Пзу что это
Пзу что это
ПЗУ — где хранится и зачем нужна
Доброго времени суток.
Если вы хотите заполнить пробел в знаниях относительно того, что такого ПЗУ, то попали по адресу. В нашем блоге вы сможете прочитать об этом емкую информацию на языке, доступном для простого пользователя.
Расшифровка и объяснение
Буквы ПЗУ являются заглавными в формулировке «постоянное запоминающее устройство». Его еще можно равноправно назвать «ROM». Английская аббревиатура расшифровывается как Read Only Memory, а переводится — память только для чтения.
Эти два названия раскрывают суть предмета нашей беседы. Речь идет об энергонезависимом типе памяти, которую можно только считывать. Что это значит?
Стереть информацию с такого устройства можно только специальными методами, к примеру, ультрафиолетовыми лучами.
Примеры
Постоянная память в компьютере — это определенное место на материнской плате, в котором хранятся:
В мобильных гаджетах постоянная память хранит в себе стандартные приложения, темы, картинки и мелодии. При желании пространство для дополнительной мультимедийной информации расширяют с помощью перезаписываемых SD-карт. Однако если устройство используется только для звонков, в расширении памяти нет необходимости.
В целом, сейчас ROM есть в любой бытовой технике, автомобильных плеерах и прочих девайсах с электроникой.
Физическое исполнение
Чтобы вы лучше могли познакомиться с постоянной памятью, расскажу больше о ее конфигурации и свойствах:
Разновидностей ПЗУ несколько, но чтобы не терять ваше время, назову только две основных модификации:
В принципе это всё, что я хотел сегодня до Вас донести.
Буду рад, если вы подпишетесь на обновления и будете заходить чаще.
Постоянные запоминающие устройства (ПЗУ)
ПЗУ — это энергонезависимая память, в которой хранятся программы для микроконтроллеров и DSP. ПЗУ используются вместо винчестеров в смартфонах и бытовой технике. Записанная информация в нем сохраняется даже при выключении питания.
Очень часто в различных применениях требуется хранение информации, которая не изменяется в процессе эксплуатации устройства. Это такая информация как программы в микроконтроллерах, начальные загрузчики (BIOS) в компьютерах, таблицы коэффициентов цифровых фильтров в сигнальных процессорах, DDC и DUC, таблицы синусов и косинусов в NCO и DDS. Практически всегда эта информация не требуется одновременно, поэтому простейшие устройства для запоминания постоянной информации (ПЗУ) можно построить на мультиплексорах. Иногда в переводной литературе постоянные запоминающие устройства называются ROM (read only memory — память доступная только для чтения). Схема такого постоянного запоминающего устройства (ПЗУ) приведена на рисунке 1.
Рисунок 1. Схема постоянного запоминающего устройства (ПЗУ), построенная на мультиплексоре
В этой схеме построено постоянное запоминающее устройство на восемь одноразрядных ячеек. Запоминание конкретного бита в одноразрядную ячейку производится запайкой провода к источнику питания (запись единицы) или запайкой провода к корпусу (запись нуля). Для его подключения к системной шине используется сигнал чтения RD (Сокращение от английского слова read — чтение). Сигнал CS (chip select — выбор кристалла) тоже отключает выход схемы от систимной шины. Он используется для подключения дешифратора адреса компьютера или для увеличения количества ячеек. На принципиальных схемах постоянное запоминающее устройство (ПЗУ) обозначается как показано на рисунке 2.
Рисунок 2. Обозначение постоянного запоминающего устройства на принципиальных схемах
Мы с вами получили одноразрядное ПЗУ. Однако обычно для записи двоичных кодов требуются многоразрядные ячейки памяти. Для того, чтобы увеличить разрядность ячейки памяти одноразрядные постоянные запоминающие устройства можно соединять параллельно (выходы и записанная информация естественно остаются независимыми). Схема параллельного соединения четырёх одноразрядных ПЗУ приведена на рисунке 3.
Рисунок 3. Схема многоразрядного ПЗУ (ROM)
В реальных микросхемах ПЗУ запись информации производится при помощи последней операции производства микросхемы — металлизации. Металлизация поверхности полупроводникового кристалла производится через маску, поэтому такие ПЗУ получили название масочных ПЗУ. Еще одно отличие реальных микросхем постоянных запоминающих устройств от упрощенной модели, приведенной выше — это использование кроме мультиплексора еще и демультиплексора. Такое решение позволяет превратить одномерную запоминающую структуру в двухмерную и, тем самым, существенно сократить объем схемы дешифратора, необходимого для работы схемы ПЗУ. Этот метод реализации схемы иллюстрируется следующим рисунком:
Рисунок 4. Схема масочного постоянного запоминающего устройства (ROM)
Рисунок 5. Условно-графическое обозначение масочного ПЗУ (ROM) на принципиальных схемах
Программирование масочного ПЗУ производится на заводе изготовителе, что очень неудобно для мелких и средних серий производства, не говоря уже о стадии разработки устройства. Естественно, что для крупносерийного производства масочные ПЗУ являются самым дешевым видом ПЗУ, и поэтому широко применяются в настоящее время. Для мелких и средних серий производства радиоаппаратуры были разработаны микросхемы, которые можно программировать в специальных устройствах — программаторах. В этих ПЗУ постоянное соединение проводников в запоминающей матрице заменяется плавкими перемычками, изготовленными из поликристаллического кремния. При производстве ПЗУ изготавливаются все перемычки, что эквивалентно записи во все ячейки памяти ПЗУ логических единиц. В процессе программирования ПЗУ на выводы питания и выходы микросхемы подаётся повышенное питание. При этом, если на выход ПЗУ подаётся напряжение питания (логическая единица), то через перемычку ток протекать не будет и перемычка останется неповрежденной. Если же на выход ПЗУ подать низкий уровень напряжения (присоединить к корпусу), то через перемычку запоминающей матрицы будет протекать ток, который испарит ее и при последующем считывании информации из этой ячейки ПЗУ будет считываться логический ноль.
Такие микросхемы называются программируемыми ПЗУ (ППЗУ) или PROM и изображаются на принципиальных схемах как показано на рисунке 6. В качестве примера ППЗУ можно назвать микросхемы 155РЕ3, 556РТ4, 556РТ8 и другие.
Рисунок 6. Условно-графическое обозначение программируемого постоянного запоминающего устройства (PROM) на принципиальных схемах
Программируемые ПЗУ оказались очень удобны при мелкосерийном и среднесерийном производстве. Однако при разработке радиоэлектронных устройств часто приходится менять записываемую в ПЗУ программу. ППЗУ при этом невозможно использовать повторно, поэтому раз записанное ПЗУ при ошибочной или промежуточной программе приходится выкидывать, что естественно повышает стоимость разработки аппаратуры. Для устранения этого недостатка был разработан еще один вид ПЗУ, который мог бы стираться и программироваться заново.
ПЗУ с ультрафиолетовым стиранием строится на основе запоминающей матрицы построенной на ячейках памяти, внутреннее устройство которой приведено на следующем рисунке:
Рисунок 7. Запоминающая ячейка ПЗУ с ультрафиолетовым и электрическим стиранием
Ячейка представляет собой МОП транзистор, в котором затвор выполняется из поликристаллического кремния. Затем в процессе изготовления микросхемы этот затвор окисляется и в результате он будет окружен оксидом кремния — диэлектриком с прекрасными изолирующими свойствами. В описанной ячейке при полностью стертом ПЗУ, заряда в плавающем затворе нет, и поэтому транзистор ток не проводит. При программировании ПЗУ, на второй затвор, находящийся над плавающим затвором, подаётся высокое напряжение и в плавающий затвор за счет туннельного эффекта индуцируются заряды. После снятия программирующего напряжения индуцированный заряд остаётся на плавающем затворе, и, следовательно, транзистор остаётся в проводящем состоянии. Заряд на плавающем затворе подобной ячейки может храниться десятки лет.
Структурная схема описанного постоянного запоминающего устройства не отличается от описанного ранее масочного ПЗУ. Единственное отличие — вместо плавкой перемычки используется описанная выше ячейка. Такой вид ПЗУ называется репрограммируемыми постоянными запоминающими устройствами (РПЗУ) или EPROM. В РПЗУ стирание ранее записанной информации осуществляется ультрафиолетовым излучением. Для того, чтобы этот свет мог беспрепятственно проходить к полупроводниковому кристаллу, в корпус микросхемы ПЗУ встраивается окошко из кварцевого стекла.
Рисунок 8. Внешний вид стираемого постоянного запоминающего устройства (EPROM)
Количество циклов записи-стирания микросхем EPROM находится в диапазоне от 10 до 100 раз, после чего микросхема РПЗУ выходит из строя. Это связано с разрушающим воздействием ультрафиолетового излучения на оксид кремния. В качестве примера микросхем EPROM можно назвать микросхемы 573 серии российского производства, микросхемы серий 27сXXX зарубежного производства. В РПЗУ чаще всего хранятся программы BIOS универсальных компьютеров. РПЗУ изображаются на принципиальных схемах как показано на рисунке 8.
Рисунок 9. Условно-графическое обозначение РПЗУ (EPROM)
Репрограммируемые ПЗУ достаточно длительное время применялись в компьютерах для хранения BIOS. Их содержимое называется прошивкой микросхемы. В настоящее время они в основном вытеснены микросхемами FLASH памяти. Ряд комплектующих компьютера, такие как видеокарты, звуковые карты, дополнительные порты тоже комплектуются микросхемами EPROM памяти.
Дата последнего обновления файла 25.10.2021
Понравился материал? Поделись с друзьями!
Что такое постоянное запоминающее устройство?
Что такое ПЗУ?
Чем они являются и где используются? Постоянные запоминающие устройства (ПЗУ) представляют собой энергонезависимую память. Технологически они реализованы как микросхема. Одновременно мы узнали, какова аббревиатуры ПЗУ расшифровка. Предназначены устройства для хранения информации, введённой пользователем, и установленных программ. В постоянном запоминающем устройстве можно найти документы, мелодии, картинки – т.е. всё, что должно храниться на протяжении месяцев или даже лет. Объемы памяти, в зависимости от используемого устройства, могут меняться от нескольких килобайт (на простейших устройствах, имеющих один кристалл кремния, примером которых являются микроконтроллеры) до терабайтов. Чем больше объем ПЗУ – тем больше объектов может быть сохранено. Объем прямо пропорционален количеству данных. Если уплотнить ответ на вопрос, что такое ПЗУ, следует ответить: это хранилище данных, которое не зависит от постоянного напряжения.
