Тайминги оперативной памяти какие лучше

Тайминги оперативной памяти какие лучше

Тайминги

Тайминги оперативной памяти какие лучше

Введение

Модули памяти DDR и DDR2 классифицируются по максимальной частоте, на которой они могут работать. Но, помимо частоты, есть и другие параметры, определяющие производительность памяти – это тайминги. Тайминги – это числа, такие как 2-3-2-6-T1, 3-4-4-8 или 2-2-2-5, чем меньше числа, тем лучше. Давайте разберемся, что обозначает каждая цифра этих чисел.

Модули памяти DDR и DDR2 маркируются по классификации DDRxxx/PCyyyy.

Второе число – yyyy – указывает максимальную скорость передачи данных в МБ/с.

Максимальная скорость передачи данных у модулей DDR400 равна 3200 МБ/с, следовательно, их маркируют PC3200. Модули DDR2-667 передают данные со скоростью 5336 МБ/с, и их маркируют как PC2-5400. Как видите, после “DDR” или «PC» мы ставим цифру «2», чтобы указать, что речь идет о памяти DDR2, а не DDR.

Первая классификация – DDRxxx – является стандартной для классификации чипов памяти, вторая – PCyyyy – для модулей памяти. На рисунке 1 представлен модуль памяти PC2-4200 компании Corsair, который сделан на чипах DDR2-533.

Тайминги оперативной памяти какие лучше

Модуль памяти DDR2-533/PC2-4200

Максимальную рабочую частоту модуля памяти можно рассчитать по следующей формуле:

максимальная теоретическая скорость передачи данных = тактовая частота x число битов / 8

Так как DIMM модули передают одновременно 64 бита, то “число битов” будет 64. Так как 64 / 8 равно 8, то эту формулу можно упростить:

максимальная теоретическая скорость передачи данных = тактовая частота x 8

Если модуль памяти установлен в компьютере, шина памяти которого работает на более низкой тактовой частоте, то максимальная скорость передачи данных у этого модуля памяти будет ниже его максимальной теоретической скорости передачи данных. На практике непонимание этого факта встречается довольно часто.

Например, Вы купили 2 модуля памяти DDR500/PC4000. Даже при том, что они маркированы как DDR500, в вашей системе они не будут автоматически работать на частоте 500 МГц. Это максимальная тактовая частота, которую они поддерживают, но она не всегда совпадает с той тактовой частотой, на которой они будут работать. Если Вы установите их в обычный персональный компьютер, поддерживающий модули DDR, то эти модули памяти будут работать на частоте 400 МГц (DDR400) – максимальной частоте стандарта DDR. При этом максимальная скорость передачи данных будет равна 3200 МБ/с (или 6400 МБ/с, если модули памяти работают в двухканальном режиме). Таким образом, модули не будут автоматически работать на частоте 500 МГц, и не достигнут скорости передачи данных в 4000 МБ/с.

Зачем же, в таком случае, такие модули покупают? Для разгона. Так как изготовитель гарантирует, что эти модули могут работать на частотах до 500 МГц, Вы знаете, что можно поднять частоту шины памяти до 250 МГц, и таким образом увеличить быстродействие компьютера. Но это можно будет сделать при условии, что материнская плата компьютера поддерживает такой разгон. Поэтому, если Вы не хотите «разгонять» свой компьютер, то бесполезно покупать модули памяти с маркировкой по тактовой частоте выше, чем обычная частота шины памяти материнской платы.

Для среднего пользователя этой информации о модулях памяти DDR/DDR2 достаточно. Продвинутому же пользователю нужно знать ещё об одной характеристике: темповости работы памяти, или, как ещё называют совокупность временных параметров работы памяти – тайминги, задержки или латентность. Рассмотрим эти параметры модулей памяти подробнее.

Тайминги

Именно из-за разницы в таймингах, 2 модуля памяти, имеющие одну и ту же теоретическую максимальную скорость передачи данных, могут иметь разную пропускную способность. Почему так может быть, если оба модуля работают на одной и той же частоте?

Для выполнения каждой операции чипу памяти нужно вполне определенное время – тайминги как раз и определяют это время, выраженное в количестве циклов тактовой частоты шины памяти. Приведем пример. Рассмотрим самый известный параметр, который называют CAS Latency (или CL, или «время доступа»), который указывает, через сколько тактовых циклов модуль памяти выдает запрошенные центральным процессором данные. Модуль памяти с CL 4 запоздает с ответом на 4 тактовых цикла, тогда как модуль памяти с CL 3 запаздывает на 3 тактовых цикла. Хотя оба модуля могут работать на одной и той же тактовой частоте, второй модуль будет работать быстрее, поскольку он будет выдавать данные быстрее, чем первый. Эта проблема известна под названием «время ожидания».

Тайминги памяти обозначаются рядом чисел, например, так: 2-3-2-6-T1, 3-4-4-8 или 2-2-2-5. Каждое из этих чисел указывают, за сколько тактовых циклов память выполняет определенную операцию. Чем меньше эти числа, тем быстрее память.

Тайминги оперативной памяти какие лучше

DDR2 модуль памяти с таймингами 5-5-5-15

Числа таймингов указывают параметры следующих операций: CL-tRCD-tRP-tRAS-CMD. Чтобы было понятнее, представьте себе, что память организована в виде двумерной матрицы, где данные хранятся на пересечении строк и столбцов.

CL: CAS Latency – время, проходящее с момента посыла команды в память до начала ответа на этот запрос. То есть это время, которое проходит между запросом процессора некоторых данных из памяти и моментом выдачи этих данных памятью.

tRCD: задержка от RAS до CAS – время, которое должно пройти с момента обращения к строке матрицы (RAS), до момента обращения к столбцу матрицы (CAS), в которых хранятся нужные данные.

tRP: RAS Precharge – интервал времени с момента закрытия доступа к одной строке матрицы и началом доступа к другой строке данных.

tRAS – пауза, которая нужна памяти, чтобы вернуться в состояние ожидания следующего запроса.

CMD: Скорость поступления команды (Command Rate) – время с момента активации чипа памяти до момента, когда можно будет обратиться к памяти с первой командой. Иногда этот параметр не указывается. Обычно это T1 (1 тактовый цикл) или T2 (2 тактовых цикла).

Обычно у пользователя есть 2 возможности. При конфигурации компьютера использовать стандартные тайминги памяти. В большинстве случаев для этого при настройке материнской платы в пункте конфигурации памяти нужно выбрать параметр «авто». Можно также вручную сконфигурировать компьютер, выбрав более низкие тайминги, что может увеличить производительность системы. Нужно заметить, что не все материнские платы позволяют изменять тайминги памяти. Кроме того, некоторые материнские платы могут не поддерживать очень низкие тайминги, из-за чего они могут сконфигурировать ваш модуль памяти так, что он будет работать с более высокими таймингами.

Тайминги оперативной памяти какие лучше

Конфигурирование таймингов памяти в настройках материнской платы

При разгоне памяти может случиться так, что для того, чтобы система работала устойчиво, вам, возможно, придется в настройках увеличить тайминги работы памяти. Вот здесь-то и могут быть очень интересные ситуации. Даже при том, что частота памяти будет поднята, из-за увеличения задержек в работе памяти её пропускная способность может уменьшиться.

В этом ещё одно преимущество скоростных модулей памяти, ориентированных на разгон. Помимо гарантии работы модуля памяти на маркированной тактовой частоте, изготовитель также гарантирует, что при этом Вы сможете сохранить паспортные тайминги модуля.

Возвращаясь к примеру с модулем памяти DDR500/PC4000 – даже при том, что с модулями DDR400/PC3200 Вы сможете достичь частоты в 500 МГц (250 МГц x2), для них, возможно, придется увеличить тайминги, в то время как для модулей DDR500/PC4000 изготовитель гарантирует, что Вы сможете достичь 500 МГц, сохранив указанные в маркировке тайминги.

Далее – рассмотрим в деталях все параметры, из которых состоят тайминги.

CAS Latency (CL)

Как уже упоминалось выше, CAS Latency (CL) является очень важным параметром памяти. Он указывает, сколько тактовых циклов нужно памяти для выдачи запрашиваемых данных. Память с CL = 3 задержится с ответом на 3 тактовых цикла, а память с CL = 5 сделает то же самое только через 5 тактовых циклов. Таким образом, из двух модулей памяти, работающих на одной и той же тактовой частоте, тот модуль, у которого CL меньше, будет быстрее.

Обратите внимание, что здесь под тактовой частотой имеется в виду реальная тактовая частота, на которой работает модуль памяти – то есть половина указываемой частоты. Так как память DDR и DDR2 за один тактовый цикл может выдавать данные 2 раза, то для них указывается двойная реальная тактовая частота.

На рисунке 4 показан пример работы CL. На нем приведены 2 примера: для модуля памяти с CL = 3 и модуля памяти с CL = 5. Синим цветом обозначена команда «читать».

Тайминги оперативной памяти какие лучше

Память с CL = 3 обеспечивает 40% преимущество по времени ожидания по сравнению с памятью с CL = 5, считая, что они обе работают на одной тактовой частоте.

Можно даже вычислить время задержки, после которого память начнет выдавать данные. Период каждого тактового цикла можно легко вычислить по следующей формуле:

Таким образом, период одного тактового цикла памяти DDR2-533, работающей на частоте 533 МГц (частота шины – 266,66 МГц) равен 3,75 нс (нс = наносекунда; 1 нс = 0,000000001 с). Имейте в виду, что при расчетах нужно использовать реальную тактовую частоту, которая равна половине номинальной частоты. Таким образом, память DDR2-533 задержит выдачу данных на 18,75 нс, если CL =5, и на 11,25 нс, если CL =3.

