энергия нейтрино зависит от механизма их образования, можно считать, что детектор рассчитан на частицы определенного происхождения.
Как только стало понятно, что нейтрино хоть и сложно, но все же можно зарегистрировать, ученые начали пытаться уловить нейтрино внеземного происхождения. Самый очевидный их источник — Солнце. В нем постоянно происходят ядерные реакции, и можно подсчитать, что через каждый квадратный сантиметр земной поверхности проходит около 90 млрд солнечных нейтрино в секунду.
На тот момент самым эффективным методом ловли солнечных нейтрино был радиохимический метод. Суть его такова: солнечное нейтрино прилетает на Землю, взаимодействует с ядром; получается, скажем, ядро 37Ar и электрон (именно такая реакция была использована в эксперименте Рэймонда Дэйвиса, за который ему впоследствии дали Нобелевскую премию).
После этого, подсчитав количество атомов аргона, можно сказать, сколько нейтрино за время экспозиции взаимодействовало в объеме детектора. На практике, разумеется, все не так просто. Надо понимать, что требуется считать единичные атомы аргона в мишени весом в сотни тонн. Соотношение масс примерно такое же, как между массой муравья и массой Земли. Обнаружилось, что похищено ⅔ солнечных нейтрино (измеренный поток оказался в три раза меньше предсказанного).
Общей особенностью всех современных нейтринных телескопов являются меры, направленные на экранирование аппаратуры от всех посторонних частиц. Нейтрино, хотя их в природе очень много, засекаются детекторами очень редко. Любой посторонний шум от космических или земных частиц наверняка их заглушит.
Поэтому стандартное размещение нейтринной обсерватории — в шахте или, в некоторых случаях, под водой, чтобы вышележащая толща блокировала ненужное излучение. Эта толща тоже тщательно подбирается — горные породы, например, должны быть как можно менее радиоактивными. Граниты нам не подойдут, глины тоже. Хорошее место для детектора — шахта в толще чистого известняка.
Лучшее направление для работы нейтринной обсерватории — прием частиц, пришедших снизу, сквозь нашу планету. Для нейтрино она прозрачна, для всего остального — нет.
Современные детекторы определяют нейтринное событие по «разрушительному эффекту». Когда неуловимая частица все-таки взаимодействует с веществом детектора, она вызывает разрушение первоначального атомного ядра с образованием каких-то иных частиц. Их-то затем и обнаруживают в детекторе.
Чтобы вызвать такую реакцию, нейтрино должно иметь собственную энергию не ниже определенного, нужного для данного детектора, уровня. Поэтому современная техника всегда имеет ограничение снизу — регистрирует нейтрино, имеющие энергию выше определенного уровня. В таком порядке мы их и рассмотрим.
Зачем мы вообще изучаем нейтрино?
Нейтрино рассказывают нам чрезвычайно много о том, как Вселенная создается и удерживается от распада. Нет другого способа ответить на многие вопросы.
Натаниэль Боуден, ученый из Ливерморской Национальной лаборатории имени Лоуренса
Эксперты сравнили поиск этих частиц с работой археологов, восстанавливающих доисторические артефакты с целью понять, какой жизнь была тогда. Лучшее понимание нейтрино может раскрыть тайны других элементов астрономии и физики: от темной материи до расширения Вселенной.
Эксперимент COHERENT Окриджской национальной лаборатории состоял из пяти детекторов частиц, предназначенных для непосредственного наблюдения высокоспецифического взаимодействия между нейтрино и ядрами атомов. В прошлом году эти ученые опубликовали исследование в Science о взаимодействии между двумя нейтрино, которое было выдвинуто в качестве гипотезы десятилетиями ранее, но никогда прежде не наблюдались.
Это не просто еще одна частица. Это попытка найти, причем сравнительно простым и относительно дешевым методом, — если сравнивать с Большим адронным коллайдером, например, — новую физику. Новая физика — это и понимание того, что такое темная материя: возможно, она окажется теми самыми стерильными нейтрино. И, что возможно, выход на новые технологии. Нельзя исключать, что новые нейтрино окажутся представителями неизвестного класса частиц, которые еще и взаимодействуют между собой каким-то иным способом. Если мы нападем на след этого нового взаимодействия, то не исключено, что мы научимся его использовать на практике: подобно тому, как открытие ядерного взаимодействия привело к появлению ядерных технологий.
Григорий Рубцов, заместитель директора Института ядерных исследований.
Изучение испускаемых Землей нейтрино может помочь нам хотя бы понять, сколько в земном веществе радиоактивных элементов и где они в основном находятся. По части последнего существуют разные версии, начиная от того, что уран с торием — атрибут нижней части земной коры, и кончая тем, что источники радиации в ходе формирования планеты «утонули» к ее центру, и там существует нечто вроде ядерного реактора, причем периодически действующего.
Накопившиеся продукты распада, когда их становится достаточно много, останавливают цепную реакцию. Потом в раскаленной среде они потихоньку диффундируют наверх (они легче), освобождая место для новых порций делящегося материала, после чего процесс запускается снова. Если это так, то подобная цикличность могла бы помочь в объяснении перемен магнитной полярности Земли и, надо думать, во многом другом.
Интересен также вопрос о доле ядерных реакций в общем тепловыделении Земли. Напомним, что земные недра суммарно выдают порядка 47 ТВт тепла в год, но ученые до сих пор смутно представляют себе, какая часть этой энергии приходится на радиогенное тепло, а какая — на остаточное тепло, выделившееся когда-то при гравитационной дифференциации земного вещества.
Чем это интересно для обычного человека?
Технологии, которые разрабатываются для создания современных экспериментов по физике нейтрино, широко используются в промышленности уже сейчас, так что любое вложение в эту сферу окупается. Сейчас в мире ставятся несколько экспериментов, масштаб которых сравним с масштабом Большого адронного коллайдера.
Эти эксперименты направлены исключительно на исследование свойств нейтрино. В каком из них удастся открыть новую страницу в физике, неизвестно, но открыта она будет совершенно точно.
Как мы продвинулись в изучении нейтрино?
Накануне стало известно, что Японские ученые из Университета Цукубы и Токийского университета разработали космологическую модель, которая точно отражает роль нейтрино в эволюции Вселенной.
В результате выяснилось, что в областях, где много нейтрино, обычно присутствуют массивные скопления галактик. Еще один важный вывод: нейтрино подавляет кластеризацию темной материи и галактик, а также изменяет температуру в зависимости от собственной массы.
Также стало известно, что Borexino, огромный подземный детектор частиц в Италии, уловил невиданный ранее тип нейтрино, исходящий от Солнца. Эти нейтрино подтверждают гипотезу 90-летней давности и дополняют наше представление о циклах синтеза Солнца и других звезд. В 1930-х годах было предсказано, что Солнце должно также производить нейтрино другого типа посредством реакций с участием углерода, азота и кислорода — так называемые нейтрино CNO. И лишь почти век спустя детектор Borexino впервые обнаружил эти частицы.
Реакция CNO выделяет лишь крошечную часть от общего количества солнечной энергии, но у более массивных звезд она считается основной движущей силой термоядерного синтеза. Экспериментальное обнаружение нейтрино CNO означает, что ученые наконец получили связь между последними частями головоломки и могут расшифровать весь цикл солнечного термоядерного синтеза.
Подтверждение того, что CNO осуществляется в процессе термоядерной активности нашей звезды, где подобные реакции занимают не более 1%, укрепляет нашу уверенность в том, что мы точно понимаем, как работают звезды.
Франк Калаприс, главный исследователь Borexinо
Детекторы нейтрино предназначены для отслеживания тех редких случаев, когда эти «призрачные частицы» случайно сталкиваются с другими атомами. Обычно в таких устройствах используются огромные объемы детекторной жидкости или газа, которые испускают вспышку света при «ударе» нейтрино. Подобные эксперименты обычно проводятся внутри камеры глубоко под землей, вдали от помех и воздействия других космических лучей.
Команда потратила годы, регулируя температуру инструмента, чтобы замедлить движение жидкости внутри детектора, и сосредоточилась на сигналах, исходящих из центральной области контейнера. В феврале 2020 года команда наконец-то уловила искомый сигнал и потратила почти год на его расшифровку и на то, чтобы удостовериться в отсутствии ошибок.
Эти данные могут не только улучшить наше понимание цикла слияния звезд, но и помочь ученым выяснить, насколько «металлическими» являются Солнце и другие звезды.
Нейтрино
электронное нейтрино мюонное нейтрино тау-нейтрино | |
Символ: | νe νμ ντ |
---|---|
Состав: | Элементарная частица |
Семья: | Фермионы |
Группа: | Лептоны |
Поколение: | 1 (νe) 2 (νμ) 3 (ντ) |
Участвует во взаимодействиях: | слабое, гравитационное |
Кол-во типов: | 3 |
Масса: | меньше 0,28 эВ, но не нулевая у всех ароматов ( νe, νμ, ντ ) |
Время жизни: | стабильны |
Каналы распада: | нет |
Электрический заряд: | 0 |
Спин: | ½ |
Содержание
Свойства нейтрино
Каждому заряженному лептону соответствует своя пара нейтрино/антинейтрино:
Масса нейтрино важна для предположения объяснения феномена скрытой массы в космологии, так как, несмотря на её малость, возможно, концентрация нейтрино во Вселенной достаточно высока, чтобы существенно повлиять на среднюю плотность.
Если нейтрино имеют ненулевую массу, то различные виды нейтрино могут преобразовываться друг в друга. Это так называемые нейтринные осцилляции, в пользу которых свидетельствуют наблюдения солнечных нейтрино и угловой анизотропии атмосферных нейтрино, а также проведённые в начале этого века эксперименты с реакторными (см. KamLAND) и ускорительными нейтрино. Кроме того, существование нейтринных осцилляций напрямую подтверждено опытами в Садбери, в котором были непосредственно зарегистрированы солнечные нейтрино всех трёх сортов и было показано, что их полный поток согласуется со стандартной солнечной моделью. При этом только около трети долетающих до Земли нейтрино оказывается электронными. Это количество согласуется с теорией, которая предсказывает переход электронных нейтрино в нейтрино другого поколения как в вакууме (собственно «нейтринные осцилляции»), так и в солнечном веществе («эффект Михеева — Смирнова — Вольфенштейна»). Подтверждение нейтринных осцилляций потребует внесения изменений в Стандартную модель.
В экспериментах с рождением ультрарелятивистских частиц, нейтрино обладают отрицательной спиральностью, а антинейтрино — положительной. [5]
Существуют теоретические предпосылки, предсказывающие существование четвёртого типа нейтрино — стерильного нейтрино (англ.). Однозначного экспериментального подтверждения (эксперименты MiniBooNE (англ.), LSND (англ.)) их существования пока нет.
История открытия
С другой стороны, развитие квантовой механики в 1920-х годах привело к пониманию дискретности энергетических уровней в атомном ядре: это предположение было высказано австрийским физиком Лизой Мейтнер в 1922 году. То есть, спектр вылетающих при распаде ядра частиц должен быть дискретным, и показывать энергии, равные разницам энергий уровней, между которыми происходит переход при распаде. Таковым, например, является спектр альфа-частиц при альфа-распаде.