Жесткие диски как основные постоянные запоминающие устройства
Основным постоянным запоминающим устройством являются жесткие диски. Они есть в каждом современном компьютере. Используются они благодаря своим широким возможностям накопления информации. Но при этом существует ряд ПЗУ, которые используют мультиплексоры (это микроконтроллеры, начальные загрузчики и прочие подобные электронные механизмы). При детальном изучении будет нужно не только понимать значение ПЗУ. Расшифровка других терминов тоже необходима, для того, чтобы вникнуть в тему.
Расширение и дополнение возможностей ПЗУ благодаря флеш-технологиям
Если стандартного объема памяти пользователю не хватает, то можно воспользоваться дополнительным расширением возможностей предоставленного ПЗУ в сфере хранения данных. Осуществляется это посредством современных технологий, реализованных в картах памяти и USB-флеш-накопителях. В их основе лежит принцип многоразового использования. Другими словами, данные на них можно стирать и записывать десятки и сотни тысяч раз.
Схематическое строение ПЗУ
Этот объект электроники изображается в виде устройства, которое по внешнему виду напоминает соединение определённого числа одноразрядных ячеек. Микросхема ПЗУ, несмотря на потенциальную сложность и, казалось бы значительные возможности, по размеру мала. При запоминании определённого бита производится запайка к корпусу (когда записывается нуль) или к источнику питания (когда записывается единица). Для увеличения разрядности ячеек памяти в постоянных запоминающих устройствах микросхемы могут параллельно соединяться. Так и делают производители, чтобы получить современный продукт, ведь микросхема ПЗУ с высокими характеристиками позволяет им быть конкурентными на рынке.
Объемы памяти при использовании в различных единицах техники
Объемы памяти разнятся в зависимости от типа и предназначения ПЗУ. Так в простой бытовой технике вроде стиральных машинок или холодильников можно хватает установленных микроконтроллеров (с их запасов в несколько десятков килобайт), и в редких случаях устанавливается что-то более сложное. Использовать большой объем ПЗУ здесь не имеет смысла, ведь количество электроники невелико, и от техники не требуется сложных вычислений. Для современных телевизоров требуется уже что-то более совершенное. И вершиной сложности является вычислительная техника вроде компьютеров и серверов, ПЗУ для которых, как минимум, вмещают от нескольких гигабайт (для выпущенных лет 15 назад) до десятков и сотен терабайт информации.
ПЗУ с ультрафиолетовым или электрическим стиранием
И получили такие устройства название «постоянное запоминающее устройство с ультрафиолетовым или электрическим стиранием». Создаются они на основе запоминающей матрицы, в которой ячейки памяти имеют особую структуру. Так, каждая ячейка является МОП-транзистором, в котором затвор сделан из поликристаллического кремния. Похоже на предыдущий вариант, верно? Но особенность этих ПЗУ в том, что кремний дополнительно окружен диэлектриком, обладающим чудесными изолирующими свойствами, – диоксидом кремния. Принцип действия здесь базируется на содержании индукционного заряда, который может храниться десятки лет. Тут есть особенности по стиранию. Так, для ультрафиолетового ПЗУ-устройства необходимо попадание ультрафиолетовых лучей, идущих извне (ультрафиолетовой лампы и т.д.). Очевидно, что с точки зрения простоты эксплуатация постоянных запоминающих устройств с электрическим стиранием является оптимальным, так как для их активации необходимо просто подать напряжение. Принцип электрического стирания был с успехом реализован в таких ПЗУ, как флеш-накопители, которые можно увидеть у многих.
Но такая ПЗУ-схема, за исключением построения ячейки, структурно не отличается от обычного масочного постоянного запоминающего устройства. Иногда такие устройства называют ещё репрограммируемыми. Но при всех преимуществах имеются и определённые границы скорости стирания информации: для этого действия обычно необходимо около 10-30 минут.
Несмотря на возможность перезаписи, репрограммируемые устройства имеют ограничения по использованию. Так, электроника с ультрафиолетовым стиранием может пережить от 10 до 100 циклов перезаписи. Затем разрушающее влияние излучения становится настолько ощутимым, что они перестают функционировать. Увидеть использование подобных элементов можно в качестве хранилищ для программ BIOS, в видео- и звуковых картах, для дополнительных портов. Но оптимальным относительно перезаписи является принцип электрического стирания. Так, число перезаписей в рядовых устройствах составляет от 100 000 до 500 000! Существуют отдельные ПЗУ-устройства, которые могут работать и больше, но большинству пользователей они ни к чему.
Расшифровка и объяснение
Буквы ПЗУ являются заглавными в формулировке «постоянное запоминающее устройство». Его еще можно равноправно назвать «ROM». Английская аббревиатура расшифровывается как Read Only Memory, а переводится — память только для чтения.
Эти два названия раскрывают суть предмета нашей беседы. Речь идет об энергонезависимом типе памяти, которую можно только считывать. Что это значит?
Стереть информацию с такого устройства можно только специальными методами, к примеру, ультрафиолетовыми лучами.
Примеры
Постоянная память в компьютере — это определенное место на материнской плате, в котором хранятся:
В мобильных гаджетах постоянная память хранит в себе стандартные приложения, темы, картинки и мелодии. При желании пространство для дополнительной мультимедийной информации расширяют с помощью перезаписываемых SD-карт. Однако если устройство используется только для звонков, в расширении памяти нет необходимости. В целом, сейчас ROM есть в любой бытовой технике, автомобильных плеерах и прочих девайсах с электроникой.
Физическое исполнение
Чтобы вы лучше могли познакомиться с постоянной памятью, расскажу больше о ее конфигурации и свойствах:
Разновидностей ПЗУ несколько, но чтобы не терять ваше время, назову только две основных модификации:
Характеристики ПЗУ
Вот некоторые важные характеристики памяти ROM
Применение
ПЗУ в IBM PC-совместимых ЭВМ располагается в адресном пространстве с F600:0000 по FD00:0FFF
Типы ПЗУ
Вот важные типы памяти ROM.
Различия между RAM и ROM
параметры | баран | ПЗУ |
---|---|---|
Применение | Оперативная память позволяет компьютеру быстро считывать данные для запуска приложений. | ROM хранит все приложения, которые необходимы для начальной загрузки компьютера. Это позволяет только для чтения. |
летучесть | ОЗУ энергозависима. Таким образом, его содержимое теряется при выключении устройства. | Он является энергонезависимым, т. Е. Его содержимое сохраняется, даже если устройство выключено |
доступность | Информация, хранящаяся в оперативной памяти, легко доступна. | Процессор не может напрямую получить доступ к информации, которая хранится в ПЗУ. Чтобы сначала получить доступ к информации ПЗУ, информация передается в ОЗУ, а затем она может быть выполнена процессором. |
Читай пиши | Обе операции R (чтение) и W (запись) могут выполняться над информацией, которая хранится в ОЗУ. | Память ROM позволяет пользователю читать информацию. Но пользователь не может изменить информацию. |
Место хранения | RAM используется для хранения временной информации. | ПЗУ используется для хранения постоянной информации, которая не стирается. |
скорость | Скорость доступа к ОЗУ выше. | Его скорость ниже по сравнению с оперативной памятью. Следовательно, ПЗУ не может увеличить скорость процессора. |
Стоимость | Цена оперативной памяти довольно высока. | Цена на ПЗУ сравнительно низкая. |
Размер чипа | Физический размер чипа ОЗУ больше, чем чипа ПЗУ. | Физический размер чипа ПЗУ меньше, чем чип ОЗУ той же емкости. |
Сохранение данных | Электричество необходимо в оперативной памяти, чтобы течь и сохранять информацию | Электричество не требуется для передачи и сохранения информации |
Структура | Чип ОЗУ имеет форму прямоугольника и устанавливается над материнской платой компьютера. | Постоянное запоминающее устройство (ПЗУ) — это тип носителя данных, который постоянно хранит данные на персональных компьютерах (ПК) и других электронных устройствах. |
Преимущества ПЗУ
Вот некоторые важные преимущества использования ROM
В случаях, когда запись ведётся при помощи процесса металлизации и используется маска, такое постоянное запоминающее устройство называется масочным. Адреса ячеек памяти в них подаются на 10 выводов, а конкретная микросхема выбирается с помощью специального сигнала CS. Программирование этого вида ПЗУ осуществляется на заводах, вследствие этого изготовление в мелких и средних объемах невыгодно и довольно неудобно. Но при крупносерийном производстве они являются самым дешевым среди всех постоянных запоминающих устройств, что и обеспечило им популярность.
Схематически от общей массы отличаются тем, что в запоминающей матрице соединения проводников заменены плавкими перемычками, изготовленные из поликристаллического кремния. На стадии производства создаются все перемычки, и компьютер считает, что везде записаны логические единицы. Но во время подготовительного программирования подаётся повышенное напряжение, с помощью которого оставляют логические единицы. При подаче низких напряжений перемычки испаряются, и компьютер считывает, что там логический нуль. По такому принципу действуют программируемые постоянные запоминающие устройства.
Энергозависимая и энергонезависимая память
ОЗУ является энергозависимой памятью. Это означает, что информация, временно хранящаяся в модуле, стирается при перезагрузке или выключении компьютера. Поскольку информация хранится на транзисторах с электрическим питанием, при отключении электрического тока данные исчезают. Каждый раз, когда вы запрашиваете файл или информацию, они извлекаются из хранилища компьютера или из Интернета. Данные хранятся в ОЗУ, поэтому каждый раз при переключении из одной программы или страницы на другую, информация моментально становится доступной. Когда компьютер выключается, память очищается, пока процесс не начнется снова. Пользователи могут легко изменять, модернизировать или расширять энергозависимую память. Узнайте, требуется ли вашему компьютеру больше памяти.
ПЗУ является энергонезависимой памятью. Это означает, что информация хранится на микросхеме постоянно. Для хранения данных этой памяти не нужно электропитание, данные записываются в отдельные ячейки памяти в форме двоичного кода. Энергонезависимая память используется для неизменяемых компонентов компьютера, например, для загрузочной части программного обеспечения или служебных команд встроенного ПО, которые запускают принтер. Выключение компьютера никак не влияет на ПЗУ. Пользователи не могут изменять энергонезависимую память.