Память SDRAM, DDR и DDR2 поддерживает пакетный режим выдачи данных, когда задержка перед выдачей следующей порции данных составляет всего один тактовый цикл, если эти данные располагаются по адресу, следующему за текущим адресом. Поэтому, в то время как первые данные выдаются с задержкой на CL тактовых циклов, следующие данные будут выдаваться сразу же за первыми, не задерживаясь ещё на CL циклов.

Задержка от RAS до CAS (RAS to CAS Delay [tRCD])

Каждый чип памяти внутренне организован как двумерная матрица. В каждом пересечении строк и столбцов имеется маленький конденсатор, который отвечает за сохранение “0” или “1” – единиц информации, или данных. Процедура доступа к хранящимся в памяти данным состоит в следующем: сначала активируется строка с нужными данными, затем столбец. Эта активация происходит по двум контрольным сигналам – RAS (Row Address Strobe) и CAS (Column Address Strobe). Чем меньше временной интервал между этими двумя сигналами, тем лучше, поскольку данные будут считываться быстрее. Это время называется задержкой от RAS до CAS (RAS to CAS Delay [tRCD]). Это иллюстрирует рисунок 5 – в данном случае для памяти с tRCD = 3.

Тайминги оперативной памяти какие лучше

RAS to CAS Delay (tRCD)

Как видите, задержка от RAS до CAS является также числом тактовых циклов, проходящих с момента прихода команды “Active” (активировать) до команды «чтение» или «запись».

Как и в случае с CAS Latency, RAS to CAS Delay имеет дело с реальной тактовой частотой (которая равна половине маркировочной частоты), и чем меньше этот параметр, тем быстрее работает память, так как в этом случае чтение или запись данных начинается быстрее.

RAS Precharge (tRP)

После получения данных из памяти, нужно послать в память команду Precharge, чтобы закрыть строку памяти, из которой считывались данные, и разрешить активацию другой строки. RAS Precharge time (tRP) – временной интервал между командой Precharge и моментом, когда память сможет принять следующую команду активации – Active. Как мы узнали в предыдущем разделе, команда “active” запускает цикл чтения или записи.

Тайминги оперативной памяти какие лучше

RAS Precharge (tRP)

На рисунке 6 приведен пример для памяти с tRCD = 3.

Как и в случае с другими параметрами, RAS Precharge имеет дело с реальной тактовой частотой (которая равна половине маркировочной частоты), и чем меньше этот параметр, тем быстрее работает память, так как в этом случае команда “active” поступает быстрее.

Суммируя рассмотренное выше, получаем, что время, которое проходит с момента выдачи команды Precharge (закрыть строку и …) до фактического получения данных процессором равно tRP + tRCD + CL.

Другие параметры

Рассмотрим 2 других параметра – Active to Precharge Delay (tRAS) и Command Rate (CMD). Как и в случае с другими параметрами, эти 2 параметра имеют дело с реальной тактовой частотой (которая равна половине маркировочной частоты), и чем меньше эти параметры, тем быстрее память.

Active to Precharge Delay (tRAS): если в память поступила команда “Active”, то следующая команда “Precharge” не будет восприниматься памятью, пока не пройдет время равное tRAS. Таким образом, этот параметр определяет временной предел, после которого память может начать считывать (или записывать) данные из другой строки.

Command Rate (CMD) – отрезок времени с момента активации чипа памяти (прихода сигнала на вывод CS – Chip Select [выбор чипа]) до того как чип сможет принять какую-нибудь команду. Этот параметр обозначается буквой “T” и может принимать значения 1Т или 2T – 1 тактовый цикл или 2 тактовых цикла, соответственно.

Источник

Тайминги оперативной памяти: разбираемся, какие значения лучше

Разбираемся в том, что такое тайминги оперативной памяти и какое значение они имеют.

Тайминги оперативной памяти какие лучше

Тайминги оперативной памяти какие лучше

От скорости работы оперативной памяти во многом зависит быстродействие всего компьютера, поэтому и ее выбор не менее важен, чем покупка «правильного» процессора или материнской платы. Ну а среди важнейших параметров любой оперативки выделяются частота и тайминги. Но если с первой все понятно, то тайминги для многих остаются темным лесом. Сегодня мы расскажем, что скрывается за этим непонятным набором циферок, и какое значение он имеет.

Содержание

Что такое тайминги

Если говорить очень простым языком, оперативная память представляет собой массивы с двухмерной таблицей, в ячейках которой хранится нужная информация. А массивы с ячейками одинакового размера, в свою очередь, объединяются в так называемые банки.

Тайминги оперативной памяти какие лучше

Для выполнения любой операции с данными из этой таблицы контроллеру и чипу памяти требуется определенное число тактовых циклов шины памяти. Ну а тайминг — это и есть число таких циклов, или число циклов на которое запоздает выполнение определенной операции с памятью. Отсюда и само название — тайминг или задержка.

Тайминги оперативной памяти какие лучше

Собственно, именно поэтому две оперативной памяти с одинаковой частотой, но разными таймингами будут работать по-разному, причем наиболее быстрой окажется память именно с меньшей задержкой.

Тайминги оперативной памяти какие лучше

Какие тайминги бывают

Каждую операцию с оперативной памятью можно разбить на несколько этапов. Поэтому в характеристиках любой планки ОЗУ указывается несколько таймингов — задержек, которые возникают на определенном этапе работы с памятью. Числа таймингов указывают на выполнение следующих операций:

CL: CAS Latency – число тактов, которое проходит с отправки запроса в память до начала ответа на него.
tRCD: RAS to CAS Delay – количество тактов, которое требуется контроллеру для активации нужной строки банки.
tRP: RAS Precharge – число тактов для заряда и закрытия одной строки, после чего становится возможна активация следующей строки.
tRAS: Row Active Time — минимальное число тактов, в течение которого строка будет активна. Она не может быть закрыта раньше этого времени.

Тайминги оперативной памяти какие лучше

Все эти тайминги указываются в параметрах оперативной памяти именно в том порядке, который мы привели. Возьмем, к примеру, оперативную память Patriot Memory VIPER STEEL DDR4-3733 CL-17 21-21-41. Мы видим, что она относится к типу DDR4 и работает на тактовой частоте 3733 МГц. Ей требуется 17 тактов для начала ответа на поступивший запрос (CL). Активация нужной строки занимает 21 такт (tRCD) и столько же циклов уходит на ее закрытие и активацию следующей строки (tRP). Причем сама строка может быть закрыта не раньше чем через 41 такт (tRAS).

Как вы видите, каждая цифра в названии оперативной памяти имеет свое значение. И, разобравшись в этом, вы легко сможете подобрать самую подходящую для вас оперативку.

Тайминги оперативной памяти какие лучше

Как узнать тайминги ОЗУ

Значения таймингов оперативной памяти можно посмотреть на ее странице в любом мало-мальски уважающем себя магазине или на сайте производителя. Если же вы хотите увидеть характеристики уже установленной у вас памяти, вы можете воспользоваться CPU-Z или аналогичными утилитами.

Тайминги оперативной памяти какие лучше

Как правильно выбрать самую быструю оперативную память

Если кратко, то частота оперативной памяти важнее таймингов, но при одинаковой частоте наиболее быстрой окажется оперативка с меньшей задержкой. Собственно, именно на основе этого и стоит подбирать самые подходящие для вас планки ОЗУ. В общем виде этот алгоритм выглядит так:

Источник

Что такое тайминги оперативной памяти и какие лучше?

Обычно при выборе и покупке оперативной памяти пользователи обращают внимание только объём ОЗУ и её тактовую частоту, ну и для совместимости с материнской платой на тип памяти DDR. Однако в технических характеристиках памяти есть такой параметр как тайминги (латентность), на который мало кто смотрит. В тоже время тайминги оперативной памяти оказывают не самое последнее влияние на её производительность. В данном материале мы подробно расскажем о том, что такое тайминги, какие тайминги лучше, а также ответим на часто задаваемый вопрос «Что лучше – меньшие задержки или высокая частота?».

Тайминги оперативной памяти какие лучше

Что такое тайминги оперативной памяти?

Чтобы понимать, какие тайминги лучше, нужно хотя бы в общих чертах знать, что это вообще такое. Итак, если очень кратко, то тайминги – это временные задержки между отправкой и выполнением команды шины памяти т.е. тайминги определяют то, как быстро информация перемещается внутри планки памяти. Латентность ОЗУ измеряется в тактах и обычно записывается в виде нескольких цифровых значений через тире, но у каждого значения есть своя определенную маркировку и последовательность. Выглядит она так: CL-RCD-RP-RAS, где CL – это CAS Latency, время до получения ответа памяти, RCD – RAS to CAS Delay, время полного доступа памяти или как еще его называют поиск необходимой строки, RP – RAS Prechange, время в промежутке между командой деактивации строки и последующей её активации и RAS – Command Rate, промежуток между двумя любыми командами, который как правило, является самым минимальным интервалом и иногда производитель его вообще не указывает.

Тайминги оперативной памяти какие лучше

Какие тайминги оперативной памяти лучше?