Таким образом, непрерывность спектра электронов β-распада ставила под сомнение закон сохранения энергии. Вопрос стоял настолько остро, что в 1931 году знаменитый датский физик Н. Бор на Римской конференции выступил с идеей о несохранении энергии! Однако было и другое объяснение — «потерянную» энергию уносит какая-то неизвестная и незаметная частица.
Гипотезу о существовании чрезвычайно слабо взаимодействующей с веществом частицы выдвинул 4 декабря 1930 г. Паули — не в статье, а в неформальном письме участникам физической конференции в Тюбингене:
— «Открытое письмо группе радиоактивных, собравшихся в Тюбингене», цит. по М. П. Рекало, «Нейтрино».
Впоследствии нейтроном была названа, как оказалось, другая элементарная частица, наряду с протоном входящая в состав атомных ядер. А предсказанная Паули частица в работах 1933—1934 итальянца Энрико Ферми на итальянский манер была названа «нейтрино».
Перспективы использования
Другим (практическим) применением является развиваемая в последнее время нейтринная диагностика промышленных ядерных реакторов. Проведённые в конце XX века физиками Курчатовского института эксперименты показали перспективность этого направления, и сегодня в России, Франции, Италии и других странах ведутся работы по созданию нейтринных детекторов, способных в режиме реального времени измерять реакторный нейтринный спектр и тем самым контролировать как мощность реактора, так и композитный состав топлива (включая наработку оружейного плутония).
Исследования нейтрино
Нейтрино изучается в нескольких лабораториях в США, Италии, Японии.
Регистрации возможного превышения скорости света
22 сентября 2011 года коллаборация OPERA объявила о регистрации возможного превышения скорости света мюонными нейтрино (на 0,00248 %). [8] [9] [10] Нейтрино от ускорителя SPS (ЦЕРН, Швейцария) якобы прибывали к детектору (находящемуся на расстоянии 730 км в подземной лаборатории Гран-Сассо, Италия) на 61±10 наносекунд раньше расчётного времени; это значение получено после усреднения по 16 тысячам нейтринных событий в детекторе за три года. Физики обратились к своим коллегам с просьбой проверить результаты в подобных экспериментах MINOS (лаборатория Fermilab возле Чикаго) и T2K (Япония).
Просто о сложном: загадка самой мелкой частицы во Вселенной, или как поймать нейтрино
altavir
Нейтрино, невероятно крошечная частица Вселенной, удерживает пристальное внимание ученых уже без малого столетие. За исследования нейтрино вручили больше Нобелевских премий, чем за работы о других частицах, а для его изучения строят огромные установки с бюджетом небольших государств. Александр Нозик, старший научный сотрудник Института ядерных исследований РАН, преподаватель МФТИ и участник эксперимента по поиску массы нейтрино «Троицк ню-масс», рассказывает, как его изучать, но главное — как вообще его поймать.
Загадка похищенной энергии
Александр Нозик
Со временем приборы становились все точнее, и вскоре возможность списать подобную аномалию на погрешность аппаратуры пропала. Так появилась загадка. В поисках ее разгадки ученые высказывали разнообразные, даже совершенно абсурдные по нынешним меркам предположения. Сам Нильс Бор, например, делал серьезное заявление, что законы сохранения не действуют в мире элементарных частиц. Спас положение Вольфганг Паули в 1930 году. Он не смог приехать на конференцию физиков в Тюбингене и, не имея возможности участвовать дистанционно, прислал письмо, которое попросил зачитать. Вот выдержки из него:
Вольфганг Паули
«Дорогие радиоактивные дамы и господа. Я прошу вас выслушать со вниманием в наиболее удобный момент посланца, доставившего это письмо. Он расскажет вам, что я нашел отличное средство для закона сохранения и правильной статистики. Оно заключается в возможности существования электрически нейтральных частиц… Непрерывность Β-спектра станет понятной, если предположить, что при вместе с каждым электроном испускается такой «нейтрон», причем сумма энергий «нейтрона» и электрона постоянна…»
В финале письма были следующие строки:
«Не рисковать — не победить. Тяжесть положения при рассмотрении непрерывного Β-спектра становится особенно яркой после слов проф. Дебая, сказанных мне с сожалением: «Ох, лучше не думать обо всем этом… как о новых налогах». Следовательно, необходимо серьезно обсудить каждый путь к спасению. Итак, уважаемый радиоактивный народ, подвергните это испытанию и судите».
Позже сам Паули высказывал опасения, что, хотя его идея и спасает физику микромира, новая частица так никогда и не будет открыта экспериментально. Говорят, он даже спорил со своими коллегами, что, если частица есть, обнаружить ее при их жизни не удастся. В последующие несколько лет Энрико Ферми создал теорию бета-распада с участием частицы, названной им нейтрино, которая блестящим образом согласовалась с экспериментом. После этого ни у кого не осталось сомнений в том, что гипотетическая частица существует на самом деле. В 1956 году, за два года до смерти Паули, нейтрино было экспериментально обнаружено в обратном бета-распаде группой Фредерика Райнеса и Клайда Коуэна (Райнес получил за это Нобелевскую премию).
Дело о пропавших солнечных нейтрино
Как только стало понятно, что нейтрино хоть и сложно, но все же можно зарегистрировать, ученые начали пытаться уловить нейтрино внеземного происхождения. Самый очевидный их источник — Солнце. В нем постоянно происходят ядерные реакции, и можно подсчитать, что через каждый квадратный сантиметр земной поверхности проходит около 90 миллиардов солнечных нейтрино в секунду.
На тот момент самым эффективным методом ловли солнечных нейтрино был радиохимический метод. Суть его такова: солнечное нейтрино прилетает на Землю, взаимодействует с ядром; получается, скажем, ядро 37Ar и электрон (именно такая реакция была использована в эксперименте Рэймонда Дэйвиса, за который ему впоследствии дали Нобелевскую премию). После этого, подсчитав количество атомов аргона, можно сказать, сколько нейтрино за время экспозиции взаимодействовало в объеме детектора. На практике, разумеется, все не так просто. Надо понимать, что требуется считать единичные атомы аргона в мишени весом в сотни тонн. Соотношение масс примерно такое же, как между массой муравья и массой Земли. Тут-то и обнаружилось, что похищено ⅔ солнечных нейтрино (измеренный поток оказался в три раза меньше предсказанного).
Разумеется, в первую очередь подозрение пало на само Солнце. Ведь судить о его внутренней жизни мы можем только по косвенным признакам. Неизвестно, как на нем рождаются нейтрино, и возможно даже, что все модели Солнца неправильные. Обсуждалось достаточно много различных гипотез, но в итоге ученые стали склоняться к мысли, что все-таки дело не в Солнце, а в хитрой природе самих нейтрино.
Небольшое историческое отступление: в период между экспериментальным открытием нейтрино и опытами по изучению солнечных нейтрино произошло еще несколько интересных открытий. Во-первых, были открыты антинейтрино и доказано, что нейтрино и антинейтрино по-разному участвуют во взаимодействиях. Причем все нейтрино во всех взаимодействиях всегда левые (проекция спина на направление движения отрицательна), а все антинейтрино — правые. Мало того что это свойство наблюдается среди всех элементарных частиц только у нейтрино, оно еще и косвенно указывает на то, что наша Вселенная в принципе не симметрична. Во-вторых, было обнаружено, что каждому заряженному лептону (электрону, мюону и ) соответствует свой тип, или аромат, нейтрино. Причем нейтрино каждого типа взаимодействуют только со своим лептоном.
Вернемся к нашей солнечной проблеме. Еще в 50-х годах XX века было высказано предположение, что лептонный аромат (тип нейтрино) не обязан сохраняться. То есть если в одной реакции родилось электронное нейтрино, то по пути к другой реакции нейтрино может переодеться и добежать как мюонное. Этим можно было бы объяснить нехватку солнечных нейтрино в радиохимических экспериментах, чувствительных только к электронным нейтрино. Эта гипотеза была блестящим образом подтверждена при измерениях потока солнечных нейтрино в сцинтилляционных экспериментах с большой водной мишенью SNO и Kamiokande (за что недавно вручили еще одну Нобелевскую премию). В этих экспериментах изучается уже не обратный бета-распад, а реакция рассеяния нейтрино, которая может происходить не только с электронными, но и с мюонными нейтрино. Когда вместо потока электронных нейтрино стали измерять полный поток всех типов нейтрино, результаты прекрасно подтвердили переход нейтрино из одного типа в другой, или нейтринные осцилляции.
Покушение на Стандартную модель
Открытие осцилляций нейтрино, решив одну проблему, создало несколько новых. Суть в том, что еще со времен Паули нейтрино считались безмассовыми частицами подобно фотонам, и это всех устраивало. Попытки измерить массу нейтрино продолжались, но без особого энтузиазма. Осцилляции все изменили, поскольку для их существования масса, пусть и маленькая, обязательна. Обнаружение массы у нейтрино, разумеется, привело экспериментаторов в восторг, но озадачило теоретиков. Во-первых, массивные нейтрино не вписываются в Стандартную модель физики элементарных частиц, которую ученые строили еще с начала XX века. Во-вторых, та самая загадочная левосторонность нейтрино и правосторонность антинейтрино хорошо объясняется только опять-таки для безмассовых частиц. При наличии массы левые нейтрино должны с некоторой вероятностью переходить в правые, то есть в античастицы, нарушая, казалось бы, незыблемый закон сохранения лептонного числа, или вовсе превращаться в нейтрино, не участвующие во взаимодействии. Сегодня такие гипотетические частицы принято называть стерильными нейтрино.
Нейтринный детектор «Супер-Камиоканде» © Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo
Разумеется, экспериментальные поиски массы нейтрино тут же резко возобновились. Но сразу возник вопрос: как же измерить массу того, что никак не удается поймать? Ответ один: не ловить нейтрино вообще. На сегодняшний день наиболее активно разрабатываются два направления — прямой поиск массы нейтрино в и наблюдение безнейтринного двойного бета-распада. В первом случае идея очень проста. Ядро распадается с излучением электрона и нейтрино. Нейтрино поймать не удается, но поймать и измерить с очень большой точностью возможно электрон. Спектр электронов несет информацию и о массе нейтрино. Такой эксперимент — один из самых сложных в физике частиц, но при этом его безусловный плюс в том, что он основан на базовых принципах сохранения энергии и импульса и его результат мало от чего зависит. Сейчас самое лучшее ограничение на массу нейтрино составляет около 2 эВ. Это в 250 тысяч раз меньше, чем у электрона. То есть саму массу не нашли, а только ограничили верхней рамкой.
С двойным бета-распадом все сложнее. Если предположить, что нейтрино при перевороте спина превращается в антинейтрино (такую модель называют по имени итальянского физика Этторе Майорана), то возможен процесс, когда в ядре происходят одновременно два бета-распада, но нейтрино при этом не вылетают, а сокращаются. Вероятность такого процесса связана с массой нейтрино. Верхние границы в подобных экспериментах лучше — 0,2‒0,4 эВ, — но зависят от физической модели.