По разновидностям микросхем ПЗУ
Исторические типы ПЗУ
Сравнительная таблица
Основа для сравнения | баран | ПЗУ |
---|---|---|
основной | Это память чтения-записи. | Это только для чтения памяти. |
использование | Используется для хранения данных, которые в данный момент должны временно обрабатываться процессором. | В нем хранятся инструкции, необходимые во время начальной загрузки компьютера. |
летучесть | Это летучая память. | Это энергонезависимая память. |
Стенды для | Оперативная память. | Только для чтения памяти. |
модификация | Данные в ПЗУ могут быть изменены. | Данные в ПЗУ не могут быть изменены. |
Вместимость | Объем оперативной памяти от 64 МБ до 4 ГБ. | ПЗУ сравнительно меньше ОЗУ. |
Стоимость | RAM – более дорогая память. | ПЗУ сравнительно дешевле ОЗУ. |
Тип | Типы оперативной памяти: статическая и динамическая. | Типы ПЗУ: ПРОМ, СППЗУ, ЭСППЗУ. |
Определение ПЗУ
В ПЗУ хранится инструкция, необходимая компьютеру во время начальной загрузки (процесс загрузки компьютера). Содержимое в ПЗУ не может быть изменено. ПЗУ является энергонезависимой памятью, данные внутри ПЗУ сохраняются даже при отключении питания ЦП.
Емкость ПЗУ сравнительно меньше, чем ОЗУ, она медленнее и дешевле, чем ОЗУ. Существует много видов ПЗУ:
PROM : программируемое ПЗУ, оно может быть изменено пользователем только один раз.
EPROM : стираемое и программируемое ПЗУ, содержимое этого ПЗУ может быть стерто с помощью ультрафиолетовых лучей, а ROm может быть перепрограммирован.
ЭСППЗУ : электрически стираемое и программируемое ПЗУ, оно может быть стерто электрически и перепрограммировано около десяти тысяч раз.
Проектирование и разработка раздела ПЗУ. Генплан / Генеральный план
Компьютеры и любая электроника — сложные устройства, принципы работы которых не всегда понятны большинству обывателей. Что такое ПЗУ и зачем устройство необходимо? Большинство людей не смогут дать ответ на этот вопрос. Попробуем исправить это недоразумение.
Что такое ПЗУ?
Чем они являются и где используются? Постоянные запоминающие устройства (ПЗУ) представляют собой энергонезависимую память. Технологически они реализованы как микросхема. Одновременно мы узнали, какова аббревиатуры ПЗУ расшифровка. Предназначены устройства для хранения информации, введённой пользователем, и установленных программ. В постоянном запоминающем устройстве можно найти документы, мелодии, картинки – т.е. всё, что должно храниться на протяжении месяцев или даже лет. Объемы памяти, в зависимости от используемого устройства, могут меняться от нескольких килобайт (на простейших устройствах, имеющих один кристалл кремния, примером которых являются микроконтроллеры) до терабайтов. Чем больше объем ПЗУ – тем больше объектов может быть сохранено. Объем прямо пропорционален количеству данных. Если уплотнить ответ на вопрос, что такое ПЗУ, следует ответить: это хранилище данных, которое не зависит от постоянного напряжения.
Жесткие диски как основные постоянные запоминающие устройства
На вопрос, что такое ПЗУ, уже дан ответ. Теперь следует поговорить о том, какие они бывают. Основным постоянным запоминающим устройством являются жесткие диски. Они есть в каждом современном компьютере. Используются они благодаря своим широким возможностям накопления информации. Но при этом существует ряд ПЗУ, которые используют мультиплексоры (это микроконтроллеры, начальные загрузчики и прочие подобные электронные механизмы). При детальном изучении будет нужно не только понимать значение ПЗУ. Расшифровка других терминов тоже необходима, для того, чтобы вникнуть в тему.
Расширение и дополнение возможностей ПЗУ благодаря флеш-технологиям
Если стандартного объема памяти пользователю не хватает, то можно воспользоваться дополнительным расширением возможностей предоставленного ПЗУ в сфере хранения данных. Осуществляется это посредством современных технологий, реализованных в картах памяти и USB-флеш-накопителях. В их основе лежит принцип многоразового использования. Другими словами, данные на них можно стирать и записывать десятки и сотни тысяч раз.
Из чего состоит постоянное запоминающее устройство
В составе ПЗУ находится две части, которые обозначаются как ПЗУ-А (для хранения программ) и ПЗУ-Э (для выдачи программ). Постоянное запоминающее устройство типа А является диодно-трансформаторной матрицей, которая прошивается с помощью адресных проводов. Этот раздел ПЗУ выполняет главную функцию. Начинка зависит от материала, из которого сделаны ПЗУ (могут применяться перфорационные и магнитные ленты, перфокарты, магнитные диски, барабаны, ферритовые наконечники, диэлектрики и их свойство накопления электростатических зарядов).
Схематическое строение ПЗУ
Этот объект электроники изображается в виде устройства, которое по внешнему виду напоминает соединение определённого числа одноразрядных ячеек. Микросхема ПЗУ, несмотря на потенциальную сложность и, казалось бы значительные возможности, по размеру мала. При запоминании определённого бита производится запайка к корпусу (когда записывается нуль) или к источнику питания (когда записывается единица). Для увеличения разрядности ячеек памяти в постоянных запоминающих устройствах микросхемы могут параллельно соединяться. Так и делают производители, чтобы получить современный продукт, ведь микросхема ПЗУ с высокими характеристиками позволяет им быть конкурентными на рынке.
Объемы памяти при использовании в различных единицах техники
Объемы памяти разнятся в зависимости от типа и предназначения ПЗУ. Так в простой бытовой технике вроде стиральных машинок или холодильников можно хватает установленных микроконтроллеров (с их запасов в несколько десятков килобайт), и в редких случаях устанавливается что-то более сложное. Использовать большой объем ПЗУ здесь не имеет смысла, ведь количество электроники невелико, и от техники не требуется сложных вычислений. Для современных телевизоров требуется уже что-то более совершенное. И вершиной сложности является вычислительная техника вроде компьютеров и серверов, ПЗУ для которых, как минимум, вмещают от нескольких гигабайт (для выпущенных лет 15 назад) до десятков и сотен терабайт информации.
Масочное ПЗУ
В случаях, когда запись ведётся при помощи процесса металлизации и используется маска, такое постоянное запоминающее устройство называется масочным. Адреса ячеек памяти в них подаются на 10 выводов, а конкретная микросхема выбирается с помощью специального сигнала CS. Программирование этого вида ПЗУ осуществляется на заводах, вследствие этого изготовление в мелких и средних объемах невыгодно и довольно неудобно. Но при крупносерийном производстве они являются самым дешевым среди всех постоянных запоминающих устройств, что и обеспечило им популярность.
Схематически от общей массы отличаются тем, что в запоминающей матрице соединения проводников заменены плавкими перемычками, изготовленные из поликристаллического кремния. На стадии производства создаются все перемычки, и компьютер считает, что везде записаны логические единицы. Но во время подготовительного программирования подаётся повышенное напряжение, с помощью которого оставляют логические единицы. При подаче низких напряжений перемычки испаряются, и компьютер считывает, что там логический нуль. По такому принципу действуют программируемые постоянные запоминающие устройства.
Программируемые постоянные запоминающие устройства
ППЗУ оказались достаточно удобными в процессе технологического изготовления, чтобы к ним можно было прибегать при средне- и мелкосерийном производстве. Но такие устройства имеют и свои ограничения – так, записать программу можно только раз (из-за того, что перемычки испаряются раз и навсегда). Из-за такой невозможности использовать постоянное запоминающее устройство повторно, при ошибочном записывании его приходится выбрасывать. В результате повышается стоимость всей произведённой аппаратуры. Ввиду несовершенства производственного цикла эта проблема довольно сильно занимала умы разработчиков устройств памяти. Выходом из этой ситуации стала разработка ПЗУ, которое можно программировать заново многократно.
ПЗУ с ультрафиолетовым или электрическим стиранием
И получили такие устройства название «постоянное запоминающее устройство с ультрафиолетовым или электрическим стиранием». Создаются они на основе запоминающей матрицы, в которой ячейки памяти имеют особую структуру. Так, каждая ячейка является МОП-транзистором, в котором затвор сделан из поликристаллического кремния. Похоже на предыдущий вариант, верно? Но особенность этих ПЗУ в том, что кремний дополнительно окружен диэлектриком, обладающим чудесными изолирующими свойствами, – диоксидом кремния. Принцип действия здесь базируется на содержании индукционного заряда, который может храниться десятки лет. Тут есть особенности по стиранию. Так, для ультрафиолетового ПЗУ-устройства необходимо попадание ультрафиолетовых лучей, идущих извне (ультрафиолетовой лампы и т.д.). Очевидно, что с точки зрения простоты эксплуатация постоянных запоминающих устройств с электрическим стиранием является оптимальным, так как для их активации необходимо просто подать напряжение. Принцип электрического стирания был с успехом реализован в таких ПЗУ, как флеш-накопители, которые можно увидеть у многих.
Но такая ПЗУ-схема, за исключением построения ячейки, структурно не отличается от обычного масочного постоянного запоминающего устройства. Иногда такие устройства называют ещё репрограммируемыми. Но при всех преимуществах имеются и определённые границы скорости стирания информации: для этого действия обычно необходимо около 10-30 минут.
Несмотря на возможность перезаписи, репрограммируемые устройства имеют ограничения по использованию. Так, электроника с ультрафиолетовым стиранием может пережить от 10 до 100 циклов перезаписи. Затем разрушающее влияние излучения становится настолько ощутимым, что они перестают функционировать. Увидеть использование подобных элементов можно в качестве хранилищ для программ BIOS, в видео- и звуковых картах, для дополнительных портов. Но оптимальным относительно перезаписи является принцип электрического стирания. Так, число перезаписей в рядовых устройствах составляет от 100 000 до 500 000! Существуют отдельные ПЗУ-устройства, которые могут работать и больше, но большинству пользователей они ни к чему.
Доброго времени суток.
Расшифровка и объяснение
Буквы ПЗУ являются заглавными в формулировке «постоянное запоминающее устройство». Его еще можно равноправно назвать «ROM». Английская аббревиатура расшифровывается как Read Only Memory, а переводится — память только для чтения.
Эти два названия раскрывают суть предмета нашей беседы. Речь идет об энергонезависимом типе памяти, которую можно только считывать. Что это значит?
Стереть информацию с такого устройства можно только специальными методами, к примеру, ультрафиолетовыми лучами.