Самый главный вопрос – какие тайминги лучше? Как мы уже выяснили, тайминги – это задержка, поэтому очевидно, что если задержка меньше, то это лучше и, следовательно, память будет производительнее. Для примера возьмем две модели ОЗУ – GEIL Super Luce RGB TUF Black Gaming 16GB и Patriot Viper RGB Black 16GB. Обе DRAM имеют одинаковую частоту 2666 МГц, одинаковую пропускную способность PC4-21300 и одинаковую стоимость (на момент написания статьи), но при этом у них разные тайминги. Модель от GEIL имеет тайминги 19-19-19-43, а память от Patriot 15-17-17-35, поэтому последняя будет более предпочтительным и производительным вариантом, учитывая одинаковую частоту и стоимости памяти.

Тайминги оперативной памяти какие лучше

Что лучше – более высокая частота или более низкие тайминги?

Чтобы полноценно ответить на данный вопрос сначала нужно понять и принять аксиому – с повышением частоты, на которой функционирует ОЗУ, повышаются и задержки памяти. Если сравнивать характеристики разных модулей стандартов DDR3 и актуального DDR4, то можно заметить, что тайминги у DDR3 будут выше. Для примера возьмем игровую ОЗУ начального уровня Corsair ValueSelect DDR4 PC4-1700 2133 MHz, у которой тайминги 15-15-15, и обычную неигровую память Kingston ValueRAM DDR3 PC3-12800 1600 MHz – у неё тайминги 11-11-11. В первом случае мы наблюдаем более современный тип памяти DDR и более высокую частоту, а во втором случае ситуация обратная. Но здесь более высокая латентность может устранить разницу производительности.

Тайминги оперативной памяти какие лучше

Но это только в теории. Практика показывает, что на производительность в большей степени всё-таки влияет частота. В этом можно убедиться, если вручную уменьшить частоту памяти Corsair ValueSelect с 2133 МГц до 1600 МГц. Тайминги этого модуля также уменьшатся, но при этом понизится и производительность. Выходит, что частота влияет на производительность в большей степени, но в любом случае, если выбор стоит между планками с одинаковой частотой, то лучше выбирать ту, у которой меньшие задержки.

Источник

Про тайминги популярно

Про тайминги популярно.
Статья рассказывает о таймингах и их применении, и призвана детально объяснить значение этого термина.

В форумах, да и в статьях, посвященных обзорам компьютерных комплектующих с собственной оперативной памятью, нередко видишь упоминания про тайминги. Их огромное количество. Поначалу у новичка даже глаза разбегаются. А опытный человек часто просто оперирует понятиями, иногда совершенно не догадываясь, что они означают. В данной статье я постараюсь восполнить этот пробел.

Про тайминги популярно.
Статья рассказывает о таймингах и их применении, и призвана детально объяснить значение этого термина.

В форумах, да и в статьях, посвященных обзорам компьютерных комплектующих с собственной оперативной памятью, нередко видишь упоминания про тайминги. Их огромное количество. Поначалу у новичка даже глаза разбегаются. А опытный человек часто просто оперирует понятиями, иногда совершенно не догадываясь, что они означают. В данной статье я постараюсь восполнить этот пробел.

Итак, алгоритм считывания данных из памяти таков:

1)выбранный банк активируется подачей сигнала RAS;
2)данные из выбранной строки передаются в усилитель, причем на передачу данных необходима задержка (она называется RAS-to-CAS);
3)подается сигнал CAS для выбора слова из этой строки;
4)данные передаются на шину (откуда идут в контроллер памяти), при этом также происходит задержка (CAS Latency);
5)следующее слово идет уже без задержки, так как оно содержится в подготовленной строке;
6)после завершения обращения к строке происходит закрытие банка, данные возвращаются в ячейки и банк перезаряжается (задержка называется RAS Precharge).

Как видите, для совершения некоторых операций системе нужны задержки, иначе она не успеет считать выбранные данные или, например, перезарядить банк. Эти задержки и называются таймингами.

Заглянув в BIOS
Для оперативной памяти существует громадное количество задержек. Достаточно заглянуть в любое описание памяти. Но основные можно увидеть в диагностической утилите CPU-Z или в BIOS. Познакомимся поподробнее с каждым из них. Для разгона, конечно, нужно уменьшить время задержек, поэтому чем их значения меньше, тем быстрее работает система. Впрочем, о разгоне поговорим позже. В разных источниках названия могут меняться, поэтому надо смотреть на краткое обозначение.
Возьмем, для примера, скриншот из программы CPU-Z.

RAS# to CAS# Delay (Trcd)
Число тактов, необходимых для поступления данных в усилитель. (п.2 алгоритма) Другими словами, это временной интервал между командами RAS и CAS, поскольку архитектура SDRAM не позволяет подавать их одновременно.

RAS# Precharge (TRP)
Время, необходимое на перезарядку ячеек памяти после закрытия банка (п.6)

Row Active Time (TRAS)
Время, в течение которого банк остается открытым и не требует перезарядки. Изменяется вместе со следующим параметром.

Это основные тайминги, которые позволяет выставить большинство материнских плат. Однако поясню и другие.

DRAM Idle Timer
Время простаивания открытой страницы для чтения из нее данных.

Row to Column (Read/Write) (Trcd, TrcdWr, TrcdRd)
Данный параметр связан с параметром RAS-to-CAS (Trcd) и является как бы его уточнением, поскольку вычисляется по формуле Trcd(Wr/Rd) = RAS-to-CAS delay + rd/wr command delay. Второе слагаемое определяет задержку на выполнение записи/чтения. Но эта величина нерегулируемая, и изменить её нельзя. Поэтому её часто именуют просто RAS-to-CAS Delay.

Перечисленные параметры могут показаться нагромождением букв и цифр, но я уверяю, если вы заглянете хотя бы в один даташит (ближе к его концу), то быстро во всем разберетесь.

Тайминги видеокарт
В начале статьи я не зря упоминал про устройства с собственной оперативной памятью. Таковым явяется и видеокарта. И у этой памяти тоже есть тайминги достаточно заглянуть в раздел Timings популярной программы ATI Tray Tools.

Здесь возможностей для их изменения гораздо больше. Однако при заглядывании в даташит мы можем серьёзно озадачиться:

Здесь приведены ключевые, по мнению разработчиков памяти, параметры.
Поначалу кажется, что разработчики программы так не думают. Например, в ней нет тайминга tDAL, и ни в одном даташите нет таймингов tW2R, tR2R. Здесь я постараюсь объяснить значения таймингов для твикера и для даташита. Тайминги могут повторяться с приведенными выше. Их обозначения могут дополняться. Итак, начнем.

Write Latency (tWL)
Количество тактов, необходимое для произведения операции записи в память.

CAS Latency (tCL)
Задержка данных перед выдачей на шину. Подробнее см. выше. на пункт CAS Latency оперативной памяти.

CMD Latency
Задержка между подачей команды на память и ее приемом.

Strobe Latency
Задержка при посылке строб-импульса (селекторного импульса).

Activate to Read/Write, RAS to CAS Read/Write Delay, RAW Address to Column Address for Read/Write (tRCDRd/tRCDWr)
Повторюсь здесь еще раз. Для видеокарт это объяснение справедливей.
Данный параметр связан с параметром RAS-to-CAS (Trcd) и является как бы его уточнением, поскольку вычисляется по формуле Trcd(Wr/Rd) = RAS-to-CAS delay + rd/wr command delay. Второе слагаемое определяет задержку на выполнение записи/чтения. Но эта величина нерегулируемая, и изменить её нельзя. Поэтому её часто именуют просто RAS-to-CAS Delay.

Row Precharge Time, Precharge to Activate, RAS# Precharge (tRP)
Время перезарядки ячеек после закрытия банка.

Activate to Precharge, Row Active Time (tRAS)
Время, в течение которого банк остается открытым и не требует перезарядки.

Activate to Activate, Row Active to Row Active (tRRD)
Задержка между активациями различных рядов

Auto Precharge Write Recovery + Precharge Time (tDAL)
Загадочный даташитный тайминг tDAL вызывал в формуах много споров, что он обозначает, однако в одном из документов JEDEC черным по белому написано следующее:

Write to Read Turnaround Time for Same Bank (tW2RSame Bank)
Аналогичная предыдущей процедура, отличающаяся от нее только тем, что действие происходит в том же банке. Особенность задержки в том, что процедура записи, естественно, не может быть больше промежутка до перезарядки банка (tWR), то есть заканчиваться во время перезарядки.

Read to Read Turnaround Time (tR2R)
Задержка при прерывании операции чтения операцией чтения из другого банка.

Row Cycle Time, Activate to Activate/Refresh Time, Active to Active/Auto Refresh Time (tRC)
Время для автоматической подзарядки. Встречается в даташитах.

Auto Refresh Row Cycle Time, Refresh to Activate/Refresh Command Period, Refresh Cycle Time, Refresh to Active/Refresh Comand Period (tRFC)
Минимальный промежуток между командой на подзарядку (Refresh) и либо следующей командой на подзарядку, либо командой на активацию.

Memory Refresh Rate
Частота обновления памяти.

Практика
Итак, мы рассмотрели основные тайминги, которые могут чаще всего встретиться нам в программах или даташитах. Теперь, для полной картины, я расскажу, чем полезны тайминги в разгоне.