Бозон Хиггса здесь не поможет
Проблема массивного нейтрино не решена до сих пор. Теория Хиггса не может объяснить настолько маленькие массы. Требуется ее существенное усложнение или привлечение каких-то более хитрых законов, по которым нейтрино взаимодействуют c остальным миром. Физикам, занимающимся исследованием нейтрино, часто задают вопрос: «А как исследование нейтрино может помочь среднестатистическому обывателю? Какую финансовую или другую выгоду можно извлечь из этой частицы?» Физики разводят руками. И они действительно этого не знают. Когда-то исследование полупроводниковых диодов относилось к чисто фундаментальной физике, без практического применения. Разница в том, что технологии, которые разрабатываются для создания современных экспериментов по физике нейтрино, широко используются в промышленности уже сейчас, так что каждая вложенная в эту сферу копейка довольно быстро окупается. Сейчас в мире ставятся несколько экспериментов, масштаб которых сравним с масштабом Большого адронного коллайдера; эти эксперименты направлены исключительно на исследование свойств нейтрино. В каком из них удастся открыть новую страницу в физике, неизвестно, но открыта она будет совершенно точно.
Просто о сложном: загадка самой мелкой частицы во Вселенной, или как поймать нейтрино
altavir
Нейтрино, невероятно крошечная частица Вселенной, удерживает пристальное внимание ученых уже без малого столетие. За исследования нейтрино вручили больше Нобелевских премий, чем за работы о других частицах, а для его изучения строят огромные установки с бюджетом небольших государств. Александр Нозик, старший научный сотрудник Института ядерных исследований РАН, преподаватель МФТИ и участник эксперимента по поиску массы нейтрино «Троицк ню-масс», рассказывает, как его изучать, но главное — как вообще его поймать.
Загадка похищенной энергии
Александр Нозик
Со временем приборы становились все точнее, и вскоре возможность списать подобную аномалию на погрешность аппаратуры пропала. Так появилась загадка. В поисках ее разгадки ученые высказывали разнообразные, даже совершенно абсурдные по нынешним меркам предположения. Сам Нильс Бор, например, делал серьезное заявление, что законы сохранения не действуют в мире элементарных частиц. Спас положение Вольфганг Паули в 1930 году. Он не смог приехать на конференцию физиков в Тюбингене и, не имея возможности участвовать дистанционно, прислал письмо, которое попросил зачитать. Вот выдержки из него:
Вольфганг Паули
«Дорогие радиоактивные дамы и господа. Я прошу вас выслушать со вниманием в наиболее удобный момент посланца, доставившего это письмо. Он расскажет вам, что я нашел отличное средство для закона сохранения и правильной статистики. Оно заключается в возможности существования электрически нейтральных частиц… Непрерывность Β-спектра станет понятной, если предположить, что при вместе с каждым электроном испускается такой «нейтрон», причем сумма энергий «нейтрона» и электрона постоянна…»
В финале письма были следующие строки:
«Не рисковать — не победить. Тяжесть положения при рассмотрении непрерывного Β-спектра становится особенно яркой после слов проф. Дебая, сказанных мне с сожалением: «Ох, лучше не думать обо всем этом… как о новых налогах». Следовательно, необходимо серьезно обсудить каждый путь к спасению. Итак, уважаемый радиоактивный народ, подвергните это испытанию и судите».
Позже сам Паули высказывал опасения, что, хотя его идея и спасает физику микромира, новая частица так никогда и не будет открыта экспериментально. Говорят, он даже спорил со своими коллегами, что, если частица есть, обнаружить ее при их жизни не удастся. В последующие несколько лет Энрико Ферми создал теорию бета-распада с участием частицы, названной им нейтрино, которая блестящим образом согласовалась с экспериментом. После этого ни у кого не осталось сомнений в том, что гипотетическая частица существует на самом деле. В 1956 году, за два года до смерти Паули, нейтрино было экспериментально обнаружено в обратном бета-распаде группой Фредерика Райнеса и Клайда Коуэна (Райнес получил за это Нобелевскую премию).
Дело о пропавших солнечных нейтрино
Как только стало понятно, что нейтрино хоть и сложно, но все же можно зарегистрировать, ученые начали пытаться уловить нейтрино внеземного происхождения. Самый очевидный их источник — Солнце. В нем постоянно происходят ядерные реакции, и можно подсчитать, что через каждый квадратный сантиметр земной поверхности проходит около 90 миллиардов солнечных нейтрино в секунду.
На тот момент самым эффективным методом ловли солнечных нейтрино был радиохимический метод. Суть его такова: солнечное нейтрино прилетает на Землю, взаимодействует с ядром; получается, скажем, ядро 37Ar и электрон (именно такая реакция была использована в эксперименте Рэймонда Дэйвиса, за который ему впоследствии дали Нобелевскую премию). После этого, подсчитав количество атомов аргона, можно сказать, сколько нейтрино за время экспозиции взаимодействовало в объеме детектора. На практике, разумеется, все не так просто. Надо понимать, что требуется считать единичные атомы аргона в мишени весом в сотни тонн. Соотношение масс примерно такое же, как между массой муравья и массой Земли. Тут-то и обнаружилось, что похищено ⅔ солнечных нейтрино (измеренный поток оказался в три раза меньше предсказанного).
Разумеется, в первую очередь подозрение пало на само Солнце. Ведь судить о его внутренней жизни мы можем только по косвенным признакам. Неизвестно, как на нем рождаются нейтрино, и возможно даже, что все модели Солнца неправильные. Обсуждалось достаточно много различных гипотез, но в итоге ученые стали склоняться к мысли, что все-таки дело не в Солнце, а в хитрой природе самих нейтрино.
Небольшое историческое отступление: в период между экспериментальным открытием нейтрино и опытами по изучению солнечных нейтрино произошло еще несколько интересных открытий. Во-первых, были открыты антинейтрино и доказано, что нейтрино и антинейтрино по-разному участвуют во взаимодействиях. Причем все нейтрино во всех взаимодействиях всегда левые (проекция спина на направление движения отрицательна), а все антинейтрино — правые. Мало того что это свойство наблюдается среди всех элементарных частиц только у нейтрино, оно еще и косвенно указывает на то, что наша Вселенная в принципе не симметрична. Во-вторых, было обнаружено, что каждому заряженному лептону (электрону, мюону и ) соответствует свой тип, или аромат, нейтрино. Причем нейтрино каждого типа взаимодействуют только со своим лептоном.
Вернемся к нашей солнечной проблеме. Еще в 50-х годах XX века было высказано предположение, что лептонный аромат (тип нейтрино) не обязан сохраняться. То есть если в одной реакции родилось электронное нейтрино, то по пути к другой реакции нейтрино может переодеться и добежать как мюонное. Этим можно было бы объяснить нехватку солнечных нейтрино в радиохимических экспериментах, чувствительных только к электронным нейтрино. Эта гипотеза была блестящим образом подтверждена при измерениях потока солнечных нейтрино в сцинтилляционных экспериментах с большой водной мишенью SNO и Kamiokande (за что недавно вручили еще одну Нобелевскую премию). В этих экспериментах изучается уже не обратный бета-распад, а реакция рассеяния нейтрино, которая может происходить не только с электронными, но и с мюонными нейтрино. Когда вместо потока электронных нейтрино стали измерять полный поток всех типов нейтрино, результаты прекрасно подтвердили переход нейтрино из одного типа в другой, или нейтринные осцилляции.
Покушение на Стандартную модель
Открытие осцилляций нейтрино, решив одну проблему, создало несколько новых. Суть в том, что еще со времен Паули нейтрино считались безмассовыми частицами подобно фотонам, и это всех устраивало. Попытки измерить массу нейтрино продолжались, но без особого энтузиазма. Осцилляции все изменили, поскольку для их существования масса, пусть и маленькая, обязательна. Обнаружение массы у нейтрино, разумеется, привело экспериментаторов в восторг, но озадачило теоретиков. Во-первых, массивные нейтрино не вписываются в Стандартную модель физики элементарных частиц, которую ученые строили еще с начала XX века. Во-вторых, та самая загадочная левосторонность нейтрино и правосторонность антинейтрино хорошо объясняется только опять-таки для безмассовых частиц. При наличии массы левые нейтрино должны с некоторой вероятностью переходить в правые, то есть в античастицы, нарушая, казалось бы, незыблемый закон сохранения лептонного числа, или вовсе превращаться в нейтрино, не участвующие во взаимодействии. Сегодня такие гипотетические частицы принято называть стерильными нейтрино.
Нейтринный детектор «Супер-Камиоканде» © Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo
Разумеется, экспериментальные поиски массы нейтрино тут же резко возобновились. Но сразу возник вопрос: как же измерить массу того, что никак не удается поймать? Ответ один: не ловить нейтрино вообще. На сегодняшний день наиболее активно разрабатываются два направления — прямой поиск массы нейтрино в и наблюдение безнейтринного двойного бета-распада. В первом случае идея очень проста. Ядро распадается с излучением электрона и нейтрино. Нейтрино поймать не удается, но поймать и измерить с очень большой точностью возможно электрон. Спектр электронов несет информацию и о массе нейтрино. Такой эксперимент — один из самых сложных в физике частиц, но при этом его безусловный плюс в том, что он основан на базовых принципах сохранения энергии и импульса и его результат мало от чего зависит. Сейчас самое лучшее ограничение на массу нейтрино составляет около 2 эВ. Это в 250 тысяч раз меньше, чем у электрона. То есть саму массу не нашли, а только ограничили верхней рамкой.
С двойным бета-распадом все сложнее. Если предположить, что нейтрино при перевороте спина превращается в антинейтрино (такую модель называют по имени итальянского физика Этторе Майорана), то возможен процесс, когда в ядре происходят одновременно два бета-распада, но нейтрино при этом не вылетают, а сокращаются. Вероятность такого процесса связана с массой нейтрино. Верхние границы в подобных экспериментах лучше — 0,2‒0,4 эВ, — но зависят от физической модели.
Бозон Хиггса здесь не поможет
Проблема массивного нейтрино не решена до сих пор. Теория Хиггса не может объяснить настолько маленькие массы. Требуется ее существенное усложнение или привлечение каких-то более хитрых законов, по которым нейтрино взаимодействуют c остальным миром. Физикам, занимающимся исследованием нейтрино, часто задают вопрос: «А как исследование нейтрино может помочь среднестатистическому обывателю? Какую финансовую или другую выгоду можно извлечь из этой частицы?» Физики разводят руками. И они действительно этого не знают. Когда-то исследование полупроводниковых диодов относилось к чисто фундаментальной физике, без практического применения. Разница в том, что технологии, которые разрабатываются для создания современных экспериментов по физике нейтрино, широко используются в промышленности уже сейчас, так что каждая вложенная в эту сферу копейка довольно быстро окупается. Сейчас в мире ставятся несколько экспериментов, масштаб которых сравним с масштабом Большого адронного коллайдера; эти эксперименты направлены исключительно на исследование свойств нейтрино. В каком из них удастся открыть новую страницу в физике, неизвестно, но открыта она будет совершенно точно.
Частица-призрак: нейтрино
Пока вы читали короткий заголовок этой статьи, через ваше тело беспрепятственно пролетело 10 14 нейтрино.
Примерно сто лет назад физиков стало беспокоить странное поведение электронов, вылетающих из нестабильных ядер при бета-распаде. Экспериментальные данные показывали, что кинетическая энергия этих частиц изменяется в довольно широких пределах. В то же время появлялось все больше и больше оснований считать, что такие ядра теряют энергию дискретно и одними и теми же порциями. Но в этом случае каждый конкретный вид бета-распада вроде бы должен генерировать электроны одинаковой энергии, а этого не происходило. Аналогично выглядело и сравнение угловых моментов, которые, по всей видимости, тоже не сохранялись.