Примеры
Постоянная память в компьютере — это определенное место на материнской плате, в котором хранятся:
В мобильных гаджетах постоянная память хранит в себе стандартные приложения, темы, картинки и мелодии. При желании пространство для дополнительной мультимедийной информации расширяют с помощью перезаписываемых SD-карт. Однако если устройство используется только для звонков, в расширении памяти нет необходимости.
В целом, сейчас ROM есть в любой бытовой технике, автомобильных плеерах и прочих девайсах с электроникой.
Физическое исполнение
Чтобы вы лучше могли познакомиться с постоянной памятью, расскажу больше о ее конфигурации и свойствах:
Разновидностей ПЗУ несколько, но чтобы не терять ваше время, назову только две основных модификации:
В принципе это всё, что я хотел сегодня до Вас донести.
Буду рад, если вы подпишетесь на обновления и будете заходить чаще.
Этой статьей стоит поделиться ТолкованиеПеревод
ПЗУ
Словарь: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с.
ПЗУ
Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.
ПЗУ
пиротехническое зажигательное устройство
Словарь: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с.
ПЗУ
постоянное запоминающее устройство
Словари: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с., С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.
ПЗУ
Словари: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с., С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.
ПЗУ
переносное заземляющее устройство
ПЗУ
патрон защитный универсальный
ПЗУ
планировка земельного участка
ПЗУ
ПЗУ
ПЗУ
производственный заготовительный участок
ПЗУ
Партия зелёных Украины
с 30 сентября 1990
ПЗУ
ПЗУ
придомовый земельный участок
Синонимы: Другие книги по запросу «ПЗУ» >>
План земельного участка в законодательстве именуется СПОЗУ – схема планировочной организации земельного участка. ПЗУ (СПОЗУ) – документ, который вместе с заявлением о получении разрешения на строительство необходимо предоставить собственнику или арендатору этого участка для того, чтобы начать проектирование и проводить дальнейшие строительные работы. ПЗУ предоставляется в настоящее время вместо генерального плана застройки земельного участка, который требовался ранее (http://ppt.ru/kodeks.phtml?kodeks=5&paper=51).
Требования к составлению ПЗУ
Выполняется ПЗУ по данным топографической съемки, где указываются расположение границ земельного участка и основные данные по проектируемым и существующим на момент составления плана объекты. Кроме того, на схеме в обязательном порядке обозначаются следующее:
Проектируемые объекты привязываются к уже существующим на участке с соблюдением расстояний, предусмотренных требованиями санитарных и противопожарных норм. Схема не должна входить в противоречие с общим градостроительным планом участка и прочими регулирующими документами.
На основании положений, определенных в Постановлении правительства РФ № 87 от 16.02.2008 г. (http://base.consultant.ru/cons/cgi/online.cgi?req=doc;base=LAW раздел 2 в ред. от 13.04.2010 г.) СПОЗУ должна включать набор обязательных элементов:
Содержание ПЗУ для ИЖС
План земельного участка для индивидуального жилищного строительства состоит из графической и текстовой частей. В текстовой части отражается следующая информация:
Графическая часть ПЗУ выполняется в произвольной форме, без учета особых чертежных требований, но в обязательном порядке отображает:
При составлении плана земельного участка в графической части не требуется указывать следующие элементы – ливневые стоки, разрезы строения, схемы фасадов и въезды на участок. Следует учитывать, что при предоставлении ПЗУ могут возникнуть дополнительные требования к нему, зависящие от местных ситуационных обстоятельств. Однако никакие дополнительные требования не могут выходить за рамки, определенные в ч. 5-11, ст. 51 Градостроительного
Домой Проектировщику Состав проектной документации Состав ПЗУ (СПОЗУ) по постановлению 87
ПЗУ — это сокращение от «Схемы планировочной организации земельного участка» (иногда встречается сокращение СПОЗУ)
В соответствии с постановлением 87 проектная документация на объекты капитального строительства должна состоять из 12 разделов.
Согласно п. 12 (постановления 87) ПЗУ входит в раздел 2.
ПЗУ должен состоять из текстовой и графической части.
Рассмотрим состав каждой части.
Текстовая часть ПЗУ
а) характеристику земельного участка, предоставленного для размещения объекта капитального строительства;
в) обоснование планировочной организации земельного участка в соответствии с градостроительным и техническим регламентами либо документами об использовании земельного участка (если на земельный участок не распространяется действие градостроительного регламента или в отношении его не устанавливается градостроительный регламент);
г) технико-экономические показатели земельного участка,предоставленного для размещения объекта капитального строительства;
д) обоснование решений по инженерной подготовке территории, в том числе решений по инженерной защите территории и объектов капитального строительства от последствий опасных геологических процессов, паводковых, поверхностных и грунтовых вод;
е) описание организации рельефа вертикальной планировкой;
ж) описание решений по благоустройству территории;
к) характеристику и технические показатели транспортных коммуникаций (при наличии таких коммуникаций) — для объектов производственного назначения;
л) обоснование схем транспортных коммуникаций, обеспечивающих внешний и внутренний подъезд к объекту капитального строительства,- для объектов непроизводственного назначения;
Графическая часть ПЗУ
м) схему планировочной организации земельного участка с отображением:
н) план земляных масс;
о) сводный план сетей инженерно-технического обеспечения с обозначением мест подключения проектируемого объекта капитального строительства к существующим сетям инженерно-технического обеспечения;
п) ситуационный план размещения объекта капитального строительства в границах земельного участка, предоставленного для размещения этого объекта, с указанием границ населенных пунктов, непосредственно примыкающих к границам указанного земельного участка, границ зон с особыми условиями их использования, предусмотренных Градостроительным кодексом Российской Федерации, границ территорий, подверженных риску возникновения чрезвычайных ситуаций природного и техногенного характера, а также с отображением проектируемых транспортных и инженерных коммуникаций с обозначением мест их присоединения к существующим транспортным и инженерным коммуникациям — для объектов производственного назначения.
Оформлять раздел ПЗУ необходимо в соответствии с ГОСТ 21.1101-2013.
Состав пояснительной записки ПД по пост.№87
ПЗУ-память Что это такое, для чего и какие типы существуют в информатике?
Мы можем предсказать, что это тип памяти, который используется для запуска наших систем и устройств. большие они или маленькие. Он поступает с завода и не подлежит подделке.
ПЗУ является частью оборудования устройств, будь то компьютеры, телефоны, планшеты… и связан с процессом их запуска, обслуживанием и удобством использования.
Основная особенность этого программного элемента, которую мы уже видели что это всегда воспоминание, что это вначале неизменное (Позже мы увидим, что есть способы изменить их, но сделать это непросто, тем более на уровне пользователя).
Он также будет использоваться для проверить работу оборудования что он сопровождает и распознать операционную систему кто контролирует систему и устройства ввода и вывода.
Посмотрим, как это делается в каждой ситуации:
«ОБНОВЛЕНИЕ ✅ Вам нужно знать все типы, особенности и функции ПЗУ, но вы не знаете, как это сделать? ⭐ ВОЙДИТЕ ЗДЕСЬ ⭐ и узнайте, как это сделать шаг за шагом с помощью этого ✅ ЛЕГКОГО и БЫСТРОГО ✅ РУКОВОДСТВА »
В свою очередь, мы находим эти подтипы:
Эти две концепции, которые легко сбивают с толку тех, кто использует компьютеры и другие устройства лишь поверхностно, относятся к системам памяти устройства или компьютера, но это совсем не одно и то же. Вы можете посмотреть подробнее все различия между RAM и ROM, чтобы покинуть это место.
Если у вас есть какие-либо вопросы, оставляйте их в комментариях, мы свяжемся с вами как можно скорее, и это будет большим подспорьем для большего числа участников сообщества. Je Vous remercie!
Что с памятью моею стало
Запомним на века: Повесть о работе с ПЗУ
Помню, ещё в детстве, когда у меня появился первый компьютер, там на материнской плате была магическая микросхема с окошком, сквозь которое было видно кристалл. “Мудрые” взрослые меня пугали, что если посветить солнечным светом на неё, то она быстро сотрётся.
С тех пор у меня было большое желание разобраться, что же это за мистические микросхемы ПЗУ (постоянное запоминающее устройство), как же они работают, как их программировать и стирать. И всё как-то не было повода, да и возможностей аппаратных. А тут, благодаря «Волшебному чемодану» появилась реальная задача, когда необходимо было прочитать прошивку, написать свою и прошить ПЗУ, а также научится стирать микросхемы. И тут я познал как глубока кроличья нора, что есть куча типов ПЗУ с УФ стиранием, что у них разные напряжения работы, разные режимы стирания микросхемы и многое-многое другое. Вопрос, какой программатор выбрать, как стереть микросхему, как её записать, какие сложности при этом.
Несмотря на то, что микросхемы давным-давно в ходу, информация ровным слоем размазана по интернету и головам, приходилось собирать всё в кучу, проходя хоть местами очевидный, но тернистый путь.
▍ Постановка задачи
Как вы помните из предыдущего поста, я столкнулся с необходимостью достать оригинальную прошивку своего устройства. А также, мне хотелось иметь возможность запускать свои программы, которые набирать и компилировать на обычном компьютере, потому что вручную каждый раз набирать программу в хекс-кодах достаточно быстро надоедает.
Если же вдруг придётся сделать интерфейс ввода прошивки с помощью какого-либо интерфейса, то всё равно придётся писать некий драйвер, и его уже размещать в пользовательском ПЗУ чемодана. Поэтому всё равно встанет необходимость разобраться, как читать и прошивать различные типы ПЗУ.
В этой статье не хочу много внимания уделять УМК-80, она о другом, но всё же поясню, что же происходит. Для того чтобы добраться до ПЗУ, пришлось его полностью разобрать и снять процессорную плату.
Разобранный УМК-80.
Можно даже крупным планом рассмотреть платы этого аппарата, которые ставятся на общую шину.
Прошу не судить строго за качество фото, они сделаны скорее для справки.
Плата порта ввода-вывода, с микросхемой КР580ВВ55А, служит для вывода изображения на дисплей и работы с клавиатурой.
Плата ввода-вывода.
Процессорная плата. Справа видны микросхемы ПЗУ К573РФ1 — 1024х8 бит. Которая с буквой “М” — это основная ПЗУ, содержащая программу монитор. Слева большая микросхема — это ОЗУ, та самая которая расположена с адреса 0x0800 и занимает 1 кБ. Посередине можно увидеть большую микросхему микропроцессора КР580ИК80А.