Я же решил исследовать влияние таймингов на своей системе.
Итак, вот она:

ПроцессорIntel Celeron 1100A Tualatin 1100@1580
Материнская платаJetWay i815-EPDA
Память512Mb (2×256) PC133 NCP (FSB:DRAM=1:1)
ВидеокартаGeCube RadeOn 9550 Ultra (400/400)
Блок питанияPower Master 250W FA-5-2
Жесткий дискWD W800JB 80Gb 8Mb cache
Операционная системаWindows XP SP2

Система была оставлена «как есть». Видеокарта также не разгонялась. Испытания проводились в двух тестовых пакетах и в одной игре:

    3DMark 2001 patch 360, так как оценивает разгон каждого элемента системы, а не только видеокарты

«Оверклокерская» для своего времени память NCP и сей раз не дала промаху и позволила запуститься на частоте 143МГц с таймингами 2-2-2-7! Но поменять последний параметр (Tras) память не дает ни по какому поводу, только с уменьшением частоты. Впрочем, это не самый важный параметр.

Как видите, понижение таймингов дает прирост производительности около 10%. И если на моей системе это не так заметно, то на более мощной различие уже становится очевидным. А если поменять еще тайминги на видеокарте, где разгон часто упирается не в память, а как раз в задержки, то труд будет более чем оправдан. А что именно меняете, теперь вы уже знаете.

Источник

Подбираем тайминги для DDR3 ECC \ non-ECC

Тайминги оперативной памяти какие лучше

Основными параметрами оперативной памяти, как известно, являются объем, а также тактовая частота. Но помимо этого довольно важным, хотя и не всегда учитываемым параметром являются характеристики латентности памяти или так называемые тайминги. Тайминги оперативной памяти определяются количеством времени, которое требуется микросхемам ОЗУ, чтобы выполнить определенные этапы операций чтения и записи в ячейку памяти и измеряются в тактах системной шины. Таким образом, чем меньше будут значения таймингов модуля памяти, тем меньше модуль будет тратить времени на рутинные операции, тем большее быстродействие он будет иметь и, следовательно, тем лучше будут его рабочие параметры. Тайминги во многом влияют на производительность работы модуля ОЗУ, хотя и не так сильно, как тактовая частота.

Таблицы таймингов DDR3

Следующие таблички помогут подобрать наиболее удачные и работоспособные тайминги для памяти DDR3 в китайских материнских платах сокета 2011 и не только.

Важно помнить, что стабильность системы, как и возможность взять ту или иную частоту зависит не только от самой памяти, но и от используемого процессора (контроллер памяти находится именно в нём) и материнской платы.

Не лишним также будет узнать, какие чипы установлены в модуле памяти. Для чипов производства Samsung можно воспользоваться этой инструкцией, для чипов других производителей — не сложно нагуглить.

Тайминги оперативной памяти какие лучше

Классическая таблица таймингов с форума Overclockers

Тайминги оперативной памяти какие лучше

Еще один вариант таблицы. Обратите внимание на последние 4 столбца: параметр RFC выставляется в зависимости от ёмкости чипов. Определить его просто: поделите общий объём модуля на количество распаянных на нём чипов.

Некоторые особенности работы памяти на 2011 сокете

Для большинства конфигураций хорошим результатом будет работа памяти на частоте 1866 Мгц с задержками менее 70 ns. В четырехканале при этом достигается скорость

Взять частоту в 2133 Мгц — более сложная задача, доступная уже не каждому процессору и набору памяти.

Для систем, ограниченных порогом в 1600 Мгц, хорошим решением будет найти максимально низкие стабильные тайминги. Ну а оставаться на частоте в 1333 Мгц даже при низких таймингах смысла довольно мало, скорость памяти по современным меркам будет весьма посредственной.

Как узнать скорость записи\чтения и латентность памяти

Проще всего — запустив тест кэша и памяти в Aida64. После прохождения программа покажет все необходимые данные, а также текущую скорость памяти и основные тайминги. Сохранив скриншот этого окна, можно будет легко сравнить результаты после изменения конфигурации ram.

Тайминги оперативной памяти какие лучше

Результат теста кэша и памяти

Aida 64 — платный софт с ограниченным бесплатным функционалом. Но если покупать полноценную версию по каким-то причинам не хочется, ключ для активации легко находится в том же гугле.

Как проверить стабильность памяти

Если система запустилась на желаемой частоте с выбранными таймингами, это еще не значит, что она стабильна. Чтобы не словить синий экран в процессе игры или работы — проверяйте стабильность памяти. Стандартные тесты, вроде Aida64 могут и не выявить ошибки в работе ram. Лучше использовать для этого специальный софт, например TestMem5 (программа бесплатная).

Тайминги оперативной памяти какие лучшеПомимо стандартных настроек, существуют и пользовательские конфиги для TestMem. Одним из наиболее популярных считается конфиг от 1usmus. Для его использования — замените содержимое файла MT.cfg в папке bin программы. Стандартные настройки можно забэкапить в другой файл.

Memory Test config file v0.02
Copyrights to the program belong to me.
Serj
testmem.tz.ru
serj_m@hotmail.com

[Main Section]
Config Name=Default
Config Author=1usmus_v2
Cores=0
Tests=15
Time (%)=100
Cycles=5
Language=0
Test Sequence=6,12,2,10,5,1,4,3,0,13,9,7,8,1,11,14

[Global Memory Setup]
Channels=2
Interleave Type=1
Single DIMM width, bits=64
Operation Block, byts=64
Testing Window Size (Mb)=880
Lock Memory Granularity (Mb)=16
Reserved Memory for Windows (Mb)=128
Capable=0×1
Debug Level=7

[Window Position]
WindowPosX=1105
WindowPosY=691

[Test0]
Enable=1
Time (%)=100
Function=RefreshStable
DLL Name=bin\MT0.dll
Pattern Mode=0
Pattern Param0=0×0
Pattern Param1=0×0
Parameter=0
Test Block Size (Mb)=0

[Test1]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=1
Pattern Param0=0x1E5F
Pattern Param1=0×45357354
Parameter=0
Test Block Size (Mb)=16

[Test2]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0x14AAB7
Pattern Param1=0x6E72A941
Parameter=254
Test Block Size (Mb)=32

[Test3]
Enable=1
Time (%)=100
Function=MirrorMove
DLL Name=bin\MT0.dll
Pattern Mode=0
Pattern Param0=0×0
Pattern Param1=0×0
Parameter=1
Test Block Size (Mb)=0

[Test4]
Enable=1
Time (%)=100
Function=MirrorMove128
DLL Name=bin\MT0.dll
Pattern Mode=0
Pattern Param0=0×0
Pattern Param1=0×0
Parameter=510
Test Block Size (Mb)=0

[Test5]
Enable=1
Time (%)=100
Function=MirrorMove
DLL Name=bin\MT0.dll
Pattern Mode=0
Pattern Param0=0×0
Pattern Param1=0×0
Parameter=4
Test Block Size (Mb)=0

[Test6]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0x5D0
Pattern Param1=0x143FBC767
Parameter=125
Test Block Size (Mb)=1

[Test7]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=0
Pattern Param0=0×0
Pattern Param1=0×0
Parameter=0
Test Block Size (Mb)=2

[Test8]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0x153AA
Pattern Param1=0xDC7728C0
Parameter=358
Test Block Size (Mb)=0

[Test9]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=0
Pattern Param0=0×0
Pattern Param1=0×0
Parameter=0
Test Block Size (Mb)=4

[Test10]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0x2305B
Pattern Param1=0x97893FB2
Parameter=477
Test Block Size (Mb)=8

[Test11]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0x98FB
Pattern Param1=0x552FE552F
Parameter=8568
Test Block Size (Mb)=16

[Test12]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0xC51C
Pattern Param1=0xC50552FE6
Parameter=787
Test Block Size (Mb)=32

[Test13]
Enable=1
Time (%)=100
Function=SimpleTest
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0xB79D9
Pattern Param1=0x253B69D94
Parameter=8968
Test Block Size (Mb)=64

[Test14]
Enable=1
Time (%)=100
Function=RefreshStable
DLL Name=bin\MT0.dll
Pattern Mode=2
Pattern Param0=0x2305A
Pattern Param1=0x17893AB21
Parameter=265
Test Block Size (Mb)=64

Успешным считается прохождение теста, при котором нет ни одной ошибки.

Где можно недорого докупить памяти

С массовым переходом на DDR4, память предыдущего поколения хоть и не сильно, но подешевела. Приобрести DDR3 можно на aliexpress, это наиболее выгодный и удобный способ.

Обычные десктопные модули можно купить здесь (Zifei), здесь (Atermiter) и вот тут (Kingston HyperX \ Fury). С недавних пор память выпускает даже Huananzhi.

Модули для ноутбуков продаются здесь и здесь.

Недорогая серверная DDR3 ECC REG есть у следующих продавцов:

Оригинальные серверные модули Samsung 1866 Мгц можно найти у этого продавца.

Поделиться «Подбираем тайминги для DDR3 ECC \ non-ECC»

Источник

Тайминги оперативной памяти какие лучше

Тайминги оперативной памяти какие лучше

А вот и вторая часть серии материалов про оперативную память. О чем же сегодня поговорим? Да почти обо всем: влияние частоты на производительность, влияние таймингов на производительность, разница в автоматической и ручной настройке таймингов и немного тестов в реальных условиях. И да, снова связка Intel Core i7-8700K и Corsair Vengeance® LPX 16GB (2 x 8GB) DDR4 DRAM 4400MHz C19.