В принципе, эту аномалию можно объяснить несоблюдением фундаментальных законов сохранения, но почти все физики считали это чрезмерной жертвой. Ситуацию спас Вольфганг Паули, тридцатилетний, но уже знаменитый профессор теоретической физики швейцарского Федерального технологического института (ETH) в Цюрихе. В качестве «крайнего средства» (его собственные слова) спасения законов сохранения энергии и углового момента Паули допустил, что внутри ядра скрываются электрически нейтральные легкие частицы с половинным спином. Эти гипотетические лептоны он предложил называть нейтронами. Согласно его гипотезе, именно они уносят с собой остаток потерянной ядром энергии, поэтому в каждом акте бета-распада сумма энергий этой частицы и электрона должна быть постоянной.
Паули понимал, что его идея очень уязвима для критики. Впервые он сообщил о ней в письме от 4 декабря 1930 года, адресованном специалистам по радиоактивности, собравшимся в Тюбингене, особо подчеркнув, что не счел возможным публиковать свою гипотезу в научном журнале. Неформальный характер этого послания выражен даже в обращении «Дорогие радиоактивные дамы и господа!». Признавая, что его предположение выглядит «почти невероятным», Паули все же попросил коллег подумать, как обнаружить гипотетическую частицу в эксперименте.
Лингвистическое нововведение Паули скоро поменяло адресата — нейтроном назвали нейтральный аналог протона, открытый в 1932 году Джеймсом Чедвиком. А вот сама идея оказалась исключительно плодотворной. В 1933–1934 годах итальянец Энрико Ферми разработал математическую теорию бета-распада с участием частицы, предложенной Паули, которую Ферми окрестил нейтрино. При этом он совершенно по-новому объяснил ее появление. Если Паули считал, что его гипотетическая частица присутствует в ядре в готовом виде, то Ферми предположил, что нейтрино рождается одновременно с превращением одного из внутриядерных нейтронов в протон и электрон. Протон остается в составе дочернего ядра с возросшим на единицу атомным номером, а электрон и нейтрино вылетают в окружающее пространство. Ферми постулировал, что масса нейтрино равна нулю (откуда следует, что оно обладает световой скоростью) и что для его возникновения не нужны посредники в виде каких-либо вспомогательных частиц.
Теория Ферми описывает еще один тип бета-распада, при котором возникают ядра с уменьшенным на единицу атомным номером. Она объясняет этот распад превращением протона в нейтрон, сопровождающимся выбросом позитрона и нейтрино. Об антинейтрино в его статье прямо не говорится, но вся ее логика предписывает его существование. Поскольку позитрон — античастица электрона, естественно предположить, что нейтрино тоже обладает античастицей. Принято считать, что при электронном бета-распаде возникают антинейтрино, а при позитронном — нейтрино (в соответствии с положением теории Дирака, согласно которому частицы и античастицы всегда рождаются парами). В начале 1950-х была сформулирована концепция, которая приписывает каждому лептону число 1, а антилептону число –1. При обоих типах бета-распада эти числа (их называют также лептонными зарядами) сохраняются: сначала лептонов нет вовсе, а затем рождаются лептон и антилептон (электрон и антинейтрино или позитрон и нейтрино), и поэтому лептонное число и до, и после распада остается нулевым.
Нейтрино обладают феноменальной проникающей способностью. Ганс Бете и Рудольф Пайерлс в том же 1934 году с помощью теории Ферми вычислили, что нейтрино с энергиями порядка нескольких МэВ взаимодействуют с веществом настолько слабо, что могут беспрепятственно преодолеть слой жидкого водорода толщиной в тысячу световых лет! Узнав об этом, Паули во время визита в Калифорнийский технологический заявил, что совершил ужасную вещь — предсказал существование частицы, которую вообще невозможно обнаружить!
Пессимистический прогноз Паули опровергли в 1955–1956 годах, после того как американские физики под руководством Клайда Коуэна и Фредерика Рейнеса экспериментально подтвердили существование нейтрино (за что в 1995 году Рейнес получил Нобелевскую премию, до которой не дожил Коуэн).
Источником нейтрино для их эксперимента стал один из реакторов ядерного комплекса Savannah River в штате Южная Каролина. Мощные потоки антинейтрино (10 трлн частиц на 1 см 2 в секунду!) генерировались бета-распадами ядер урана и плутония. Согласно теории Ферми, антинейтрино при столкновении с протоном порождает позитрон и нейтрон (это так называемый обратный бета-распад). Эти превращения регистрировали с помощью обвешанного датчиками контейнера, заполненного водным раствором хлорида кадмия. Практически все антинейтрино проходили сквозь него беспрепятственно, но в отдельных случаях все же взаимодействовали с ядрами водорода. Возникающие позитроны аннигилировали с электронами, порождая пару гамма-квантов с энергиями порядка 0,5 МэВ. Новорожденные нейтроны поглощались ядрами кадмия, которые испускали гамма-кванты другой частоты. Длительная регистрация такого гамма-излучения позволила надежно доказать реальность нейтрино, о чем в июне 1956 года экспериментаторы известили Паули специальной телеграммой.
Когда группа Коуэна и Рейнеса завершила свой эксперимент, физики полагали, что все нейтрино одинаковы. Однако в конце 1950-х годов теоретики из Советского Союза, Соединенных Штатов Америки и Японии предположили, что нейтрино, сопровождающие рождение мюонов, отличаются от тех, что сопутствуют электронам и позитронам (эта идея впервые была высказана десятилетием раньше, но потом о ней забыли). Так возникла гипотеза нового, мюонного нейтрино (естественно, и антинейтрино). В 1961–1962 годах ее подтвердили в Брукхейвенской национальной лаборатории, и в 1988 году Леон Ледерман, Мелвин Шварц и Джек Штейнбергер получили за это Нобелевскую премию. Позднее теоретики поняли, а экспериментаторы удостоверили, что третий и самый массивный заряженный лептон, тау-частица, тоже обладает собственным нейтрино. Так что ныне физика имеет дело с нейтральными лептонами трех видов — это электронные, мюонные и тау-нейтрино. Каждой лептонной паре соответствует пара кварков (в этом же порядке перечисления) — u-кварк и d-кварк, c-кварк и s-кварк, t-кварк и b-кварк.
Чувствительные глаза
Нейтринные обсерватории стремятся упрятать глубоко под землю, под воду или под лед. Километровые стены и крыша хорошо отсеивают различные помехи, но для всепроникающих нейтрино даже тысячи километров породы не создают значительного препятствия. Японская обсерватория Super kamiokande расположена на глубине 1000 м в старой цинковой шахте моцуми в 180 км от Токио. Детектор обсерватории — стальной «стакан» с 50 000 т сверхчистой воды и набором из почти 13 000 вот таких сверхчувствительных фотоэлектронных умножителей, отслеживающих черенковское излучение от торможения порожденных нейтрино мюонов в воде.
Существованием трех видов нейтрино объясняются парадоксальные результаты определения плотности потока достигших Земли нейтрино, рожденных в термоядерных реакциях в центре Солнца. Первый детектор солнечных нейтрино Рэй Дэвис и его коллеги установили в золотодобывающей шахте в штате Южная Дакота на глубине полутора километров во второй половине 1960-х годов. Результаты их работы оказались неожиданными — плотность потока солнечных нейтрино была как минимум вдвое меньше величины, соответствующей модели внутрисолнечных процессов (уже хорошо разработанной и считавшейся вполне надежной). Со временем нейтринные обсерватории в Италии, СССР и Японии подтвердили данные американцев и с разной степенью убедительности показали, что плотность потока солнечных нейтрино примерно втрое меньше расчетной. Следует отметить, что использованный группой Дэвиса метод детектирования, основанный на нейтринном превращении хлора-37 в аргон-37, первым предложил эмигрировавший в СССР коллега Ферми, итальянский физик Бруно Понтекорво.
Полученные результаты пытались интерпретировать самыми разными путями, но в конце концов восторжествовало объяснение, предложенное более 40 лет назад Понтекорво и Владимиром Грибовым. Согласно их гипотезе, рождающиеся в недрах Солнца электронные нейтрино по пути к Земле частично изменяют свою природу и превращаются в нейтрино мюонного типа. Детекторы, о которых шла речь, их не регистрировали (или почти не регистрировали), поэтому результаты и оказались заниженными. Когда выяснилось, что существуют три разных нейтрино, стало понятным, почему измеренные показатели оказались втрое меньше ожидаемых.
Непростой характер нейтрино надежней всего доказали сотрудники канадской нейтринной обсерватории Сэд-бери (Sudbury Neutrino Observatory). Детектором у них служил установленный в действующей шахте (на глубине 2 км) контейнер из оргстекла, заполненный тысячей тонн тяжелой воды. Этот нейтринный телескоп производил детектирование двумя различными методами — один регистрировал лишь электронные нейтрино, другой — любые. Весной 2002 года экспериментаторы объявили, что второй показатель втрое больше первого. Это означало, что на Солнце рождается нужное количество электронных нейтрино, но по пути к Земле треть из них превращается в мюонные, а еще треть — в тау-нейтрино (этот процесс называется нейтринной осцилляцией).
Наличие осцилляций имеет поистине фундаментальное значение. Они возможны лишь в том случае, если нейтрино во всех своих ипостасях обладают не нулевой массой. Ее величина еще точно не измерена; скорее всего, она составляет доли электрон-вольта, что как минимум в миллион раз меньше массы электрона. Однако сам факт, что она все-таки существует, позволяет объяснить асимметрию между материей и антиматерией.
Земное происхождение
Осцилляции ищут не только в потоках нейтрино внеземного происхождения, но и в искусственно создаваемых нейтринных пучках. Такой эксперимент, Booster neutrino experiment (boone), идет с 2002 года в Fermilab, где нейтрино получают с помощью ускорителя протонов с энергией 8 гэв. Нейтрино генерируется импульсами длительностью в 1,5 мс пять раз в секунду. Пучок направляется в детектор — сферическую емкость со сверхчистым минеральным маслом, содержащую 15 20 сверхчувствительных электронных фотоумножителей, которые и засекают взаимодействие нейтрино с веществом по характерному следу — конусу черенковского излучения. Такие события происходят примерно раз в 20 с (1 млн событий в год). Анализируя положение фотоумножителей, на которые попадает свет, физики могут определить образовавшуюся частицу — лептон (электрон, мюон или тау), а значит, и тип породившего ее нейтрино. Сравнивая изначальное количество нейтрино одного типа с количеством, оставшимся после прохождения определенной трассы, можно сделать выводы о наличии или отсутствии нейтринных осцилляций.
Рассказ о космических нейтрино окажется неполным, если не упомянуть, что помимо нейтрино высоких энергий, рожденных в недрах звезд и при взрывах сверхновых, в космосе имеются очень низкоэнергетические нейтрино, сохранившиеся от эпохи Большого взрыва. Расчетная плотность этих реликтовых частиц совпадает с плотностью реликтовых фотонов, но обнаружить их пока невозможно (не существует приборов).
В 1937 году рано ушедший из жизни феноменально одаренный итальянский физик-теоретик Этторе Майорана опубликовал статью «Симметричная теория электрона и позитрона». В соответствии с его теорией электрически нейтральные частицы и античастицы полностью одинаковы и потому неотличимы друг от друга. Нейтрино с этими свойствами выполняют ключевую роль в теории, объясняющей космическую асимметрию между материей и антиматерией.