Процессорная плата.
Если вам интересно посмотреть более качественные фотографии аналогичного чемодана, я настоятельно рекомендую посмотреть ЖЖ пользователя xlat8086. У неё потрясающие фотографии:
В любом случае, если вы интересуетесь историей айти и старой техникой, настоятельно рекомендую её ЖЖ.
Попутно, раз уж разобрал чемодан, решил заменить конденсатор, который пал смертью храбрых при первом включении. Благодаря многочисленным комментариям под предыдущей статьёй, выбрал и поставил нужный.
Обновлённый конденсатор.
Самое крутое, что процессорную плату можно вынуть и вставить сверху как дочернюю плату (шина же общая), таким образом можно легко осуществлять замену ПЗУ, и не требуется каждый раз разбирать устройство.
Установленная процессорная плата, в гнездо дочерней, и всё работает.
Ну что же, теперь предстоит квест по чтению ПЗУ, содержащую программу “Монитор” от УМК-80, и как оказалось, это не такая простая задача, как может показаться на первый взгляд.
▍ Не все ПЗУ одинаково полезны
В данной статье говорю о микросхемах EPROM (Erasable Programmable Read Only Memory) или проще говоря ПЗУ с ультрафиолетовым стиранием. Этакие мистические микросхемы с окошком для стирания ультрафиолетом, которые наверняка многие из вас видели их на старых материнских платах, либо в картриджах от игровых приставок, так как игры записывались именно на подобные ПЗУ. На хабре даже были статьи, как делать свои картриджи, и простейший картридж представляет из себя просто прошитую ПЗУ с программой игры.
Как правило, окошко у ПЗУ заклеено каким-то непрозрачным материалом, чтобы от солнечных лучей данные не были стёрты, хотя, как показала личная практика, стереть их не так-то просто.
Мистические микросхемы с окошком.
Для того чтобы стереть микросхему, необходим жёсткий ультрафиолет. И, на самом деле, солнечной радиации будет недостаточно чтобы стереть ПЗУ. Она будет стёрта, но далеко не за один день. Об этом я подробнее остановлюсь ниже.
Для того, чтобы прошить микросхему нужен специальный программатор, который выдаёт высокое напряжение для прошивки. А для старых микросхем, к которому относится К573РФ1 (аналог 2708), ещё и необходимо подать напряжения питания отрицательное напряжение минус 5В, +5 и +12 В (три напряжения питания). И это без учёта подачи напряжения программирования.
Приведу одну замечательную картинку, которая позволяет оценить чем отличаются одна от другой версии ПЗУ микросхем, и по ней можно легко сопоставить схему взаимозамены.
Сопоставление различных типов микросхем ПЗУ.
Так как на отечественные микросхемы не так просто найти документацию, в отличие от западных оригиналов, то я далее буду приводить отсылки к импортной документации. Микросхема К573РФ1 — это полный аналог 2708, а микросхемы КР573РФ2 и КР573РФ5 — полный аналог 2716. Другие нас пока не интересуют, в рамках этой статьи. В принципе, в своём чемодане использовал и 2716, так что это всё одно и то же.
Для того чтобы прошить микросхему, на неё кроме питания требуется ещё подать высокое напряжение на вывод VPP. Для микросхемы 2708 и 2716 — это 26 В!
Поскольку микросхема К573РФ1 aka 2708 для своей работы требует отрицательного и положительного напряжения, то ей требуется специальный программатор, чтобы её прочитать. Пытался найти готовый программатор за вменяемые деньги, который мог бы решить данную проблему, но, увы, не смог. Подобные программаторы стоят больше 50 тысяч рублей, что явно выходит за бюджеты хобби выходного дня. Поэтому придётся думать о переходнике.
Итак, резюмируя, для дальнейшей работы с ПЗУ нам необходимо:
▍ Программатор №1
Вообще, предел мечтаний в качестве программатора иметь «Beeprog+«, но если вы увидите сколько он стоит, вы, гм. будете очень неприятно удивлены. Хотя этот программатор без проблем бы смог прочитать и записать любые ПЗУ, без лишних телодвижений. Поэтому пришлось выбирать из более доступных, с достаточными возможностями для моих задач.
На рынке давно есть великолепный китайский программатор «TL866II Plus Universal» который умеет читать и писать множество микросхем. И в комплекте с ним идёт огромное количество различных переходников, с учётом его стоимости — это практически даром. Заказал со всеми возможными панельками и экстрактором, на будущее, вдруг пригодится.
Программатор TL866II Plus Universal.
Набор переходных панелек.
Он прекрасно подойдёт для всяких эпизодических случаев программирования микросхем, в том числе восстановление микроконтроллеров после неудачного программирования FUSE-битов. Штука конечно тоже с характером, но если шить от случая к случаю, то отличная.
Успешное чтение микросхемы 2764.
Программатор умеет работать с ПЗУ, начиная с 2716 (где требуется одно напряжение питания), а вот работать с 2708 aka К573РФ1, где хранится программа монитор, он работать не умеет. Потому что для работы с этой памятью требуется три различных напряжения, одно из которых отрицательной полярности.
Но поскольку голова нам дана не только чтобы шляпу носить, то можно разработать и сделать переходник, который будет питать микросхему К573РФ1 всеми нужными напряжениями, а читать её как микросхему 2716, просто оба килобайта будут заполнены одними и теми же данными. Осталось только сообразить схему, как это будет выглядеть.
▍ Переходник для чтения ПЗУ К573РФ1 aka 2708
Схема переходника достаточно простая: необходимо сделать так, чтобы микросхема 2708 вставала в панельку микросхемы 2716, при этом были поданы на неё питание +12 и минус 5 В, при этом надо следить, чтобы эти напряжения не пошли в программатор. Самая большая загвоздка в том, что напряжения должны подаваться на микросхему при запросе от программатора, поэтому нужна какая-никакая схема коммутации.
Подумал, что всё хорошее придумано за нас, немного поискал и нашёл вполне достойное готовое решение на реле.
Схема переходника для чтения ПЗУ 2708.
Обращаю внимание, что адаптер предназначен именно для чтения микросхем, для того чтобы прошить микросхему, нужно будет его доработать. Но лично я смысла воевать с микросхемами 2708 не вижу, сильно проще использовать вместо них ПЗУ 2716.
На том же сайте приводится схема блока питания, но поскольку операция чтения будет однократной, то и делать блок питания не буду. Вместо него подойдёт обычный компьютерный блок питания, там как раз есть напряжение +12 и минус 5 В.
Распиновка разъёма ATX блока питания. Обратите внимание, что ATX2 уже не подходит для данной задачи.
Распиновка АТ-блока питания.
В результате небольших пассов с паяльником получился такой замечательный переходник.
Готовый переходник.
Вставляю его в программатор, подключаю компьютерный блок питанию, каюсь, до конца не был уверен в успехе. Жму прочитать, щелчки реле, и о чудо, мне удалось прочитать это ПЗУ!
Счастью моему не было предела! Да, оно сработало. И наконец-то я имею нормальный дамп, который можно использовать для своих целей! Кому интересно, вот дамп прошивки чемодана. Из забавного, что вся эта прошивка влезает в экран монитора, там всего 1024 символа.
Прошивка своими глазами.
Следующий этап — это залить данную прошивку на другую ПЗУ и стартануть чемодан с неё.
▍ Переходник для прошивки 2716
Что? Ещё один переходник? На самом деле это особенность программатора TL866 II Plus, он не может выдавать напряжение больше 18 вольт. А для прошивки микросхем 2716 необходимо напряжение 26 В! Поэтому необходимо городить внешний блок питания и схему её коммутации.
Есть отличный проект доработки программатора TL866 II Plus, для прошивки микросхем. У автора этого проекта я также закупаюсь микросхемами ПЗУ, за что ему большое спасибо!
Решил немного облагородить схему, потому что у меня схема на сайте вызывала некоторые вопросы.
Схема переходника программатора.
В качестве источника высокого напряжения использовал USB Buck-Boost, он уже на своём борту имеет вольтметр и удобные способы подключения, как через USB, так и microUSB. Разъём microUSB рекомендую дополнительно пропаять, потому что я быстро оторвал его от платы. Питать блок питания 25 В нужно от отдельного блока питания, например от зарядного устройства для телефона, иначе фокус не удастся.
Поскольку схема всё же какая-никакая есть, долго думал, как размещать все элементы на макетной плате. Даже по малодушию подумал, что стоило сделать отдельную плату и заказать её производство. Но всё же изделие штучное, поэтому взял листок в клетку, разметил точки согласно расположению отверстий и разрисовал расположение элементов, быть может это будет кому-то полезно.
Расположение компонентов (вид снизу), каждое пересечение клеток — это отверстие в макетке.
Делаем несколько волшебных пассов паяльником; путаем расположение коллектора-базы-эмитера у транзисторов; делаем новые пассы паяльником. Десять раз всё проверяем-перепроверяем и получаем замечательный результат.
Готовая плата, вид сверху.
Вид снизу.
После всех проверок, убеждаемся что напряжение включается и подаётся туда куда нужно, радостно пытаемся прошить микросхему.
Включённый переходник.
И получаем всё равно облом, а всё почему? А потому, что микросхему перед прошивкой надо стереть. И стереть её можно только ультрафиолетом.
▍ Стиратель ультрафиолетовых ПЗУ
Первое что приходит в голову, что раз микросхема стирается ультрафиолетом, то положу-ка я её на подоконник и она сотрётся. Но нет, в северных городах даже не стоит этим развлекаться, а в южных это займёт не один день. Энергии нашего светила недостаточно чтобы стереть микросхему быстро.
Второе и самое очевидное — использовать УФ лампу для ногтей. Их просто море отдаётся бесплатно на всевозможных площадках, лично я купил там за 50 рублей (пятьдесят рублей). Вообще, миф использования лампы для ногтей ходит давно, и однозначного ответа можно ли её использовать я не получил, хотя сделал опрос в нескольких телеграмовских чатах. Поэтому всё приходится испытывать самому и делиться с вами уникальной информацией.
В качестве испытуемой микросхемы взял ПЗУ 2764, которая содержала в себе какие-то данные. По-честному обернул ноги фольгой и положил прямо под лампу. Включил лампу на два часа.
Микросхема прямо под лампой, окошком к лампе.
Аппарат честно вонял озоном, делая вид, что он ультрафиолетом безжалостно жжёт микросхему. Два часа она страдала, но каково же было моё удивление, когда спустя два часа я смог без проблем прочитать всю информацию, которая была в ней. Миф разрушен:
Лампы, используемые для отверждения лака на ногтях, применять для стирания ПЗУ нельзя!