Тайминги оперативной памяти какие лучше

Тайминги оперативной памяти какие лучше

Тайминги оперативной памяти какие лучше

Тайминги оперативной памяти какие лучше

Тайминги оперативной памяти какие лучше

Тайминги оперативной памяти какие лучше

Частота. Тайминги это ссанина вообще бесполезная, от которых толку как от козла молока. На текущий момент известно что в большинстве игр с 4.2ГГц частотой вы получите наибольший прирост. Уж сомневаюсь что кто-то сможет снизить тайминги так сильно чтобы обойти 4.2ГГц.

Тайминги оперативной памяти какие лучше

Тайминги оперативной памяти какие лучше

Kirill22092

Kirill22092 написал: Не даром люди не покупают дешман планки и не выставляют 4200Mhz и CLOver100

Да собственно у тебя память просто такие частоты не возьмет, хоть какие тайминги ставь. Я имел ввиду что тайминги нужно снижать, но ни в коем случае не ставить их в приоритет перед частотой. В случае с Рязанью, эта срань с высокочастотной памятью (по моему 3200 максимум) она работать отказывается, по этому АМДВодам остается только понижать тайминги. В случае с Интелом можно вкарячить хоть 6ГГц ОЗУ, и такая память даже с высокими таймингами (минимальными для корректной работы) будет куда лучше. А ваще Оверы та еще срань, там дурачков хватает. Никто из них даже не знает как разлочить ASUS GTX 970, а мне вот довелось этого достичь. Даже было дело описывал способ как это сделать, но там только удивились пару человек.

Тайминги оперативной памяти какие лучше

Ruv1k

Ruv1k написал: В случае с Рязанью, эта срань с высокочастотной памятью (по моему 3200 максимум) она работать отказывается

Ну как можешь посмотреть у меня в профиле 3533 и держит нормально, люди и больше берут

Ruv1k написал: Я имел ввиду что тайминги нужно снижать

Да? А я думал что.

Ruv1k написал: Тайминги это ссанина вообще бесполезная, от которых толку как от козла молока.

Ruv1k написал: А ваще Оверы та еще срань, там дурачков хватает. Никто из них даже не знает как разлочить ASUS GTX 970, а мне вот довелось этого достичь.

Источник

Тайминги RAM: CAS, RAS, tRCD, tRP, tRAS с пояснениями

Оперативная память на самом деле является одним из наиболее важных компонентов компьютера, но когда дело доходит до решения о покупке, на нее редко вкладывают столько же усилий и усилий, сколько на другие компоненты. Обычно емкость — это единственное, что, кажется, волнует обычных потребителей, и хотя это оправданный подход, ОЗУ — это нечто большее, чем просто размер памяти, которую она хранит. Несколько важных факторов могут определять производительность и эффективность ОЗУ, и, вероятно, два из самых важных из них — это частота и время.

Тайминги оперативной памяти какие лучше

Частота ОЗУ — это довольно простое число, которое описывает тактовую частоту, на которую рассчитана работа ОЗУ. Он четко упоминается на страницах продуктов и следует простому правилу «чем выше, тем лучше». В настоящее время часто встречаются комплекты ОЗУ, рассчитанные на 3200 МГц, 3600 МГц, 4000 МГц или даже выше. Другая более сложная часть истории — это задержка или «тайминги» ОЗУ. Их гораздо сложнее понять и может быть непросто понять с первого взгляда. Давайте углубимся в то, что на самом деле такое тайминги RAM.

Что такое тайминги RAM?

Хотя частота является одним из наиболее разрекламированных показателей, тайминги ОЗУ также играют большую роль в общей производительности и стабильности ОЗУ. Тайминги измеряют задержку между различными общими операциями на микросхеме ОЗУ. Поскольку задержка — это задержка между операциями, она может серьезно повлиять на производительность ОЗУ, если она превысит определенный предел. Тайминги ОЗУ отражают внутреннюю задержку, которую может испытывать ОЗУ при выполнении различных операций.

Время RAM измеряется в тактах. Возможно, вы видели строку чисел, разделенных тире на странице продукта комплекта RAM, которая выглядит примерно как 16-18-18-38. Эти числа известны как тайминги набора RAM. По сути, поскольку они представляют задержку, чем меньше, тем лучше, когда дело доходит до таймингов. Эти четыре числа представляют так называемые «основные тайминги» и оказывают наиболее значительное влияние на задержку. Есть и другие суб-тайминги, но пока мы обсудим только первичные тайминги.

Тайминги оперативной памяти какие лучше4 основных тайминга ОЗУ представлены следующим образом — Изображение: Tipsmake

Основные сроки

В любом списке продуктов или на фактической упаковке время указано в формате tCL-tRCD-tRP-tRAS, что соответствует 4 основным временам. Этот набор оказывает наибольшее влияние на фактическую задержку набора оперативной памяти и является точкой фокусировки при разгоне. Следовательно, порядок чисел в строке 16-18-18-38 сразу показывает нам, какое первичное время имеет какое значение.

Задержка CAS (tCL / CL / tCAS)Тайминги оперативной памяти какие лучшеЗадержка CAS — Изображение: MakeTechEasier

Задержка CAS — это наиболее важный основной момент времени, который определяется как количество циклов между отправкой адреса столбца в память и началом данных в ответ. Это наиболее часто сравниваемые и рекламируемые сроки. Это количество циклов, необходимое для чтения первого бита памяти из DRAM с уже открытой правильной строкой. Задержка CAS — это точное число, в отличие от других чисел, которые представляют собой минимумы. Этот номер должен быть согласован между памятью и контроллером памяти.

По сути, задержка CAS — это время, необходимое памяти для ответа ЦП. При обсуждении CAS необходимо учитывать еще один фактор, поскольку CL нельзя рассматривать отдельно. Мы должны использовать формулу, которая преобразует рейтинг CL в фактическое время, выраженное в наносекундах, которое основано на скорости передачи данных RAM. Формула: (CL / скорость передачи) x 2000. Используя эту формулу, мы можем определить, что комплект RAM, работающий на частоте 3200 МГц с CL16, будет иметь фактическую задержку 10 нс. Теперь это можно сравнить с наборами с разными частотами и таймингами.

Задержка RAS в CAS (tRCD)Тайминги оперативной памяти какие лучшеЗадержка RAS в CAS — Изображение: MakeTechEasier

RAS в CAS — это потенциальная задержка для операций чтения / записи. Поскольку модули RAM используют сеточную структуру для адресации, пересечение номеров строк и столбцов указывает конкретный адрес памяти. tRCD — это минимальное количество тактов, необходимое для открытия строки и доступа к столбцу. Время, необходимое для чтения первого бита памяти из DRAM без какой-либо активной строки, приведет к дополнительным задержкам в виде tRCD + CL.

tRCD можно рассматривать как минимальное время, необходимое ОЗУ для перехода к новому адресу.

Время предварительной зарядки ряда (tRP)Тайминги оперативной памяти какие лучшеВремя предварительной зарядки строки — Изображение: MakeTechEasier

В случае открытия неправильной строки (это называется пропуском страницы), строка должна быть закрыта (так называемая предварительная зарядка), а следующая должна быть открыта. Только после этой предварительной зарядки можно получить доступ к столбцу в следующей строке. Следовательно, общее время увеличивается до tRP + tRCD + CL.

Технически он измеряет задержку между выдачей команды предварительной зарядки для ожидания или закрытия одной строки и активацией команды для открытия другой строки. tRP идентичен второму числу tRCD, поскольку одни и те же факторы влияют на задержку в обеих операциях.

Время активности строки (tRAS)Тайминги оперативной памяти какие лучшеВремя активности строки — Изображение: MakeTechEasier

Также известное как «Задержка активации до предварительной зарядки» или «Минимальное время активности RAS», tRAS — это минимальное количество тактов, требуемых между активной командой строки и выдачей команды предварительной зарядки. Это совпадает с tRCD, и это просто tRCD + CL в модулях SDRAM. В остальных случаях это примерно tRCD + 2xCL.

tRAS измеряет минимальное количество циклов, которое строка должна оставаться открытой для правильной записи данных.

Командная скорость (CR / CMD / CPC / tCPD)

Также есть определенный суффикс –T, который часто можно увидеть при разгоне и который обозначает командную скорость. AMD определяет Command Rate как количество времени в циклах между выбором микросхемы DRAM и выполнением команды. Это либо 1T, либо 2T, где 2T CR может быть очень полезным для стабильности при более высоких тактовых частотах памяти или для конфигураций с 4 модулями DIMM.

CR иногда также называют командным периодом. В то время как 1T быстрее, 2T может быть более стабильным в определенных сценариях. Он также измеряется в тактах, как и другие тайминги памяти, несмотря на уникальное обозначение –T. Разница в производительности между ними незначительна.

Влияние более низкого тайминга памяти

Поскольку тайминги обычно соответствуют задержке набора RAM, более низкие тайминги лучше, поскольку это означает меньшую задержку между различными операциями RAM. Как и в случае с частотой, существует точка уменьшения отдачи, когда улучшение времени отклика будет в значительной степени сдерживаться скоростью других компонентов, таких как ЦП или общей тактовой частотой самой памяти. Не говоря уже о том, что снижение таймингов определенной модели ОЗУ может потребовать от производителя дополнительного биннинга, что, в свою очередь, приведет к снижению урожайности и более высокой стоимости.

Хотя в разумных пределах, более низкие тайминги RAM обычно улучшают производительность RAM. Как мы видим в следующих тестах, более низкие общие тайминги (и, в частности, задержка CAS) действительно приводят к улучшению, по крайней мере, с точки зрения чисел на графике. Может ли улучшение восприниматься обычным пользователем во время игры или во время рендеринга сцены в Blender — это совсем другая история.