«Если нейтрино обладает нулевой массой, вопрос о том, отличается оно от своей античастицы или совпадает с ней, не имеет смысла. А вот наличие массы означает, что возможны оба варианта. В первом случае нейтрино называется дираковским, во втором — майорановским. И как на этот счет распорядилась природа, пока не известно, — рассказал «Популярной механике» профессор теоретической физики Северо-западного университета Андре де Гувеа. — До сих пор эксперименты показывали, что лептонные числа строго сохраняются во всех ядерных реакциях. Если нейтрино является дираковской частицей, этот закон вообще никогда не должен нарушаться. А вот для майорановских нейтрино он может соблюдаться лишь приближенно и, следовательно, допускать нарушения. Экспериментаторы знают даже, где их искать. Есть такой внутриядерный процесс, двойной бета-распад: сразу два нейтрона превращаются в протоны, испуская пару электронов и пару антинейтрино. Эти превращения происходят чрезвычайно редко, но все же случаются. Сейчас много где пытаются обнаружить двойной безнейтринный бета-распад — перескок ядра на две позиции правее по таблице Менделеева с испусканием лишь одних электронов. И если его найдут, придется согласиться, что лептонное число может не сохраняться и что нейтрино следует считать майорановской частицей».
Во всех экспериментах наблюдаются нейтрино, у которых спин противоположен импульсу, — такие частицы называют левовинтовыми. У антинейтрино спин смотрит в ту же сторону, что и импульс, — это правовинтовые частицы. Но если нейтрино подчиняется уравнению Майорана, оно может проявить себя в слабых взаимодействиях и как частица с правой ориентацией. Правда, в эксперименте подобные нейтринные разновидности не обнаружены, но это не фатально. Можно предположить, что из-за гигантской массы порядка 10 14 –10 16 ГэВ они рождались лишь в составе сверхгорячей материи, существовавшей впервые мгновения после космологической инфляции. Будучи крайне нестабильными, они почти мгновенно распадались и из-за прогрессирующего охлаждения Вселенной больше не возникали.
И вот тут-то начинается самое интересное. Сверхмассивные майорановские нейтрино, или просто майораны, превращаются в бозоны Хиггса и лептоны. Коль скоро в этих распадах не сохраняются лептонные числа, они могут порождать больше электронов, нежели позитронов. Аналогично, количество новорожденных легких нейтрино не обязано совпадать с количеством антинейтрино. В результате у Вселенной появляется ненулевое лептонное число, которое после полного распада всех майоранов практически не изменяется. Этот процесс называется лептогенезом.
Великая Аннигиляция
Согласно общепринятым космологическим теориям, после выхода из фазы инфляционного расширения Вселенная (ее возраст составлял тогда 10 –34 с) содержала совершенно одинаковые количества материи и антиматерии. Затем имели место процессы, которые полностью освободили ее от антиматерии, но сохранили часть материи. Таким образом образовалась популяция протонов, нейтронов и электронов, которая в дальнейшем стала сырьем для изготовления всех атомов нашего мира.
В настоящее время на каждые 5 м 3 космического пространства приходится в среднем по миллиарду квантов реликтового электромагнитного излучения, одному электрону и одному протону, состоящему из трех кварков. Число нейтронов всемеро меньше, и в свободном состоянии они не встречаются. А вот позитроны, антипротоны и антинейтроны хоть кое-где и рождаются, но в таком малом количестве, что в космологических масштабах ими можно пренебречь. Но так было отнюдь не всегда. Когда возраст Вселенной приблизился к миллионной доле секунды, на каждый миллиард квантов приходилось примерно 3 млрд антикварков и 3 млрд и 3 кварка. Они вступили в аннигиляцию, «съевшую» все антикварки, но оставившую в живых ничтожную часть кварков, которые не нашли антипартнеров. Уцелевшие кварки объединились в протоны и нейтроны, на что потребовалось не больше четырех-пяти микросекунд. Когда возраст мироздания достиг одной секунды, аннигилировали и исчезли позитроны, пребывавшие в таком же ничтожном дисбалансе с электронами. Вот так и возникла Вселенная, в которой плотность антиматерии практически не отличается от нуля.
Но если дисбаланса по частицам и античастицам сначала не было, то как же он возник? Физики и космологи спорят об этом вот уже несколько десятков лет, но до сих пор не пришли к единому мнению. Однако в последние годы была предложена теория, которая вроде бы более убедительна, чем конкурирующие модели. В качестве объяснения она привлекает квантовые превращения, происходящие с участием нейтрино очень высоких энергий.
Этим дело не кончается. Взаимодействие между оставшимися после распада майоранов лептонами сверхвысоких энергий может привести к появлению кварков и антикварков, ранее просто не существовавших. Это уже бариогенез — возникновение барионов, частиц, принимающих участие в сильном взаимодействии. Существуют правдоподобные сценарии, в которых дисбаланс лептонов и антилептонов оборачивается избытком кварков над антикварками, барионов над антибарионами. А потом случилась Великая Аннигиляция со всеми ее последствиями. Сейчас бариогенез через лептогенез — наиболее популярная интерпретация дефицита антиматерии в нашей Вселенной.
«Конечно, это всего лишь теория, — поясняет профессор де Гувеа. — Мы не знаем даже, можно ли считать нейтрино майорановской частицей. Если эта гипотеза получит экспериментальное подтверждение, то позиции модели лептогенеза значительно укрепятся».
На сегодня модель с участием майорановских нейтрино лучше всего объясняет тайну абсолютного преобладания материи над антиматерией в нашей вселенной, считает экс-президент Американского физического общества, физик-теоретик Xелен Квигг из Стэнфордского университета. Она отмечает, что рождение нейтрино при распаде майоранов позволяет объяснить их ничтожную массу — для этого придумана очень красивая теория, так называемый механизм see-saw. Впрочем, доктор Квигг подчеркнула, что эта идея не может быть проверена экспериментом в обозримом будущем. По ее словам, не исключено даже, что эта модель так и останется красивой гипотезой.
Глубинная связь
Попытки запрячь в работу неуловимую (или почти неуловимую) частицу — нейтрино — начались вскоре после ее экспериментального обнаружения. Эту возможность обсуждают и писатели-фантасты, и ученые.
Для передачи информации на борт субмарины в подводном положении используются диапазоны ОНЧ (очень низкие частоты, единицы кГц, у поверхности, до 50 бит/с) и КНЧ (крайне низкие частоты, десятки Гц, на глубине, 1 бит в минуту). По оценке Патрика Хьюбера из Виргинского политехнического института (Virginia Tech), использование нейтрино позволит повысить скорость передачи информации до 1–100 бит/с даже на больших глубинах. Для приема информации нужно будет оснастить подлодку детекторами мюонов или сверхчувствительными фотодетекторами.
Впервые возможность передачи информации с помощью нейтрино высказал в1967 году физик Мечислав Суботович в польском научном журнале Postepy Techniki Jadrowej («Шаги ядерной техники»). В том же году вышел роман Станислава Лема «Голос неба», в основе сюжета которого лежит возможность нейтринной связи.
Группа исследователей из Военно-морской исследовательской лаборатории, опубликовавших в 1977 году в журнале Science статью «Связь с помощью нейтринных лучей» (Telecommunication with Neutrino Beams), преследовала более приземленные цели. Точнее, подводные, аименно — обеспечить связь с атомными подводными лодками на боевом дежурстве. Правда, уровень технологий того времени не позволял реализовать подобную систему на практике. Но с тех пор эта идея регулярно всплывает на страницах научных журналов, хотя возможности современных мюонных накопительных колец для генерации нейтринных пучков по-прежнему недостаточны для уверенной коммуникации. Возможно, что в будущем таким способом можно будет достичь скорости передачи информации от 1 до 100 бит в секунду.
Физик-теоретик из Fermilab Стивен Парк по просьбе «ПМ» рассказал о нескольких совсем уж фантастических нейтринных технологиях: «Если мы захотим связаться с цивилизациями по другую сторону нашей Галактики, то эту возможность нам могут предоставить только нейтринные пучки. Есть применения и на Земле: с помощью нейтринного телефона можно было бы передавать сообщения из США и Европы в Китай, Японию и Австралию на 15–20 миллисекунд быстрее, чем по обычным каналам, — напрямую через толщу Земли, а не по кабелям или спутниковой связи. Финансовые брокеры, имей они в своем эксклюзивном распоряжении подобную связь, могли бы делать огромные деньги!»
Хотя еще недавно казалось невероятным, что нейтрино могут найти практическое применение, сейчас эта идея уже не выглядит столь фантастически. В конце ХХ века появились детекторы, измеряющие с точностью до 1,5% плотность мощных нейтринных потоков с энергий частиц порядка нескольких МэВ. Сердечники тепловыделяющих элементов обычно изготовляют из смеси урана-235 и урана-238, которые в ходе цепных реакций деления испускают нейтроны и антинейтрино. Ядра урана-238 поглощают нейтроны и превращаются в ядра плутония-239, которые в свою очередь тоже вступают в цепную реакцию и опять-таки становятся источниками антинейтрино. Поскольку интенсивность выработки антинейтрино различными изотопами неодинакова, темпы генерации этих частиц изменяются с течением времени. Непрерывный мониторинг плотности нейтринного потока дает возможность судить о режиме работы реактора и концентрации различных изотопов в его активном ядре.
Физики из Ливерморской национальной лаборатории и лаборатории «Сандиа» разработали три опытных образца компактных детекторов антинейтрино. Их испытали на южнокалифорнийской ядерной электростанции San Onofre Nuclear Generating Station (SONGS). Эти счетчики регистрировали реакцию обратного бета-распада, с помощью которой группа Коуэна и Рейнеса впервые экспериментально подтвердила гипотезу Паули.
Первый детектор SONGS1 вступил в действие в конце 2003 года. Он был заполнен веществом с высокой концентрацией водорода, к которому был добавлен гадолиний, выполняющий ту же роль, что и кадмий в эксперименте Коуэна и Рейнеса. Рожденные обратным бета-распадом позитроны аннигилировали с электронами, а сопутствующие нейтроны поглощал гадолиний. Эти реакции влекли за собой парные вспышки гамма-лучей. Эти вспышки генерировались с интервалом в 30 микросекунд и регистрировались с помощью фотоумножителей. Из 10 17 антинейтрино, ежедневно пронизывавших детектор, с протонами сцинтиллирующей жидкости сталкивалось всего 4000, и лишь 400 из них оставляли надежные «подписи». Установленные в 2007 году детекторы SONGS2 и SONGS3 тоже содержали гадолиний, однако в первом работал сцинтиллятор из твердого полимера, а во втором в этом качестве использовалась сверхчистая вода. Летом 2008 года детекторы демонтировали, и ученые взялись за анализ полученных результатов. В настоящее время создатели этих установок вместе с сотрудниками Чикагского университета разрабатывают нейтринные счетчики следующего поколения на аргоне и германии. Два таких детектора планируется установить уже в нынешнем году.
Что такое частицы нейтрино и почему человечество не может их изучить?
Знаете ли вы, что самым дорогим веществом на свете является антиматерия? Согласно официальным данным NASA, один миллиграмм позитронов этого редкого вещества стоит приблизительно 25 миллионов долларов! Вместе с тем, получить антиматерию в лабораторных условиях едва ли представляется возможным по причине того, что все предпринятые ранее попытки создать уникальный источник энергии потерпели поражение. Почему? Кажется, ответ на этот вопрос может скрываться в очень распространенных и при этом загадочных частицах — нейтрино.