Поэтому не занимайтесь ерундой и закажите себе «UV EPROM Eraser«. Стоит он не таких уж безумных денег, но сэкономит вам кучу времени и сил. Слышал много советов использовать расколотую лампу ДРЛ, но я не рекомендую так делать. В своё время сам делал мощную УФ лампу из лампы ДРЛ, но это не компактное решение, всё равно придётся делать какой-то ящик для защиты себя от ультрафиолетового излучения, плюс всё это потребует кучу вашего времени. Да и учитывая стоимость ламп ДРЛ, а также баластного трансформатора, экономия сомнительная. А риски работать со ртутными лампами дома достаточно большие.
EPROM стиратель.
Ручной таймер задаёт время стирания в десятках минут. Лично моя практика показала, что 20 минут более чем достаточно, чтобы полностью стереть микросхему. Меньшие цифры я не пробовал.
Обращаю внимание, что этот ультрафиолетовый стиратель весьма опасная штука. Жёсткий ультрафиолет оставляет ожоги на глазах и может привести к слепоте. Также внутри стоит ртутная лампа, с ней надо быть осторожнее, чтобы не разбить, дабы в будущем не дышать парами ртути.
Для того чтобы стереть микросхему нужно ножки микросхемы объединить между собой. Делается это для того, чтобы убрать потенциал при воздействии УФ излучения, поскольку в момент стирания микросхема работает как солнечная батарея, и напряжение, вырабатываемое на ней, может привести к пробою кристалла и выходу устройства из строя.
Всё готово к большой стирке.
Включаем и сквозь отверстие видим выходящее голубое свечение, которое говорит что работа пошла. Долго на это свечение смотреть не стоит, во избежание поражения глаз.
Голубое свечение.
По прошествии 20 минут, можно с успехом попробовать прошить микросхему.
▍ Прошивка микросхемы 2716 и тестирование её в чемодане
Итак, момент истины, не напрасны ли все мои усилия. Ставлю микросхему КМ573РФ2 в программатор через переходник, загружаю считанные ранее данные и прошиваю. Программатор говорит: полный успех.
Успешная прошивка микросхемы.
Теперь попробуем установить КМ573РФ2 вместо микросхемы К573РФ1, для этого сделаем ещё один переходник. Больше переходников богу переходников!
Но он достаточно простой, буквально несколько раз ткнуть паяльником и откусить лишние ноги.
Переходник для установки КМ573РФ2 вместо К573РФ1.
Но факир был пьян и фокус не удался, советские панели имеют очень большие отверстия, пришлось дополнительно делать проставку из текстолита и иголок.
Доработка переходника.
Внимательные заметили, что тут стоит импортная микросхема, но это всё взаимозаменяемо, и как я уже сказал, одно и то же.
Далее решил попробовать заливать свои прошивки в данные ПЗУ и столкнулся с тем, что программатор TL866 начал ругаться на отсутствие контакта, то не мог записать ПЗУ, то ещё что-то. И в какой-то момент мне это всё надоело. Тем более совершенно неясно, что же не работает: программатор, мой переходник, либо я плохо стираю ПЗУ.
И захотелось мне иметь другой программатор, который будет работать с 2716 без дополнительных танцев с бубном и переходников. И тут начинается второй квест — подключи программатор на LPT-порт в 2022 году.
▍ Программатор №2 на LPT
Как я уже сказал, у меня возникли проблемы с прошивкой микросхем, и было непонятно кто виноват. Поэтому было принято непопулярное решение, приобрести другой программатор. Очень не хотелось связываться с портом LPT, но все более-менее вменяемые программаторы на USB стоили просто неадекватных денег, для хобби экспериментов. Поэтому решил остановиться на программаторах на LPT-порт, хотя и понимал сколько проблем это вызовет.
В принципе есть суперуниверсальный, чуть ли не Open Source программатор Willem. Его можно найти за сущие копейки, но я боялся что буду иметь множество проблем с установкой ПО для работы с ним, а приобретать дополнительный компьютер мне не хотелось.
Поэтому остановился на более универсальном программаторе «ChipProg-2 Phyton«.
Программатор ChipProg-2.
Мне удалось его купить достаточно быстро и с доставкой. Но главная особенность этих программаторов, что они давным-давно сняты с производства и подключение их превращается в незамысловатый квест. Плюс, если учесть, что, я, как и все нормальные люди (сарказм), использую linux, то предстоит настоящий windows way.
Первоначально мне пришлось подобрать операционную систему, которая без проблем встанет на виртуальную машину Virtualbox, не будет падать с синим экраном, и на которой будет работать без проблем ПО программатора. Эмпирическим путём было установлено, что данный программатор может работать только на 32-х разрядных версиях Windows. В результате остановился на 32-битной версии Windows 7.
Следующий этап — железо. В моём компьютере нет LPT-порта, поэтому пришлось докупать дополнительную плату. Какую плату брать, совершенно не имеет значения. Прикупил, что меня устроило по цене, плюс решил, пускай будет два дополнительных СОМ-порта.
Платка LPT-порта.
Одна из неприятных задач будет пробросить аппаратный порт в виртуальную машину с Windows.
После того как установили плату в компьютер, надо посмотреть какие же ресурсы она использует. Нас интересуют порты ввода-вывода и прерывание. Вводим команду:
И получаем вот такой вывод:
Как я понял, что 0xd100 относится к LPT порту, а не COM-портам? Никак, только опытным путём.
Далее нужно будет пробросить эти порты в виртуальную машину. Для этого ещё нужно будет выгрузить драйвер linux, который автоматом подтянулся для работы с LPT-портом, иначе машина не запустится. Выгружаем драйвер:
И далее пробрасываем ресурсы LPT-порта в виртуальную машину:
Где win7 — имя вашей виртуальной машины.
Если вы всё сделали правильно, то после запуска виртуальной машины в диспетчере устройств появится LPT-порт. Если виртуальная машина не запускается, то вероятнее всего, вы забыли выгрузить драйвер, и происходит конфликт.
И пробую записать микросхему ПЗУ. Полный успех говорит нам, что мы всё сделали правильно.
Работа программатора ChipProg-2.
Благодаря этому программатору было установлено, что парочку микросхем я таки угробил своими варварскими экспериментами. На них он давал ошибку по току, тогда как китайский программатор «tl866» ничего внятного не говорил, просто что нет контакта по ногам.
На данный момент использую ChipProg-2 как более надёжный способ прошивки, без дополнительных переходников. Плюс, мне значительно больше нравится интерфейс программы для работы с программатором.
▍ Выводы
Микросхемы ПЗУ с ультрафиолетовым стиранием не так просты, как кажутся на первый взгляд, и работа с ними требует определённого оборудования и понимания, что же там происходит. С другой, это уже история, хотя ещё много оборудования используют подобные решения.
Скажу сразу, что программатор «TL866 II Plus» просто однозначно стоит иметь, если вы работаете с микроконтроллерами ПЗУ, FLASH и т.д. Тем более, что его переходники подходят и для других программаторов. Микросхему 2764 этот программатор прошивал без особых проблем. Если работаете с чем-то более серьёзным, то стоит смотреть в сторону программаторов «Beeprog+», «ChipProg-48» или аналогичных в зависимости от вашего бюджета. В любом случае они должны быть на USB.
Стоит ли развлечение с LPT портом потраченных сил? Ну так, для собственного удовольствия вполне. Для меня это было вполне достойное и бюджетное решение. Всё равно программатор «TL866 II Plus» у меня точно так же работает на виртуальной машине.
Стиратель лучше всего купить, по деньгам в пересчёте вашего времени, он обойдётся дешевле.
▍ В качестве постскриптума
Так удачно совпало, что покуда я разбирался, как достать прошивку из ПЗУ чемодана, xlat8086 выложила скан документации от своего УМК-80, за что, от всех владельцев УМК, ей большое спасибо.
Чтение документации и сравнение hex моей прошивки с прошивкой, приведённой в документации, установили отличия моего устройства от её, хоть и не очень значительные. Но некоторые функции лежат на своих местах, одна из самых ценных — функция задержки, которая делает задержку ровно 10мС.
Таким образом, если мы 100 раз вызовем эту функцию, мы получим задержку в 1 секунду. Да, написано 10 микросекунд, но на деле это 10 миллисекунд. Видимо опечатка. Функция обитает по адресу 0x35B, и в моём чемодане она тоже обитает по тому же адресу.
Набросаю небольшую функцию, которая будет зажигать и гасить символ с задержкой.
Компилируем и прошиваем полученный rom в микросхему 2716, и ставим её в панельку ПЗУ пользователя.
2716 установлено в панель пользовательского ПЗУ.
Даже записал небольшое кинцо, как же это всё работает в живом чемодане.
Таким образом, наконец-то можно переносить свои программы в чемодан, минуя перенабор программ вручную. Чего и требовалось достичь.
Постоянное запоминающее устройство (ПЗУ) — что это такое и зачем используется
В электронных устройствах одним из наиболее важных элементов, обеспечивающих работу всей системы считается память, которая делится на внутреннюю и внешнюю. Элементами внутренней памяти считают ОЗУ, ПЗУ и кеш процессора. Внешняя – это всевозможные накопители, которые подключаются к компьютеру из вне – жесткие диски, флешки, карты памяти и др.
Постоянное запоминающее устройство (ПЗУ) служит для хранения данных, изменение которых в процессе работы невозможно, оперативное запоминающее устройство (ОЗУ) для помещения в её ячейки информации от процессов, происходящих в текущий момент времени в системе, а кеш память используется для срочной обработки сигналов микропроцессором.
Что такое ПЗУ
ПЗУ или ROM (Read only memory – Только для чтения) – типичное устройство хранения неизменяемой информации, включенное в состав почти каждого компонента ПК и телефона и требующееся для запуска и работы всех элементов системы. Содержимое в ROM записано производителем аппаратного обеспечения и содержит директивы для предварительного тестирования и запуска устройства.
Свойствами ПЗУ являются независимость от питания, невозможность перезаписи и возможность хранить информацию длительные сроки. Информация, содержащаяся в ROM, вносится разработчиками однажды, и аппаратное обеспечение не допускает её стирания, хранится до окончания службы компьютера или телефона, или его поломки. Конструктивно ПЗУ защищены от повреждений при перепадах напряжения, поэтому нанести ущерб содержащейся информации могут только механические повреждения.