Тайминги оперативной памяти какие лучшеВлияние различных таймингов и частот ОЗУ на время рендеринга в Corona Benchmark — Изображение: TechSpot

Точка убывающей доходности быстро устанавливается, особенно если мы опускаемся ниже CL15. На этом этапе, как правило, время и задержка не являются факторами, сдерживающими производительность ОЗУ. Другие факторы, такие как частота, конфигурация ОЗУ, возможности ОЗУ материнской платы и даже напряжение ОЗУ, могут быть задействованы в определении производительности ОЗУ, если задержка достигает точки убывающей отдачи.

Время и частота

Частота и тайминги ОЗУ взаимосвязаны. Просто невозможно получить лучшее из обоих миров в массовых потребительских наборах RAM. Как правило, по мере увеличения номинальной частоты комплекта RAM тайминги становятся более слабыми (тайминги увеличиваются), чтобы несколько компенсировать это. Частота, как правило, немного перевешивает влияние таймингов, но бывают случаи, когда доплачивать за высокочастотный комплект RAM просто не имеет смысла, поскольку тайминги становятся слабее, а общая производительность страдает.

Хорошим примером этого являются споры между ОЗУ DDR4 3200 МГц CL16 и ОЗУ DDR4 3600 МГц CL18. На первый взгляд может показаться, что комплект 3600Mhz быстрее и тайминги не намного хуже. Однако, если мы применим ту же формулу, которую мы обсуждали при объяснении задержки CAS, история принимает другой оборот. Ввод значений в формулу: (CL / Скорость передачи) x 2000 для обоих комплектов RAM дает результат, что оба комплекта RAM имеют одинаковую реальную задержку 10 нс. Хотя да, существуют и другие различия в субтимингах и способе настройки ОЗУ, но аналогичная общая скорость делает комплект 3600 МГц худшим из-за его более высокой цены.

Тайминги оперативной памяти какие лучшеРезультаты тестов различных частот и задержек — Изображение: GamersNexus

Как и в случае с таймингом, мы довольно скоро достигаем точки уменьшения отдачи и с частотой. Как правило, для платформ AMD Ryzen DDR4 3600 МГц CL16 считается оптимальным выбором как по таймингу, так и по частоте. Если мы перейдем к более высокой частоте, такой как 4000 МГц, то не только ухудшатся тайминги, но даже поддержка материнской платы может стать проблемой для чипсетов среднего уровня, таких как B450. Мало того, что на Ryzen часы Infinity Fabric и часы контроллера памяти должны быть синхронизированы с частотой DRAM в соотношении 1: 1: 1 для достижения наилучших возможных результатов, а выход за пределы 3600 МГц нарушает эту синхронизацию. Это приводит к увеличению задержки, общей нестабильности и неэффективной частоте, что делает эти комплекты ОЗУ в целом плохим соотношением цены и качества. Как и в отношении таймингов, необходимо установить золотую середину, и лучше всего придерживаться разумных частот, таких как 3200 МГц или 3600 МГц, при более жестких временных интервалах, таких как CL16 или CL15.

Разгон

Разгон оперативной памяти — один из самых утомительных и вспыльчивых процессов, когда приходится возиться с компьютером. Энтузиасты вникали в этот процесс не только для того, чтобы выжать из своей системы все до последнего кусочка производительности, но и из-за проблем, связанных с этим процессом. Основное правило разгона оперативной памяти простое. Вы должны достичь максимально возможной частоты, сохраняя при этом одинаковые тайминги или даже сокращая тайминги, чтобы получить лучшее из обоих миров.

Оперативная память — один из самых чувствительных компонентов системы, и обычно ее не следует настраивать вручную. Поэтому производители оперативной памяти включают предустановленную функцию разгона, известную как «XMP» или «DOCP», в зависимости от платформы. Предполагается, что это будет предварительно протестированный и подтвержденный разгон, который пользователь может включить через BIOS, и чаще всего это самый оптимальный уровень производительности, который нужен пользователю.

Тайминги оперативной памяти какие лучшеКалькулятор DRAM для Ryzen от «1usmus» — фантастический инструмент для ручного разгона на платформах AMD.

Если вы действительно хотите разогнать оперативную память вручную, вам может помочь наше подробное руководство по разгону оперативной памяти. Тестирование стабильности при разгоне — самая сложная часть разгона оперативной памяти, поскольку для правильного выполнения может потребоваться много времени и много сбоев. Тем не менее, эта задача может быть хорошим опытом для энтузиастов, а также может привести к некоторому приросту производительности.

Заключительные слова

ОЗУ, безусловно, является одним из наиболее недооцененных компонентов системы, который может существенно повлиять на производительность и общую скорость отклика системы. Тайминги ОЗУ играют большую роль в этом, определяя задержку, которая присутствует между различными операциями с ОЗУ. Более сжатые тайминги, безусловно, приводят к повышению производительности, но есть точка уменьшения отдачи, которая затрудняет ручной разгон и ужесточение таймингов для минимального прироста производительности.

Достижение идеального баланса между частотой ОЗУ и таймингами при одновременном контроле стоимости ОЗУ — лучший способ принять решение о покупке. Наш выбор лучших комплектов оперативной памяти DDR4 в 2020 году может быть полезен при принятии обоснованного решения относительно вашего выбора оперативной памяти.

Источник

Тайминги оперативной памяти и почему они так важны

Если модули памяти не оснащены большими радиаторами и RGB подсветкой, то и внимания им уделяется мало. Процессор задет уровень производительности, который необходимо учитывать при подборе остальных комплектующих, но вы можете выжать немного больше производительности, если будете использовать более быструю память. Частота, как и тайминги или другими словами задержка, определяют скорость работы ОЗУ.

Характеристики оперативной памяти

Параметры работы ОЗУ можно найти на упаковке от модулей или используя различное ПО, например, CPU-Z, а также можно просто зайти в BIOS/UEFI. Полное наименование ваших модулей будет чем-то вроде этого:

Здесь, DDR4 указывает на поколение памяти. Цифра после букв PC (2, 3 или 4), описывает тоже самое.

Зачастую первое четырехзначное число, в нашем примере это 3200, указывается как частота памяти. На самом деле это небольшой маркетинговый трюк, который, впрочем, не так ужасен, хоть и поддерживается производителями ПК и розничными сетями. Это число на самом деле отражает эффективную (удвоенную) скорость, измеряемую в миллионах передач в секунду.

Число после букв PC, в нашем примере это 25600, показывает пиковую скорость передачи данных в мегабайтах в секунду. Умножив скорость передачи данных (в миллионах передач в секунду) на ширину шины ввода-вывода (64-бита во всех современных материнских платах), мы можем определить максимально возможную скорость передачи:

3200 миллионов передач в секунду * 64 бита за одну передачу / 8 бит для перевода в байты = 25600 Мб/с.

Каждое число сообщает, насколько быстра ваша память, однако они оба предоставляют одинаковую информацию просто в разных формах.

Что такое тайминги ОЗУ?

Первое число: CAS Latency (CL)

t = (CL/кол-во миллионов передач в секунду)*2000

В результате, более медленная память (с меньшей тактовой частотой) может иметь более короткую задержку, если тайминг CL будет меньше.

Второе число: RAS to CAS Delay (tRCD)

Модули ОЗУ используют строки и столбцы для получения доступа к памяти. Пересечение строк и столбцов указывает на конкретный адрес памяти (ячейку). Сначала активируется необходимая строка, а затем столбец. Тайминг tRCD определяет минимальную задержку между выбором строки (команда Active) и переходом к колонке для чтения или записи.

Третье число: RAS Precharge (tRP)

Тайминг tRP определяет задержку, необходимую для перехода к новой строке. После получения данных необходимо послать команду Precharge, для того чтобы закрыть строку из которой считывались данные и разрешить активацию новой. Технически, tRP отражает задержку между запуском команды Precharge и моментом, когда память сможет принять следующую команду Active. Зачастую он идентичен второму таймингу tRCD, потому что одни и те же факторы влияют на задержку обеих операций.

Четвертое число: Cycle Time (tRAS) Active to Precharge Delay

Тайминг tRAS отражает минимальное количество циклов, в течение которого строка должна оставаться открытой для правильной записи данных. Технически, он определяет задержку между получением команды Active и посылом команды Precharge или, иными словами минимальное время между открытием и закрытием строки.

Заключение

Контроллер памяти, который управляет вашей ОЗУ, устанавливает эти тайминги. Это означает, что их можно настроить, если, конечно, ваша материнская плата позволяет это сделать. Вы можете получить дополнительную производительность при разгоне памяти и снижении таймингов на несколько циклов.

Источник

Выбираем оперативную память для твоего компьютера

Мы уже публиковали гайды по выбору самых разных компонентов компьютера — процессора, материнской платы, SSD-накопителя, монитора, даже о маршрутизаторе не забыли. Остались две очень важные для любого боярина покупки — оперативная память и видеокарта. О графических ускорителях поговорим позже, когда Nvidia и ее партнеры наконец-то выпустят в широкую продажу карточки 20-й серии. Сегодня же разберемся в тонкостях выбора оперативной памяти.