Нейтрино может стать ключом к получению чистой антиматерии
Что такое антиматерия?
В физике антиматерия — это просто «противоположность» материи. Дело в том, что частицы антивещества всегда имеют ту же массу, что и их аналоги, при этом обладая несколько иными “перевернутыми” свойствами. Так, протоны в веществе имеют положительный заряд, а антипротоны-отрицательный. Антиматерия теоретически может быть создана в лабораторных условиях при столкновении частиц высокой энергии, однако эти события почти всегда создают равные части как антиматерии, так и материи, и, когда две противоположные частицы вступают в контакт друг с другом, обе разрушаются в мощной волне чистой энергии.
Что озадачивает физиков, так это то, что почти все во Вселенной, включая людей, состоит из материи, а не из равных частей материи и антиматерии. В поисках идей, которые могли бы объяснить, что удерживает нашу Вселенную от создания отдельных галактик, состоящих из антиматерии, исследователи обнаружили некоторые доказательства того, что ответ может скрываться в очень распространенных, но плохо изученных частицах, известных человечеству как нейтрино.
Может ли нейтрино взаимодействовать в антиматерией?
Для того, чтобы суметь ответить на вопросы о природе антиматерии, команда исследователей во главе с Кристофером Можером не так давно опубликовала результаты первого набора экспериментов, направленных на изучение свойств нейтрино. Так, согласно планам ученых, уже в самое ближайшее время человеком может быть проведен особый глубоководный нейтринный эксперимента (DUNE), который представляет из себя создание экспериментальной установки для исследований нейтринной науки и физики частиц.
Для того, чтобы понять природу взаимодействия нейтрино и антиматерии, ученые планируют создать уникальный подземный инструмент под названием DUNE
В настоящее время всем известные коллайдеры частиц, такие как Большой адронный коллайдер в ЦЕРНе, проводят эксперименты на кварках — частицах, которые “конструируют” протоны и нейтроны атомного ядра. Благодаря проведенным экспериментам, были найдены определенные доказательства того, что материя и антиматерия действительно симметричны. Вместе с тем, эксперименты на лептонах — легких, слабовзаимодействующих с материей частицах, намекают на то, что эти частицы могли бы более полно объяснить универсальную асимметрию стандартного вещества и антиматерии.
Проблема с изучением нейтрино заключается в том, что подобные мельчайшие частицы крайне редко взаимодействуют с другими частицами. Обнаружение этих редких взаимодействий означает, что исследователям необходимо изучать большое количество нейтрино в течение длительных периодов времени. Кроме того, постоянный поток мюонов, образующихся в результате взаимодействия космических лучей в верхних слоях атмосферы, может затруднить обнаружение и без того нечастых взаимодействий.
Исследователи считают, что для того, чтобы решить такую проблему, ставящую под угрозу исследование частиц нейтрино, нам необходимо спуститься приблизительно на полтора километра вглубь Земли, построив несколько 10-тонных детекторов и заполнив их изнутри жидким аргоном. Сразу после этого, учеными предлагается запустить в сторону установки пучок нейтрино, который должен быть предварительно сделан в близлежащем ускорителе частиц. По словам авторов программы DUNE, данная установка будет размещена к 2022 году в подземном исследовательском центре Сэнфорда недалеко от Чикаго, и, возможно, именно она сможет помочь в исследовании свойств взаимодействия нейтрино и антиматерии.
Если вам нравится данная статья, приглашаю вас присоединиться к нашему официальному Telegram-чату, где вы сможете обсудить с единомышленниками последние новости из мира популярной науки и техники.
Несмотря на то, что исследование частиц нейтрино может занять не один десяток лет, авторы считают, что проект DUNE может не просто ответить на многие кажущиеся неразрешимыми вопросы из области астрофизики, математики и физики частиц, но и даже вполне может содержать в себе ключ к пониманию того, как и почему мы с вами смогли появиться в нашей Вселенной. А вот это уже захватывает.
В чем уникальность нейтрино и какие тайны они могут нам открыть
Нейтрино — самые загадочные фундаментальные частицы Стандартной модели. В чем их уникальность, зачем тратят столько усилий на их исследования и какие тайны они могут нам открыть? Объясняет главный научный сотрудник Института ядерных исследований Российской академии наук Дмитрий Горбунов.
Частица из странности
Нейтрино предсказал в 1930-е немецкий физик Вольфганг Паули, существованием этой частицы он объяснял очень странное явление. Во время бета-распада ядро меняет заряд, при этом рождается электрон или позитрон. С точки зрения закона сохранения энергии и импульса во всех распадах электрон должен вылетать с одной и той же скоростью. Однако эксперименты показали, что это не так: электроны на выходе имеют разные энергии.
Паули предположил, что в процессе деления ядра появляется еще одна частица. Она электрически нейтральна, поэтому электромагнитные приборы ее зафиксировать не могут. В так называемом трехчастичном распаде (ядро распадается на новое ядро, электрон и новую безмассовую частицу) энергия электрона однозначно не фиксируется. Законы сохранения энергии и импульса по-прежнему работают.
Лишь в конце 1950-х нейтрино удалось наконец зарегистрировать. Представим мысленно еще раз весь процесс: распад ядра на другое ядро и появление электрона и нейтрино. Представим, что у нас есть мощный источник, создающий такие распады, и есть поток нейтрино. Логично предположить, что идет и обратный процесс: нейтрино рассеивается на втором ядре с образованием первого и позитрона. Тогда, фиксируя появление позитрона в веществе из ниоткуда, вы можете сделать вывод, что это результат взаимодействия нейтрино с ядром. Это и является основным убедительным средством регистрации нейтрино.
Такие разные
Как есть электроны и позитроны, частицы и античастицы — так есть нейтрино и антинейтрино. Антинейтрино возникает в процессах распада, если появляется электрон, а нейтрино — если появляется позитрон, то есть происходит прямой бета-распад и обратный бета-распад.
Есть электроны и соответствующий им тип нейтрино — электронный, и есть аналоги, лептоны второго и третьего поколений: мюон и мюонное нейтрино, тау-лептон и тау-нейтрино. У электрона, мюона и тау-лептона электрический заряд –1, а нейтрино — нейтральные частицы. Когда мы говорим, что зарегистрировали мюонное нейтрино, это значит, что оно было зарегистрировано в том процессе, когда появляется мюон; нейтрино электронное — когда появляется электрон; тау-нейтрино — когда появляется тау-лептон.
Забавный факт: экспериментально все частицы, описанные в Стандартной модели, обнаружены, за исключением одной-единственной — тау-антинейтрино. Но никто не сомневается в существовании таких частиц, и физика Стандартной модели предполагает, что такие частицы существуют.
Проходят сквозь стены
Нейтрино очень тяжело экспериментально изучать. Они свободно проходят через все преграды. Чтобы остановить нейтрино, нужно построить стенку, например, из свинца, шириной от Солнца до следующей звезды. Так что остается только описанный выше опосредованный способ регистрации — по результатам взаимодействия нейтрино с ядром.
Но есть и плюс: так как для нейтрино нет преград, мы можем изучать свойства источника нейтрино вне зависимости от расстояния, на котором этот источник находится. Например, с помощью солнечных нейтрино исследуются процессы, происходящие на Солнце, причем это мониторинг в режиме реального времени. Тот же принцип действует и в случае с ядерным реактором: замеряя поток нейтрино, можно изучать процессы, которые там происходят.
А если говорить о неядерных процессах и нейтрино более высоких энергий? У таких нейтрино длина свободного пробега относительно взаимодействия в веществе с энергией падает, и если, например, энергия нейтрино в 100 раз больше, чем масса протона, вещество становится не совсем прозрачным, то есть нейтрино все-таки с ним взаимодействует. Соответственно, немножко искажается поток этих нейтрино. Представим следующий процесс: космические лучи летят к Земле, взаимодействуют в атмосфере, в результате рождаются частицы второго или третьего поколения, которые распадаются за счет слабых процессов. Появляются энергичные нейтрино, которые проходят через центр Земли, вступают в реакции с веществом внутренних оболочек планеты. Мы можем поставить детектор на выходе, а потом сравнить поток вторичных и первичных нейтрино. Таким образом можно определить характеристики вещества Земли, то есть распределение плотных и неплотных компонентов. Получится своеобразный рентгеновский снимок или эхограмма нашей планеты.
Применений у нейтрино много, но, чтобы ими пользоваться, нужно разобраться в физике нейтрино и понимать, как они взаимодействуют в тех или иных случаях.
В поисках стерильного
С нейтрино связаны странные процессы: например, превращение нейтрино одного типа в нейтрино другого — это называется нейтринными осцилляциями. За исследования в этой области уже присудили несколько Нобелевских премий по физике.
В Стандартной модели нейтрино считаются безмассовыми частицами и подразделяются на три поколения: электронные, мюонные и тау-нейтрино. У каждого из них есть свой «близнец» — антинейтрино. Согласно одной из гипотез, кроме трех перечисленных поколений нейтрино существует еще и четвертое — стерильные нейтрино. Эти частицы не участвуют даже в слабом взаимодействии, отчего зарегистрировать их крайне сложно.
Обнаружить их можно по факту уменьшения потока антинейтрино в процессе осцилляций — при переходе «обычных» нейтрино в стерильные и обратно.
Второй эксперимент — «Нейтрино‑4». Его проводят в Димитровграде на исследовательском реакторе СМ‑3 в НИИАР. Третий, BEST, проводится в Кабардино-Балкарии, в Баксанской нейтринной обсерватории Института ядерных исследований РАН. Там в качестве источника нейтрино используют короткоживущий изотоп хром‑51. По результатам взаимодействия нейтрино с детектирующим веществом (галлием) судят о том, есть стерильное нейтрино или нет. Эксперименты по изучению нейтринных осцилляций, конечно, проводят не только в России. В Китае, например, проходит реакторный нейтринный эксперимент Daya Bay, в международную коллаборацию входят более 200 ученых из шести стран, в том числе из России. Там источник антинейтрино — шесть ядерных реакторов, а в трех залах, на расстоянии от 500 до 1800 м от источника, расположены восемь антинейтринных детекторов.
Многие слышали про эксперимент IceCube, который проводится в Антарктике. Глубоко подо льдом, на расстоянии от 1450 до 2450 м друг от друга, расположены тросы с прикрепленными к ним детекторами. Как мы помним, только нейтрино могут пройти Землю насквозь, так что IceCube регистрирует нейтрино, пришедшие из Северного полушария.
В японской подземной лаборатории находится детектор Super-Kamiokande — там работал японский ученый Такааки Кадзита, получивший Нобелевскую премию по физике 2015 года за открытие нейтринных осцилляций.
А в США в начале 2020-х планируется эксперимент DUNE. Там осцилляции нейтрино будут изучать одновременно два детектора: ближний (в Национальной ускорительной лаборатории им. Ферми, где расположен ускоритель) и дальний, который будет находиться на расстоянии 1300 км, в Сэнфордской подземной исследовательской лаборатории.
Теоретические предсказания, касающиеся стерильных нейтрино, ученые пытаются уточнить уже на протяжении десятка лет, однако пока нельзя говорить о том, что какой-то эксперимент имеет стопроцентный успех.