По архитектуре делятся на масочные и программируемые:
Основные функции
В блоки памяти ROM вносят информацию по управлению аппаратным обеспечением заданного устройства. ПЗУ включает в себя следующие подпрограммы:
Архитектура
Постоянные запоминающие устройства выполнены в виде двухмерного массива. Элементами массива являются наборы проводников, часть которых не затрагивается, прочие ячейки разрушаются. Проводящие элементы являются простейшими переключателями и формируют матрицу за счет поочередного соединения их к рядам и строкам.
Если проводник замкнут, он содержит логический ноль, разомкнут – логическую единицу. Таким образом в двухмерный массив физических элементов вносят данные в двоичном коде, которые считывает микропроцессор.
Разновидности
В зависимости от способа изготовления устройства ПЗУ делят на:
Разница между RAM и ROM
Отличия между двумя видами аппаратного обеспечения, заключаются в её сохранности при отключении питания, скорости и возможности доступа к данным.
В оперативной памяти (Random access memory или RAM) информация содержится в последовательно расположенных ячейках к каждой из которых возможно получить доступ посредством программных интерфейсов. RAM содержит данные о выполняемых в текущий момент процессах в системе, таких как программы, игры, содержит значения переменных и списки данных в стеках и очередях. При отключении компьютера или телефона RAM память полностью очищается. По сравнению с ROM памятью она отличается большей скоростью доступа и потреблением энергии.
ROM память работает медленнее, и для своей работы потребляет меньше энергии. Главное отличие заключается в невозможности изменять входящие данные в ПЗУ, в то время как в ОЗУ информация меняется постоянно.
Постоянное запоминающее устройство (ПЗУ или ROM)
В ПЗУ находятся:
— тестовые программы, проверяющие при каждом включении компьютера правильность работы его блоков;
— информация о том, где на диске расположена операционная система.
Типы ПЗУ:
ПЗУ с масочным программированием это память, в которую информация записана раз и навсегда в процессе изготовления полупроводниковых интегральных схем. Постоянные запоминающие устройства применяются только в тех случаях, когда речь идет о массовом производстве, т.к. изготовление масок для интегральных схем частного применения обходится весьма недешево.
Программирование ПЗУ – это однократно выполняемая операция, т.е. информация, когда-то записанная в ППЗУ, впоследствии изменена быть не может.
СППЗУ (стираемое программируемое постоянное запоминающее устройство). При работе с ним, пользователь может запрограммировать его, а затем стереть записанную информацию.
ЭИПЗУ (электрически изменяемое постоянное запоминающее устройство). Его программирование и изменение осуществляются с помощью электрических средств. В отличии от СППЗУ для стирания информации, хранимой в ЭИПЗУ, не требуется специальных внешних устройств.
Наглядно ОЗУ и ПЗУ можно представить себе в виде массива ячеек, в которые записаны отдельные байты информации. Каждая ячейка имеет свой номер, причем нумерация начинается с нуля. Номер ячейки является адресом байта.
Центральный процессор при работе с ОЗУ должен указать адрес байта, который он желает прочитать из памяти или записать в память. Разумеется, из ПЗУ можно только читать данные. Прочитанные из ОЗУ или ПЗУ данные процессор записывает в свою внутреннюю память, устроенную аналогично ОЗУ, но работающую значительно быстрее и имеющую емкость не более десятков байт.
Процессор может обрабатывать только те данные, которые находятся в его внутренней памяти, в ОЗУ или в ПЗУ. Все эти виды устройства памяти называются устройствами внутренней памяти, они обычно располагаются непосредственно на материнской плате компьютера (внутренняя память процессора находится в самом процессоре).
Кэш-память. Обмен данными внутри процессора происходит намного быстрее, чем обмен данными между процессором и оперативной памятью. Поэтому, для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают так называемую сверхоперативную или кэш-память. Когда процессору нужны данные, он сначала обращается к кэш-памяти, и только тогда, когда там отсутствуют нужные данные, происходит обращение к оперативной памяти. Чем больше размер кэш-памяти, тем большая вероятность, что необходимые данные находятся там. Поэтому высокопроизводительные процессоры имеют повышенные объемы кэш-памяти.
Различают кэш-память первого уровня (выполняется на одном кристалле с процессором и имеет объем порядка несколько десятков Кбайт), второго уровня (выполняется на отдельном кристалле, но в границах процессора, с объемом в сто и более Кбайт) и третьего уровня (выполняется на отдельных быстродействующих микросхемах с расположением на материнской плате и имеет объем один и больше Мбайт).
Постоянное запоминающее устройство
Постоянное запоминающее устройство (ПЗУ) — энергонезависимая память, используется для хранения массива неизменяемых данных.
Содержание
Классификация
По типу исполнения
По разновидностям микросхем ПЗУ
Применение
В постоянную память часто записывают микропрограмму управления техническим устройством: телевизором, сотовым телефоном, различными контроллерами, или компьютером (BIOS или OpenBoot на машинах SPARC).
BootROM — прошивка, такая, что если её записать в подходящую микросхему ПЗУ, установленную в сетевой карте, то становится возможна загрузка операционной системы на компьютер с удалённого узла локальной сети. Для встроенных в ЭВМ сетевых плат BootROM можно активировать через BIOS.
Исторические типы ПЗУ
Постоянные запоминающие устройства стали находить применение в технике задолго до появления ЭВМ и электронных приборов. В частности, одним из первых типов ПЗУ был кулачковый валик, применявшийся в шарманках, музыкальных шкатулках, часах с боем.
С развитием электронной техники и ЭВМ возникла необходимость в быстродействующих ПЗУ. В эпоху вакуумной электроники находили применение ПЗУ на основе потенциалоскопов, моноскопов, лучевых ламп. В ЭВМ на базе транзисторов в качестве ПЗУ небольшой емкости широко использовались штепсельные матрицы. При необходимости хранения больших объёмов данных (для ЭВМ первых поколений — несколько десятков килобайт) применялись ПЗУ на базе ферритовых колец (не следует путать их с похожими типами ОЗУ). Именно от этих типов ПЗУ и берет свое начало термин «прошивка» — логическое состояние ячейки задавалось направлением навивки провода, охватывающего кольцо. Поскольку тонкий провод требовалось протягивать через цепочку ферритовых колец для выполнения этой операции применялись металлические иглы, аналогичные швейным. Да и сама операция наполнения ПЗУ информацией напоминала процесс шитья.
См. также
Полезное
Смотреть что такое «Постоянное запоминающее устройство» в других словарях:
постоянное запоминающее устройство — ПЗУ Запоминающее устройство, из которого может производиться только считывание данных. [ГОСТ 25492 82] ПЗУ Постоянное Запоминающее Устройство Как правило — часть микропроцессора, в которой находится операционная система и, возможно, часть… … Справочник технического переводчика
ПОСТОЯННОЕ ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО — Энергонезависимая память, используется для хранения данных, которые никогда не потребуют изменения. Содержание постоянной памяти зашивается в устройстве при его изготовлении для постоянного хранения. Из ПЗУ можно только читать. В постоянную… … Словарь бизнес-терминов
Постоянное запоминающее устройство — 6. Постоянное запоминающее устройство ПЗУ Read only memory ROM Запоминающее устройство, из которого может производиться только считывание данных Источник: ГОСТ 25492 82: Устройства цифровых вычислительных машин запоминающие. Термины и определения … Словарь-справочник терминов нормативно-технической документации
постоянное запоминающее устройство — pastovioji atmintinė statusas T sritis automatika atitikmenys: angl. fixed storage; permanent storage; read only storage vok. Festwertspeicher, m; Nur Lese Speicher, m; Totspeicher, m rus. постоянное запоминающее устройство, n pranc. mémoire fixe … Automatikos terminų žodynas
Постоянное запоминающее устройство компьютера — (ROM Read only memory) устройство для хранения и считывания неизменяемых данных … Издательский словарь-справочник
ПОСТОЯННОЕ ЗАПОМИНАЮЩЕЕ УСТРОЙСТВО (ПЗУ) — (read only memory, ROM) Тип основного запоминающего устройства компьютера (main store memory), позволяющего считывать, но не распечатывать информацию; не уничтожает ее при выключении компьютера. Как правило, в ПЗУ хранится основная программа… … Словарь бизнес-терминов
постоянное запоминающее устройство на основе компакт-диска — Оптический накопитель информации емкостью 650 – 700 Mb. Информация на диске записывается в виде спиральной дорожки так называемых питов (углублений), выдавленных на поликарбонатном слое. Каждый пит имеет примерно 125 нм в глубину и 500 нм в … Справочник технического переводчика
Постоянное запоминающее устройство — запоминающее устройство, из которого может производиться только считывание данных … Краткий толковый словарь по полиграфии
постоянное запоминающее устройство с эксплуатационным программированием — vartotojo programuojama pastovioji atmintinė statusas T sritis automatika atitikmenys: angl. field programmable read only memory vok. anwenderprogrammierbarer Festwertspeicher, m; anwenderprogrammierbarer ROM, m rus. постоянное запоминающее… … Automatikos terminų žodynas
постоянное запоминающее устройство с эксплуатационным программированием — pastovioji vartotojo programuojama atmintinė statusas T sritis radioelektronika atitikmenys: angl. field programmable read only memory vok. anwenderprogrammierbarer Festwertspeicher, m; anwenderprogrammierbarer ROM, m rus. постоянное запоминающее … Radioelektronikos terminų žodynas
ПЗУ — это флеш память?
Последнее обновление: 12/07/2022
Часто при описании характеристик используются аббревиатуры без точного определения типа источника информации. Из статьи вы узнаете, что такое ПЗУ, какое назначение и применение у ПЗУ, а так же в каких устройствах используется флэш память.
Что такое ПЗУ?
ПЗУ – сокращение аббревиатуры Постоянное Запоминающее Устройство. К таким устройствам относятся любые носители информации, способные хранить записанные данные при отсутствии электрического питания: жесткие диски — HDD, твердотельные накопители – SSD, микросхемы или флеш карты.
Какое назначение у ПЗУ?
Хранение данных не изменяемых со временем или после отключения питания с целью последующего чтения.
ПЗУ все еще используется?
Да, во всех промышленных и бытовых устройствах для хранения определенных данных или запуска установленных в память программ. Наиболее распространено использование ПЗУ в компьютерах, серверах, телефонах и планшетах. Умные часы и фитнес браслеты так же содержат микросхему флэш памяти для хранения определенных данных.