Как и со многими аспектами жизни, с ОЗУ непросто. Казалось бы, бери побольше объема, да и все. Но есть много тонкостей, которые могут испортить впечатление от покупки так, что никакие десятки гигабайтов не будут радовать. Итак, пойдем по порядку, чтобы, с одной стороны, не переплатить за ненужное, а с другой — не остаться у глючного компьютера в попытке чересчур сэкономить.

Тайминги оперативной памяти какие лучше

Опять же подчеркнем, что у компьютерных гуру эта статья может вызвать приступы презрительных усмешек и пальцевый зуд повышенной чесоточности. Все правильно, потому что наш гайд нацелен на людей, которые не посещали университетов компьютерной грамотности и не каждый день сталкиваются с проблемой выбора «самых правильных» таймингов.

Содержание

Типы оперативной памяти

А вы думали, что сначала надо определиться с объемом? Мол, больше гигабайтов — больше счастья? Нет, сперва стоит узнать, какой тип оперативки вам нужен.

Компьютерный рынок, несмотря на пессимистические прогнозы, постоянно развивается, и оперативная память совершенствуется вместе с ним. Время от времени появляются новые технологии и стандарты, позволяющие увеличить скорость работы памяти, уменьшить ее энергопотребление и тепловыделение. Так поколение за поколением выпускаются все новые и новые типы ОЗУ.

Тайминги оперативной памяти какие лучше

Узнать, к какому поколению относится планка памяти, легко по маркировке DDR (double data rate — «удвоенная скорость передачи данных»). Обычного DDR в настольных системах уже давно не встретишь, как и DDR2. На пожилых, но не вышедших в тираж сборках еще может встречаться DDR3, однако если речь идет об актуальных компьютерах с новенькой «требухой», то здесь без вариантов будет DDR4. Где-то на горизонте не первый год маячит память пятого поколения, но пока о ней можно забыть.

Таким образом, если мы ориентируемся на новые актуальные процессоры и материнские платы, то выбор сводится к типу памяти DDR4. К слову, даже если вы ошиблись и купили неподходящий тип ОЗУ, не надо бояться угробить компьютер — у вас банально не получится установить эту планку в материнскую плату. Каждый тип памяти выпускается на плате с особым разъемом, которому должен соответствовать разъем на материнке. Видите, что выемка на плашке памяти ну никак не совпадает с перегородкой в слоте? Поздравляем — этот тип ОЗУ не подходит для вашей машины! Осталось договориться с магазином и обменять его на что-нибудь более полезное.

Тайминги оперативной памяти какие лучше

С DDR4 понятно — дальше только о нем и будем говорить. Но что еще за DDR4 DIMM? А DDR4 SO-DIMM? Или вот DDR4 DIMM Registered? Что ж, DIMM — это всего лишь Dual In-line Memory Module (двухсторонний модуль памяти), то есть непосредственное и не очень нужное обозначение того, что перед вами модуль оперативной памяти определенного формфактора и ничего более (или менее). DDR4 DIMM — как раз то, что нужно для настольных компьютеров.

Модули памяти формата SO-DIMM (Small Outline Dual In-line Memory Module), как ясно из англоязычной расшифровки названия, отличаются более компактными габаритами по сравнению с DIMM. Такие планки используются в системах с ограниченным внутренним пространством. Ноутбуки и мини-ПК — вот среда обитания такой памяти.

DDR4 DIMM Registered — это регистровая память с буфером, который частично берет на себя контроль за передачей данных в памяти. Такие модули считаются более надежными и отказоустойчивыми, при этом они обычно немного дороже и, поговаривают, чуть медленнее обычной DIMM. Используются практически только в серверах и малоинтересны для классического домашнего пользователя.

Тайминги оперативной памяти какие лучше

Коротко о главном. Собираете компьютер из новых актуальных комплектующих? Значит, можете не разбираться в типах памяти и сразу ставить галочку напротив DDR4 DIMM, игнорируя все остальные.

Объем памяти

Многие думают, что именно этот параметр самый важный. И это действительно почти так! Одновременно он же и самый простой. Да, здесь прекрасно работает принцип «чем больше, тем лучше». Но в разумных пределах.

Нет смысла покупать 64 ГБ оперативной памяти, если… Нет, оставим просто «нет смысла покупать 64 ГБ оперативной памяти». Конечно, вы можете сутками напролет обрабатывать терабайты видео, но тогда вряд ли читаете этот гайд.

Тайминги оперативной памяти какие лучше

Минимально допустимый на сегодня объем ОЗУ — 4 ГБ. Все, что ниже — выброшенные на ветер деньги. Этого объема хватит для веб-серфинга, просмотра кино, нетребовательных игр. В общем, то что надо для рабочей офисной машины.

8 ГБ хватит уже почти на все и почти для всех. Игры, кино в высоком разрешении, обработка фото и чуть-чуть видео, браузер с десятком-другим открытых вкладок. Все это без особых проблем будет бегать, но поочередно. Вариант без запаса, но жить можно.

16 ГБ — пока оптимальный вариант для абсолютного большинства пользователей. Браузер с «тыщей» вкладок уже можно не закрывать перед запуском требовательной игры. Вообще можно ничего не закрывать. Очень удобная емкость, с небольшим запасом, но без крокодильих слез за ненужные траты.

32 ГБ нужны, но пока только для специфических задач «не для всех». Столько памяти пригодится для работы, например, дизайнеров или все тех же спецов по редактированию видео. В домашнем компьютере 32 ГБ еще не стали стандартом, хотя изредка встречаются у энтузиастов, которым надо всего и побольше. Возможно, через пару лет столько ОЗУ начнут с удовольствием «кушать» отдельные ААА-проекты.

Тайминги оперативной памяти какие лучше

Коротко о главном. Для компьютера «посидеть в интернете» и при очень урезанном бюджете берите 4 ГБ и копите еще на столько же. 8 ГБ — разумный выбор, но по возможности все-таки лучше отдать предпочтение 16 ГБ и на ближайшее время забыть про оперативку. 32 ГБ — если вы вообще не хотите думать о ней.

Лучше два модуля по 8 ГБ, чем четыре по 4 ГБ

Выше мы говорили о разном объеме оперативной памяти — 4, 8, 16, 32 ГБ. Но почему нет ни слова о 9 или 12 ГБ? Ведь можно взять один модуль емкостью 4 ГБ, потом докупить еще 4 ГБ, подсобрать денег и впихнуть в компьютер еще 4 ГБ. Так обманем систему! Начнем с малого и потихонечку будем апгрейдиться!

Делать так никто не запрещает, но есть нюанс. Во-первых, исходить надо из того, что сегодня широко распространены планки памяти объемом 4, 8 и 16 ГБ. То есть установить 3 ГБ + 6 ГБ точно не получится. Во-вторых, компьютеры любят четное количество установленных планок памяти, то есть фактически два или четыре модуля. В-третьих, если вы забьете все четыре слота на материнской плате, это приведет к повышенной нагрузке на контроллер памяти, а потому может негативно сказаться на стабильности и производительности системы, а также возможном разгоне.

Тайминги оперативной памяти какие лучше

Таким образом получается, что оптимальнее всего использовать два слота (три — очень нежелательно, один — можно, но с прицелом на «добавку»). Можно и четыре, но вы должны быть уверены в качестве всех компонентов системы и в том, что не будете ее разгонять.

Так что же лучше — один модуль на 8 ГБ или два по 4 ГБ? Если речь о новой системе, логичнее купить один 8-гигабайтный модуль и начать откладывать на еще один такой же. А если выбор между одним модулем емкостью 16 ГБ и двумя по 8 ГБ? В таком случае предпочтительней второй вариант, и вот почему.

В современных компьютерах поддерживается двухканальный режим работы памяти, при котором увеличивается скорость передачи данных между памятью и компьютерными компонентами. То есть фактически забесплатно пользователь получает прирост к производительности компьютера. Мощность увеличится ненамного, но почему бы не воспользоваться таким приятным бонусом?

Без нюанса не обошлось и здесь — для двухканального режима работы необходимо два идентичных по характеристикам модуля памяти от одного производителя. Многие вендоры предлагают комплекты такой памяти — одинаковой и гарантированно работающей в этом режиме. Бывает, что такие комплекты стоят дороже, чем аналогичные модули, но вне комплекта. Вестись на «сборные» предложения не обязательно, достаточно купить идентичные планки одной серии (проверяйте маркировку).

Чтобы двухканальный режим заработал, память надо установить в «правильные» слоты на материнской плате. Обычно они обозначены одним цветом и размещаются через один. Например, синие 1-й и 3-й слоты, а также черные 2-й и 4-й.

Источник

Как тайминги памяти влияют на производительность?

Тайминги оперативной памяти: что это такое, и как они влияют на производительность Windows?

Пользователи, которые собственноручно стараются улучшить производительность компьютера, прекрасно понимают, что принцип «чем больше, тем лучше» для компьютерных составляющих работает не всегда. Для некоторых из них вводятся дополнительные характеристики, которые влияют на качество работы системы не меньше, чем объём. И для многих устройств это понятие скорости. Причём этот параметр влияет на производительность почти всех устройств. Здесь вариантов тоже немного: чем быстрее, получается, тем лучше. Но давайте проясним, как конкретно понятие скоростных характеристик в оперативной памяти влияет на производительность Windows.

Скорость модуля оперативной памяти — это основной показатель передачи данных. Чем больше заявленное число, тем быстрее компьютер будет «закидывать в топку» объёмов оперативной памяти сами данные и «изымать» их оттуда. При этом разница в объёмах самой памяти может свестись на нет.

Скорость и объём: что лучше?