Тем не менее это новая физика, которая сейчас активно развивается. Вне зависимости от результатов этих экспериментов мы существенно расширим наши знания об устройстве мира и дополним (или опровергнем) Стандартную модель.
Странная частица.Что такое нейтрино?
Нейтрино – это неуловимые субатомные частицы. Они возникают в ходе самых разнообразных ядерных процессов. Их название, которое означает «маленький нейтрон», отсылает нас к факту, что они не имеют никакого электрического заряда. Из четырех существующих фундаментальных сил во Вселенной эти частицы взаимодействуют только с двумя. Это гравитационное и слабое взаимодействия. Интересно, но эти частицы не имеют почти никакой массы. Они несутся сквозь космос почти со скоростью света.
Бесчисленное множество этих загадочных частиц возникло в первые доли секунды после Большого Взрыва. А новые создаются постоянно и сейчас. Они рождаются в ядерных котлах звезд, в ускорителях частиц и атомных реакторах на Земле. Колоссальное их количество выбрасывается в пространство в ходе взрывного коллапса сверхновых. Считается, что нейтрино во Вселенной в среднем в 1 миллиард раз больше, чем протонов.
Но несмотря на свою вездесущность, эти частицы остаются загадкой для физиков. Так происходит потому, потому что их очень трудно поймать. Нейтрино проходят сквозь материю так, как будто она практически прозрачна для них. Но взаимодействие этих частиц с веществом все же происходит. Но крайне и крайне редко. Около 100 миллиардов нейтрино проходят через каждый квадратный сантиметр вашего тела прямо сейчас. Вы что-нибудь чувствуете? И это является одной из самых интересных тайн современной физики.
Поймать невидимку
Гипотеза о существовании нейтрино впервые предложили в качестве ответа на одну научную загадку. В конце XIX века исследователи изучали процесс, известный как бета-распад. В ходе этого процесса ядро внутри атома самопроизвольно испускает электрон. Бета-распад нарушал два фундаментальных физических закона: сохранения энергии и сохранения импульса. Конечная конфигурация частиц после бета-распада, как казалось, имела слишком мало энергии. И протон в ходе эксперимента стоял неподвижно. А не смещался в противоположном от электрона направлении. Что бы объяснить наблюдаемые эффекты, в 1930 году физик Вольфганг Паули задумался о том, что из ядра может вылетать дополнительная частица. Именно она и могла уносить недостающие энергию и импульс.
Прошло более четверти века. Физики Клайд Коуэн и Фредерик Рейнс построили нейтринный детектор. Они разместили его за пределами ядерного реактора атомной электростанции Саванна-Ривер в Южной Каролине, США. В ходе проводимого эксперимента ученым удалось поймать несколько из сотен триллионов невидимок, которые летели из реактора. Коуэн и Рейнс с гордостью отправили Паули телеграмму, чтобы сообщить ему о своем открытии. Рейнс впоследствии получил Нобелевскую премию по физике. Это случилось в 1995 году.
И с тех пор нейтрино постоянно бросали вызов ученым.
Разные нейтрино
Наше Солнце производит колоссальное количество нейтрино. Эти частицы непрерывно бомбардируют нашу планету. В середине 20-го века исследователи построили детекторы для поиска этих частиц. Но их эксперименты показывали несоответствие прогнозам. Было обнаружено только около трети предсказанного количество нейтрино. Либо что-то было не так с астрономическими моделями Солнца, либо происходило что-то странное.
Физики в конце концов поняли, что загадочные частицы, вероятно, бывают трех разных типов. Обычное нейтрино называется электронным. Но существуют и два других: мюонное нейтрино и тау-нейтрино. Когда они проходят расстояние между Солнцем и нашей планетой, частицы колеблются между этими тремя типами. Поэтому в тех ранних экспериментах, которые были предназначены только для поиска одного типа, не хватало двух третей от их общего числа.
Но только частицы, имеющие массу, могут подвергаться подобному колебанию. Это противоречило более ранним представлениям о том, что нейтрино не имеют массу. Хотя ученые до сих пор не знают точных масс всех трех типов частиц, эксперименты определили, что самая тяжелая из них должна иметь массу по крайней мере в 0,0000059 раза меньше массы электрона.
Новые типы нейтрино?
В 2011 году исследователи из проекта Oscillation Project with Emulsion-tRacking Apparature (OPERA) в Италии сотворили всемирную сенсацию. Они объявили, что обнаружили нейтрино, движущиеся быстрее скорости света. Что в корне противоречит постулатам современной физики. Несмотря на широкое освещение этих результатов в средствах массовой информации, они были встречены научным сообществом с большим скептицизмом. Менее чем через год физики поняли, что это неисправная проводка имитировала полученные сверхсветовые скорости. И нейтрино вернулись в область законопослушных частиц.
Ученым, конечно, еще многое предстоит узнать об этих странных частицах. Недавно исследователи из эксперимента Mini Booster Neutrino (MiniBooNE) в Национальной ускорительной лаборатории Ферми (Fermilab) недалеко от Чикаго предоставили убедительные доказательства того, что они обнаружили новый тип нейтрино. Они назвали его «стерильным». Такая находка подтверждает более раннюю аномалию, наблюдавшуюся в нейтринном детекторе жидких сцинтилляторов (LSND), эксперименте в Лос-Аламосской Национальной лаборатории в Нью-Мексико. Стерильные нейтрино перевернули бы всю известную физику. Потому что они не вписываются в то, что известно как стандартная модель. Она объясняет свойства почти всех известных частиц и сил, кроме гравитации.
В мире физики ничего не застыло и не стоит на месте. Иногда кажется, что со времен Эйнштейна не было придумано ничего нового. Но это не так. Наука постоянно двигается вперед. Кто знает, может быть именно нейтрино и их загадочные свойства помогут нам когда-нибудь достичь звезд…
Заметили ошибку?
Это нужно срочно исправить! Выделите косячный текст и нажмите CTRL + ENTER на клавиатуре. Спасибо за помощь!
Космические тесты
Проверь свои знания! Интересные тесты находятся здесь!
Сверхновые нейтрино. Как они рождаются, как мы их ждем, и почему это интересно
Физика нейтрино стремительно развивается. Месяц назад было объявлено о регистрации нейтрино от вспышки гамма-излучения в активном ядре далекой галактики — ключевом событии в нейтринной астрофизике.
В данной статье же мы поговорим о регистрации нейтрино от сверхновых. Один раз человечеству уже повезло их задетектировать.
Расскажу немного о том, что собственно за звери такие «сверхновые», зачем они испускают нейтрино, почему эти частицы так важно зарегистрировать и, наконец, как это пытаются сделать с помощью обсерваторий на южном полюсе, на дне Средиземного моря и Байкала, под горами Кавказа и в Апеннинах.
По ходу дела узнаем что такое «урка-процесс» — кто у кого что ворует и почему.
После о-очень большого перерыва продолжаю цикл статей по нейтринной физике. В первой публикации мы говорили о том, как вообще придумали такую частицу и как ее зарегистрировали, во второй я рассказывал про удивительный феномен нейтринных осцилляций. Сегодня речь пойдет про частицы, которые прилетают к нам из-за пределов Солнечной системы.
Коротко о сверхновых
Звезды, которые мы видим на ночном небе, не пребывают в одном и том же состоянии вечно, как и все, окружающее нас на Земле. Они рождаются, долгое время стабильно светят, но в конце концов они уже не могут поддерживать прежнего горения и умирают. Вот как может выглядеть жизненный путь звезды на примере Солнца:
(с) Википедия. Жизненный цикл Солнца
Как можно видеть, в конце своей жизни Солнце стремительно увеличится с размерах вплоть орбиты Земли. Но финал будет достаточно мирным — оболочка будет сброшена и станет красивой планетарной туманностью. Ядро звезды при этом превратится в белый карлик — компактный и очень яркий объект.
Топливом для звезд служит водород. В течение жизни звезды он превращается в гелий с выделением энергии. Именно отсюда берется основная энергия для свечения звезд. Со временем водород кончается, и уже гелий начинает превращаться дальше по таблице Менделеева в более тяжелые элементы. Такой процесс высвечивает больше энергии и верхний слои звезды начинают вспухать, звезда краснеет и сильно расширяется. Но превращение элементов не бесконечно, в стабильном режиме оно может дойти только до железа. Дальше процесс уже энергетически не выгоден. И вот, у нас есть огромная-огромная звезда с железным ядром, которое уже почти не светит, а значит и нет светового давления изнутри. Верхние слои начинают стремительно падать на ядро.
И тут возможны два сценария. Вещество может тихо и мирно, без всякого вращения и колебаний упасть на ядро. Но вот вспомните, часто вам удается слить воду из ванны/раковины так, чтобы не образовалась воронка? Малейшее колебание и вещество закрутится, возникнут колебания, нестабильности…
Технически супер-стабильный сценарий возможен, даже наблюдалось два кандидата. Звезда расширялась-расширялась и вдруг исчезла. Но интереснее же, когда звезда идет вразнос!
Симуляция коллапса ядра тяжелой звезды.
Много месяцев работы нескольких суперкомпьютеров позволили оценить, как именно будут возникать и развиваться нестабильности в ядре сжимающейся звезды.
Уже упоминалось, что в ядрах звезд могут образовываться элементы только до железа. Откуда же тогда во Вселенной возникли остальные ядра атомов? Имеено в процессе взрыва сверхновой возникают чудовищные температуры и давления, которые делают возможным синтез тяжелых элементов. Честно говоря, тот факт, что все атомы, которые мы видим вокруг, когда-то горели в центре звезд до сих пор меня сильно шокирует. А уж то, что вся ядра тяжелее железа обязаны были родиться во вспышке сверхновой, так вообще за гранью осознания.
(С) Symmetry magazine
Вообще говоря, может быть еще и другая причина взрыва. Вокруг общего центра вращается пара звезд, одна из которых белый карлик. Он потихоньку ворует вещество звезды-партнера и наращивает свою массу. Если он резко перетянет на себя много вещества, то неизбежно взорвется — просто не сможет удержать все вещество на поверхности. Такая вспышка получила названия сверхновой Ia и сыграла ключевую роль в определении расстояний во Вселенной. Но такие вспышки почти не дают нейтрино, поэтому в дальнейшим мы сконцентрируемся на взрывах массивных звезд.
Урка-процесс или кто ворует энергию
Пора переходить к нейтрино. Проблемы с созданием теории взрыва сверхновых была связана, как это часто бывает, с законом сохранения энергии. Баланс дебета/кредита упорно не сходился. Ядро звезды должно высветить просто огромное количество энергии, но вот каким способом? Если излучать обычный свет (фотоны), то они завязнут во внешних оболочках ядра. Из ядра Солнца фотоны выбираются на поверхность за десятки, а то и сотни миллионов лет. А в случае сверхновой давления и плотности на порядки выше.
Решения нашли Георгий Гамов и Марио Шёнберг. Как-то будучи в Рио-де-Жанейро Гамов играл в рулетку. Наблюдая, как деньги превращаются в фишки, а потом без всякого сопротивления покидают владельца, ему пришло в голову, как можно применить такой же механизм к звездному коллапсу. Энергия должна перейти во что-то, что чрезвычайно слабо взаимодействует. Как вы уже могли догадаться, такой частицей является нейтрино.