Носители с флэш памятью используются в портативных и подвижных устройствах: телефоны, смартфоны, часы, браслеты, камеры и т.д. В неподвижных устройствах – сервер, персональный компьютер и т.д. применяются носители механического типа – HDD. Основная причина в дешевизне производства накопителей механического типа, так как при одинаковом объеме вмещаемых данных HDD дешевле в несколько раз. При этом носители механического типа массивнее, тяжелее и медленнее накопителей построенных на флэш памяти. Ещё HDD рассчитаны на работу только в стационарном положение, а любое перемещение выводит накопитель из строя.
Каковы 3 применения флеш-памяти?
В чем разница между eeprom и флэш-памятью?
Разница в способе записи данных и режиме стирания. В EEPROM используется метод автоэлектронной эмиссии, а в флэш памяти – инжекция горячих носителей. Кроме того в EEPROM стирание данных выполняется побайтно, тогда как в флэш памяти данные стираются блоками. Поэтому EEPROM накопители в разы уступают в скорости записи/стирания данных флэш накопителям. Ещё для EEPROM требуется больше пространства на кристалле относительно флэш памяти, что сказывается на стоимости производства.
Флэш-память быстрее, чем SRAM?
Нет. В SRAM время доступа обычно 2 нс, тогда в флэш памяти время доступа достигает десятков или сотен нс. Ещё на скорость влияет тип флэш памяти. Наиболее быстрый тип SLC используется только в дорогостоящих серверных накопителях или в качестве кэша. Наибольшее распространение получила память TLC и QLC, существенно уступающая в скорости работе не только SLC, но и промежуточному типу MLC.
Почему оперативная память быстрее флэш-памяти?
Одна из причин в интерфейсе передачи данных. Модули оперативной памяти напрямую связаны с процессором, а для передачи данных используются линии, напечатанные на материнской плате. Пропускная способность интерфейса для работы с флэш накопителями заметно ниже. Кроме того на скорость работы влияет сам накопитель и тип используемой памяти. Чем больше бит требуется записать в одну ячейку, тем больше времени требуется чтение и запись данных.
Видео инструкции
Вывод
В статье подробно описано, что такое ПЗУ, какое назначение и применение ПЗУ. В качестве ПЗУ используются носители механического типа и построенные на микросхемах флэш памяти. Благодаря отсутствию подвижных частей флэш память широко используется в портативной и переносной электронике, тогда как накопители механического типа — стационарных устройствах. Так же отсутствие механики способствует увеличению скорости обмена данными в 10-40 раз. При этом такой скорости пока не достаточно для достижения значений оперативной памяти, превосходящую в 10-40 раз флэш память.
Какие у вас имеются вопросы? Оставляйте сообщения в комментариях внизу статьи.
Что такое ПЗУ и ОЗУ в компьютере или телефоне?
Современные компьютеры – это сложнейшие электронные устройства, выполняющие миллионы простейших операций в секунду.
Благодаря этому мы можем наслаждаться сложными игровыми мирами, смотреть фильмы в высоком качестве изображения, бродить в интернете и т.д. Мало чем уступают компьютерам и телефоны, которые тоже сегодня обязательно оснащаются всеми необходимыми атрибутами вычислительного устройства – высокопроизводительным процессором, оперативной и постоянной памятью, сокращенно – ОЗУ и ПЗУ.
Что такое ОЗУ?
Необходимость в оперативном запоминающем устройстве (сокращенно – ОЗУ или RAM) возникла уже у самых первых вычислительных машин, созданных в далекие 40-е годы. Буферная память, как ее иногда называют другими словами, используется при выполнении любого процесса.
Фактически, все операции, выполняемые процессором, используют ОЗУ для сохранения промежуточных результатов. Данные, хранимые в ОЗУ, изменяются очень быстро и никогда не сохраняются после выключения компьютера или телефона.
Объем оперативной памяти выбирается в соответствии с быстродействием процессора. От обширной оперативной памяти будет мало толку в сочетании с маломощным процессором. Соответственно, самый производительный процессор не сможет эффективно работать в комплекте с небольшим по объему памяти ОЗУ.
Впрочем, мощному процессору можно помочь, «отщипнув» кусочек памяти от жесткого диска. Для телефона этот способ не годится, а в стационарном компьютере опытный пользователь вполне может осуществить «разгон», увеличив скорость его процессов.
Говоря простыми словами, ОЗУ – это устройство, используемое компьютером или телефоном как черновик. Туда записываются промежуточные результаты, которые быстро стираются и заменяются новыми, тоже промежуточными. Когда компьютер выключают, «черновик» уничтожается, так как хранить данные, записанные в его памяти, совершенно не обязательно.
Что такое ПЗУ?
Намного более сложными являются постоянные запоминающие устройства (сокращенно – ПЗУ или ROM), которые обладают одним очень важным свойством – сохраняют записанную информацию даже при полном выключении электропитания. В стационарном компьютере используется несколько видов ПЗУ:
— интегральная микросхема, на которой записан БИОС, размещенная на материнской плате и питающаяся от собственной батарейки-«таблетки»;
— жесткий диск, или винчестер, внутреннего или внешнего размещения;
— съемные карты памяти (флеш-память, microSD карты и т.д.);
— лазерные диски CD, DVD и их накопители;
— флоппи-диски (сейчас уже полностью вышли из употребления).
Все эти устройства можно объединить одним названием – постоянные запоминающие устройства. Но, как правило, когда говорят о ПЗУ компьютера или телефона, имеют в виду только микросхему, в которой «прошит» базовый комплекс программного обеспечения.
Для того, чтобы изменить записанную в ней информацию, нужно специальное и очень сложное оборудование, обычный пользователь ни при каких условиях не сможет это сделать.
Информация, сохраняемая другими типами ПЗУ, делится на несколько разделов по степени важности для устройства:
— раздел для операционной системы;
— раздел для программ и приложений;
— раздел для остальной информации.
Операционную систему компьютера, как и мобильного телефона, при желании можно заменить или внести в нее исправления. Однако делать это нужно с осторожностью и только в том случае, когда вы полностью понимаете, к чему приведут эти изменения.
Если работа ОС будет нарушена, придется обращаться к специалисту для ее настройки, а может, и переустановки. Остальные разделы памяти могут без особых проблем стираться и перезаписываться, полностью или частично – на работоспособности устройства это не скажется.
Итак, постоянное запоминающее устройство компьютера – это его «память», информация в которой сохраняется, даже если питание будет выключено. ПЗУ можно назвать чистовой тетрадью компьютера, куда записываются только результаты процессов для постоянного хранения.
Типы ПЗУ
ПЗУ – расшифровывается как постоянное запоминающее устройство, обеспечивающее энергонезависимое хранение информации на каком-либо физическом носителе. По способу хранения информации ПЗУ можно разделить на три типа:
1. ПЗУ, основанные на магнитном принципе хранения информации.
Принцип работы этих устройств основан на изменении направления вектора намагниченности участков ферромагнетика под воздействием переменного магнитного поля в соответствии со значениями битов записываемой информации.
Ферромагнетик – вещество, способное при температуре ниже определенного порога (точки Кюри) обладать намагниченностью при отсутствии внешнего магнитного поля.
Считывание записываемых данных в таких устройствах основано на эффекте электромагнитной индукции или магниторезистивного эффекта. Этот принцип реализуется в устройствах с подвижным носителем в виде диска или ленты.
Электромагнитной индукцией называется эффект возникновения электрического тока в замкнутом контуре при изменении магнитного потока проходящего через него.
Магниторезистивный эффект основан на изменении электрического сопротивления твердотельного проводника под действием внешнего магнитного поля.
Основное преимущество данного типа – большой объем хранимой информации и низкая стоимость единицы хранимой информации. Основной недостаток – наличие подвижных частей, большие габариты, низкая надежность и чувствительность к внешним воздействиям (вибрация, удары, перемещения и т.д.)
2. ПЗУ, основанные на оптическом принципе хранения информации.
Основное достоинство данного типа ПЗУ – низкая стоимость носителя, удобство транспортирования и возможность тиражирования. Недостатки – низкая скорость чтения/записи, ограниченное количество перезаписей, потребность в считывающем устройстве.
3. ПЗУ, основанные на электрическом принципе хранения информации.
Принцип работы этих устройств основан на пороговых эффектах в полупроводниковых структурах – возможности хранения и регистрации наличия заряда в изолированной области.
Этот принцип используется в твердотельной памяти – памяти, не требующей использование подвижных частей для чтения/записи данных. Примером ПЗУ, основанном на электрическом принципе хранения информации, может служить flash – память.
Основное достоинство данного типа ПЗУ – высокая скорость чтения/записи, компактность, надежность, экономичность. Недостатки – ограниченное число перезаписи.
На данный момент существуют или находятся на этапе разработки и другие, «экзотические» типы постоянной памяти, такие как:
Магнитно-оптическая память – память, сочетающая свойства оптических и магнитных накопителей. Запись на такой диск осуществляется путем нагрева ячейки лазером до температуры около 200 о С. Разогретая ячейка теряет магнитный заряд. Далее ячейку можно остудить, что будет означать, что в ячейку записан логический ноль, либо зарядить заново магнитной головкой, что будет означать, что в ячейку записана логическая единица.
После охлаждения магнитный заряд ячейки изменить нельзя. Считывание производится лазерным лучом меньшей интенсивности. Если в ячейки содержится магнитный заряд, то лазерный луч поляризуется, а считывающее устройство определяет, является ли лазерный луч поляризованным. За счет «закрепления» магнитного заряда при охлаждении магнитно-оптические обладают высокой надежностью хранения информации и теоретически могут иметь плотность записи большую, чем ПЗУ основанное только на магнитном принципе хранения информации. Однако заменить «жесткие» диски они не могут из-за очень низкой скорости записи, обусловленную необходимостью высокого нагрева ячеек.
Широкого распространения магнитно-оптическая память не получила и используется очень редко.
Голографическая память – отличается от существующих наиболее распространенных типов постоянной памяти, использующих для записи один или два поверхностных слоя, возможностью записывать данных по «всему» объему памяти с помощью различных углов наклона лазера. Наиболее вероятно применение такого типа памяти в ПЗУ на базе оптического хранения информации, где уже не в новинку оптические диски с несколькими информационными слоями.
Существуют и другие, совсем уж экзотические типы постоянной памяти, но они даже в лабораторных условиях балансируют на грани научной фантастики, поэтому упоминать о них не буду, поживем – увидим.