Казино, в котором пришло такое озарение носило название «Урка» (Casino-da-Urca). С легкой руки Гамова этот процесс стал именоваться Урка-процессом (Urca process). Как утверждал автор модели, исключительно в честь казино. Но есть стойкое подозрение, что одессит и знатный тролль шутник Гамов вложил в это понятие и другой смысл.
Какие же нейтрино мы ждем? Звезда, как и привычное нам вещество, состоит из протонов, нейтронов и электронов. Чтобы соблюсти все законы сохранения: электрического заряда, количества материи/антиматерии, наиболее вероятно рождение именно электронного нейтрино.
Почему нейтрино от сверхновых так важны?
Практически всю историю астрономии люди изучали вселенную только при помощи приходящих электро-магнитных волн. Они несут очень много информации, но многое остается скрытым. Фотоны легко рассеиваются в межзвездной среде. Для разных длин волн межзвездная пыль и газ являются непрозрачными. В конце концов сами звезды для нас совершенно непрозрачны. Нейтрино же способно принести информацию из самого эпицентра событий, рассказав о процессах с бешеными температурами и давлениями — с теми условиями, которые мы вряд ли когда-нибудь получим в лаборатории.
(с) Irene Tamborra. Нейтрино — идеальные переносчики информации во Вселенной.
Мы достаточно мало знаем, как ведет себя вещество при таких запредельных режимах, какие достигаются в ядре взрывающейся звезды. Здесь сплетаются все разделы физики: гидродинамика, физика частиц, квантовая теория поля, теория гравитации. Любая информация «оттуда» сильно помогла бы в расширении наших знаний о мире.
Большим бонусом является то, что нейтрино должны прийти к нам даже раньше светового сигнала! Ведь фотонам нужно много времени, чтобы выйти из ядра звезды, нейтрино же беспрепятственно пройдут сквозь него. Опережение может достигать целых суток. Таким образом нейтринный сигнал будет являться триггером для перенаправления всех доступных телескопов. Мы будем точно знать куда и когда смотреть. А ведь самые первые моменты взрыва, когда яркость взлетает и падает по экспоненте — самые важные и интересные для науки.
Сверхновая 1987 года
70е годы были отметились бурным ростом теорий великого объединения. Все четыре фундаментальные силы мечтали объединить единым описанием. У таких моделей было очень необычное следствие — привычный протон обязан был распадаться.
Для поиска этого редкого события было построено несколько детекторов. Среди них сильно выделялась установка Камиоканде, расположенная в горах Японии.
Википедия. Детектор Камиоканде.
Огромный бак с водой произвел наиболее точные измерения для того времени, но… ничего не нашел. На те годы как раз приходился рассвет нейтринной физики. Было принято, как оказалось, очень дальновидное решение слегка усовершенствовать установку и переориентироваться на нейтрино. Установку усовершенствовали, несколько лет боролись с мешающими фоновыми процессами и в начале 1987 года начали получать хорошие данные.
И тут, почти сразу после включения, 23 февраля:
Сигнал от сверхновой SN1987a в детекторе Камиоканде II. По горизонтальной оси время в минутах.Источник.
Чрезвычайно короткий и четкий сигнал. На следующий день астрономы рапортуют о вспышке сверхновой в Магеллановом облаке — спутнике нашей галактики. Это было первое событие, когда астрофизики смогли наблюдать развитие вспышки с самых ранних стадий. Максимума она достигла только в мае и затем начала медленно затухать.
Камиоканде выдал как раз то, что ожидалось увидеть от сверхновой — электронные нейтрино. Но новый детектор, только начавший набирать данные… Подозрительно это. На счастье, он был не единственным нейтринным детектором на тот момент.
В соляных шахтах Америки был размещен детектор IMB. По своей логике работы он был похож на Камиоканде. Огромный куб, заполненный водой и окруженный фотосенсорами. Быстро пролетающие частицы начинают светиться, и это излучение фиксируется огромными фотоумножителями.
Детектор IMB в бывшей соляной шахте в США.
Пару слов стоит сказать о физике космических лучей в СССР. Здесь сложилась очень сильная школа физики лучей сверхвысоких энергий. Вадим Кузьмин в своих работах первым показал чрезвычайную важность изучения частиц, прилетающих из космоса — в лаборатории мы вряд ли когда-нибудь получим такие энергии. Фактически его группой были заложены основы современной физики лучей сверхвысоких энергий и нейтринной астрофизики.
Естественно, теорией такие исследования ограничиться не могли, и с начала 80х годов на Баксане (Кавказ) под горой Андырчи ведут набор данных сразу два эксперимента. Один из них ориентирован на изучение солнечных нейтрино. Он сыграл важную роль в решении проблемы солнечных нейтрино и открытии нейтринных осцилляций. Об этом я рассказывал в предыдущей статье. Второй же — нейтринный телескоп, был построен специально для регистрации нейтрино огромных энергий, прилетающих из космоса.
Телескоп представляет из себя три слоя баков с керосином, к каждому прикреплен фотодетектор. Такая установка позволяла восстановить трек частицы.
Один из слоев нейтринного телескопа в Баксанской нейтринной обсерватории
Итак, три детектора увидели увидели нейтрино от сверхновой — уверенный и чрезвычайно удачный старт в нейтринную астрофизику!
Нейтрино, зарегистрированные тремя детекторами: Супер-Камиоканде в горах Японии, IMB в США и в Баксанском ущелье на Кавказе. Источник
А вот так с годами менялась планетарная туманность, образованная сброшенной при взрыве оболочкой звезды.
(с) Irene Tamborra. Так выглядят остатки сверхновой 1987 года после взрыва.
Разовая акция или.
Вполне закономерен вопрос — а насколько часто нам будет так «везти». К сожалению, не очень. История наблюдений говорит, что предыдущая сверхновая в нашей галактике взорвалась в 1868 году, но ее не наблюдали. А последняя из обнаруженных аж в 1604 году.
Но! Каждую секунду где-то во Вселенной происходит вспышка! Далеко, но зато часто. Такие взрывы создают диффузный фон, чем-то похожий на реликтовое излучение. Он приходит со всех сторон и примерно постоянный. Мы можем вполне успешно оценить интенсивность и энергии, на которых следует искать такие события.
На картинке показаны потоки от всех известных нам источников нейтрино:
Источник. Спектр нейтрино на Земле от всех возможных источников.
Бордовая кривая повыше — это нейтрино от сверхновой 1987 года, а та, что пониже — это фот от ежесекундно взрывающихся во Вселенной звезд. Если мы будем достаточно чувствительны и сумеем отличить эти частицы от того, что приходит, например, от Солнца или от реакторов, то регистрация вполне возможна.
Больше того, Супер-Камиоканде уже подобрался к необходимой чувствительности. Ему осталось улучшить ее на порядок. Как раз сейчас детектор открыт, проходит профилактику, после чего в него будет добавлено новое активное вещество, которое существенно улучшит его эффективность. Так что будем продолжать наблюдения и ждать.
Как сейчас ищут нейтрино от сверхновых
Для поиска событий от взрывов звезд могут использоваться два типа детекторов.
Первый — это черенковский детектор. Понадобится большой объем прозрачного плотного вещества — вода или лед. Если частицы, рожденные нейтрино будут двигаться со скоростью, большей скорости света в среде, то мы будем видеть слабое свечение. Осталось только установить фотодетекторы. Из минусов такого способа — мы видим только достаточно быстрые частицы, все, что меньше определенной энергии, от нас ускользает.
Так работали уже упоминавшиеся IMB и Камиоканде. Последний был усовершенствован до Супер-Камиоканде, став огромный 40 метровым цилиндром с 13 000 фотосенсоров. Сейчас детектор открыт после 10 летнего набора данных. В нем заделают течи, почистят от бактерий и добавят немного вещества, чувствительного к нейтронам и он снова вернется в строй.
Супер-Камиоканде на профилактике. Больше масштабных фото и видео тут.
Можно использовать этот же метод детектирования, но вместо искусственных аквариумов использовать природные водоемы. Например, чистейшие воды озера Байкал. Там сейчас разворачивается телескоп, который охватит два кубических километра воды. Это в 40 раз больше Супер-Камиоканде. Но детекторы там ставить не так удобно. Обычно используют гирлянду из шаров, в которые вставляют несколько фотосенсоров.
Источник
Очень похожий концепт реализуется в Средиземном море, тут построен и работает детектор Antares, планируется построение огромного KM3Net, который будет просматривать куб. километр морской воды.
Все бы хорошо, но в морях плавает куча всякой живности. В результате приходится разрабатывать специальные нейросети, которые будут отличать нейтринные события от проплывающих рыбешек.
Но не обязательно экспериментировать с водой! Антарктический лед достаточно прозрачен, детекторы в нем устанавливать проще, не было бы еще так холодно… На Южном полюсе функционирует детектор IceCube — в толще кубического километра льда впаяны гирлянды фотосенсоров, которые ищут следы нейтринных взаимодействий во льду.
Иллюстрация события в детекторе IceCube.
Теперь перейдем ко второму способу. Вместо воды можно использовать активное вещество — сцинтиллятор. Эти вещества сами светятся, когда через них проходит заряженная частица. Мы будем искать мюон или электрон, рожденные в нейтринных взаимодействиях. Если набрать большую ванну такое вещества, то получится очень чувствительная установка.
Например, в детекторе Borexino в Апеннинах (Италия) используется чуть меньше 300 тонн активного вещества.
Borexino.
Китайский DayaBay использует 160 тонн сцинтиллятора.
DayaBay.
Но рекордсменом готовится стать тоже китайский эксперимент JUNO, который вместит в себя аж 20 000 тонн жидкого сцинтиллятора.
Как можно заметить, сейчас работает огромное число экспериментов, готовых к регистрации нейтрино от сверхновой. Я перечислил лишь некоторые из них, чтобы не закидывать вас шквалом похожих фотографий и схем.
Стоит отметить, что ожидание сверхновой, это не основная цель для всех из них. Например KamLand и Borexino построили великолепную карту источников антинейтрино на Земле — в основном это реакторы и радиоактивные изотопы в недрах; IceCube постоянно наблюдает за нейтрино сверхвысоких энергий из космоса; СуперКамиоканде изучает нейтрино от Солнца, из атмосферы и от соседнего ускорителя J-PARC.
Чтобы как-то объединить эти эксперименты была разработана даже система триггеров и оповещений. Если один из детекторов видит что-то, похожее на событие от сверхновой, тут же приходит сигнал на другие установки. Также незамедлительно оповещаются гравитационные телескопы и оптические обсерватории, которые переориентируют свои инструменты в сторону подозрительного источника. Даже астрономы любители могут подписаться на оповещения и, если повезет, они смогут внести свой вклад в эти исследования.
Но, как рассказывают коллеги с Borexino, часто сигнал от сверхновой бывает вызван уборщицей, оказавшейся среди кабелей…
Что же мы ожидаем увидеть, если нам немножко повезет? Количество событий сильно зависит от объема детектора и колеблется от неуверенных 100 до шквала в миллион событий. Что уж говорить об экспериментах следующего поколения: Гипер-Камиоканде, JUNO, DUNE — они станут в разы более чувствительными.
Что бы мы увидели сейчас в случае взрыва сверхновой в нашей галактике.
Уже завтра в галактике вполне может вспыхнуть сверхновая звезда и мы будем готовы принять послание из самого эпицентра чудовищного взрыва. А также скоординировать и направить доступные оптические телескопы и детекторы гравитационных волн.