Представьте себе ситуацию с двумя железнодорожными составами: первый огромный, но медленный со старыми портальными кранами, которые неторопливо загружают и выгружают груз. И второй: компактный, но быстрый с современными быстрыми кранами, которые благодаря скорости выполняют работу по загрузке и доставке быстрее в разы. Первая компания рекламирует свои объёмы, недоговаривая, что груз придётся ждать очень долго. А вторая при меньших объёмах, однако, успеет обработать груза в разы больше. Многое, конечно, зависит и от качества самой дороги, и расторопности машиниста. Но, как вы поняли, совокупность всех факторов и определяет качество доставки груза. А с планками оперативной памяти в слотах материнской платы ситуация аналогична?

Помятуя о приведённом примере, при выборе планок оперативной памяти мы сталкиваемся с номенклатурным выбором. Выбирая планку где-нибудь в интернет-магазине, мы ищем аббревиатуру DDR, но вполне вероятно, что мы можем столкнуться и со старыми добрыми стандартами PC2, PC3 и PC4, что всё ещё в ходу. Так, нередко за общепринятыми стандартами типа DDR3 1600 RAM можно увидеть характеристику PC3 12800, рядом с DDR4 2400 RAM нередко стоит PC4 19200 и т.д. Это и есть те данные, которые помогут объяснить как быстро будет доставлен наш груз.

Читаем характеристики памяти: сейчас всё сами поймёте

Пользователи, умеющие оперировать числами в восьмеричной системе, увязывают такие понятия быстро. Да, здесь речь о тех самых выражениях в битах/байтах:

Помня это простенькое уравнение, можно легко посчитать, что DDR3 1600 означает скорость PC3 12800 бит/сек. Аналогично этому DDR4 2400 означает PC4 со скоростью 19200 бит/сек. Но если со скоростью передачи всё ясно, то что же такое тайминги? И почему два, казалось бы, одинаковых по частоте модуля из-за разницы в таймингах могут показывать в специальных программах разные уровни производительности?

Характеристики таймингов должны быть представлены в числе прочих для планок RAM счетверёнными через дефис числами (8-8-8-24, 9-9-9-24 и т.д). Эти цифры обозначают специфичный промежуток времени, которое требуется модулю RAM для доступа к битам данных сквозь таблицы массивов памяти. Для упрощения понятия в предыдущем предложении и ввели термин «задержка»:

Тайминги оперативной памяти какие лучше

Задержка — это понятие, которое характеризует то, как быстро модуль получает доступ к «самому себе» (да простят меня технари за такую вольную интерпретацию). Т. е. как быстро байты перемещаются внутри чипов планки. И вот здесь действует обратный принцип: чем меньше числа, тем лучше. Меньшая задержка означает большую скорость доступа, а значит данные быстрее достигнут процессора. Тайминги «измеряют» время задержки (период ожиданияCL) чипа памяти, пока тот обрабатывает какой-то процесс. А число в составе нескольких дефисов означает сколько временных циклов этот модуль памяти «притормозит» информацию или данные, которую сейчас ждёт процессор.

И какое это значение имеет для моего компьютера?

Представьте себе, вы после давненько совершённой покупки ноутбука решили добавить ещё одну планку оперативной памяти к уже имеющейся. Среди всего прочего, ориентируясь по наклеенному лейблу или на основании программ-бенчмарков можно установить, что по характеристикам таймингов модуль попадает под категорию CL-9 (9-9-9-24):Тайминги оперативной памяти какие лучше

То есть данный модуль доставит до ЦПУ информацию с задержкой 9 условных циклов: не самый быстрый, но и не самый плохой вариант. Таким образом, нет смысла зацикливаться на приобретении планки с более низкими показателями задержки (и, теоретически, более высокими характеристиками производительности). Например, как вы уже догадались, 4-4-4-8, 5-5-5-15 и 7-7-7-21, у которых количество циклов равно соответственно 4, 5 и 7.

Тайминги оперативной памяти какие лучше

первый модуль опережает второй почти на треть цикла

Как вы знаете по статье «Как выбрать оперативную память?«, параметры таймингов включают ещё одни важные значения:

«Участие» некоторых из этих параметров в принципе подсчёта скорости работы оперативной памяти, можно также выразить в следующих рисунках:

Тайминги оперативной памяти какие лучше

Кроме того, время задержки до момента, когда планка начнёт отсылать данные, можно подсчитать самому. Здесь работает простая формула:

Время задержки (сек) = 1 / Частоту передачи (Гц)

Таким образом, из рисунка с CPUD можно высчитать, что модуль DDR 3, работающий с частотой 665-666 МГц (половина декларируемого производителем значения, т.е. 1333 МГц) будет выдавать примерно:

1 / 666 000 000 = 1,5 нсек (наносекунд)

периода полного цикла (время такта). А теперь считаем задержку для обоих вариантов, представленных в рисунках. При таймингах CL-9 модуль будет выдавать «тормоза» периодом 1,5 х 9 = 13,5 нсек, при CL-7 : 1,5 х 7 = 10,5 нсек.

Что можно добавить к рисункам? Из них видно, что чем ниже цикл зарядки RAS, тем быстрее будет работать и сам модуль. Таким образом, общее время с момента подачи команды на «зарядку» ячеек модуля и фактическое получение модулем памяти данных, высчитывается по простой формуле (все эти показатели утилиты типа CPU-Z должны выдавать):

tRP + tRCD + CL

Как видно из формулы, чем ниже каждый из указываемых параметров, тем быстрее будет ваша оперативная память работать.

Как можно повлиять на них или отрегулировать тайминги?

У пользователя, как правило, для этого возможностей не очень много. Если в BIOS специальной настройки для этого нет, система будет конфигурировать тайминги автоматически. Если таковые имеются, можно попробовать выставить тайминги вручную из предлагаемых значений. А выставив, следите за стабильностью. Я, признаюсь, не мастер оверклокинга и никогда не погружался в подобные эксперименты.

Тайминги и производительность системы: выбираем по объёму

Если у вас не группа промышленных серверов или куча виртуальных серверов — абсолютно никакого влияния тайминги не возымеют. Когда мы употребляем это понятие, речь идёт о единицах наносекун. Так что при стабильной работе ОС задержки памяти и их влияние на производительность, основательные, казалось бы, в относительном выражении, в абсолютных значениях ничтожны: человек изменения в скорости заметить просто не сможет физически. Программы-бенчмарки это безусловно заметят, однако, если вы однажды станете перед выбором приобрести ли 8 Гб DDR4 на скорости 3200 или 16 Гб DDR4 со скоростью 2400, даже не сомневайтесь с выбором второго варианта. Выбор в пользу объёма, нежели скорости, у пользователя с пользовательской ОС обозначен всегда чётко. А взяв пару уроков оверклокинга по работе и настройке таймингов для RAM, можно после уже добиться улучшения производительности.

Так что же, на тайминги наплевать?

Для обычного пользователя — да. Ну, почти да. Просто здесь есть пара моментов, которые вы наверняка уже успели схватить сами. В сборке, где используется несколько процессоров и дискретная видеокарта, обладающая собственным чипом памяти, тайминги RAM не имеют никакого значения. Ситуация с интегрированными (встроенными) видеокартами немного меняется, и некоторые очень уж продвинутые пользователи чувствуют задержки в играх (насколько эти видеокарты вообще позволяют играть). Это и понятно: когда вся вычислительная мощь ложится на процессор и небольшой (скорее всего) объём оперативки, любая нагрузка сказывается. Но, опять же, опираясь на чужие исследования, могу передать их результаты вам. В среднем потеря производительности в скорости именитыми бенчмарками в различных тестах с уменьшением или увеличением таймингов в сборках с интегрированными или дискретными картами колеблется в районе 5-10%. Считайте, что это устоявшееся число. А много это или мало, вам судить.

Источник

Зависимость производительности в играх от частоты и таймингов оперативной памяти

Сегодня я попытаюсь разобраться, насколько важна производительность оперативной памяти для игрового ПК. Конечно, было бы прекрасно провести тестирование в 4х разрешениях в 20 играх и при 10 различных режимах памяти. Но подобное тестирование заняло бы у меня как минимум несколько месяцев, в течение которых все свободное время я посвящал бы тестам, и в итоге это тестирование никогда бы не было окончено. Поэтому осталось 5 режимов работы оперативной памяти, 7 игр и разрешение 1080p. Такое разрешение было выбрано, чтобы показать зависимость в условиях приближенных к реальным (хотя 1080p для GTX 1080 это даже маловато). Но не беспокойтесь, отдельные тесты в 720p тоже будут. Да еще какие!

реклама

Память я использую Geil Super Luce, которую подробно рассмотрел в предыдущей статье. Не самая лучшая память и не самый лучший выбор для тестов, но в свое оправдание могу сказать, что если взять более хорошую память, которая заведется на 2666 с меньшими таймингами, то само соотношение между памятью на разных частотах не изменится. Тем более, результаты явно покажут, что основные тайминги не есть самое главное для игровой производительности. Единственное, о чем жалею – невозможность проверить масштабируемость производительности при бОльших частотах памяти – выше 3400 моя память прыгнуть неспособна.

Перед проведением подробных тестов с замерами были проведены тесты записью видео и смонтированы в 2 ролика. В первом сравнивается производительность в следующих режимах 2133, 2666 XMP, 2666 optimized, 3200 optimized в разрешении 1080p в 9 играх.

Во втором сравниваются 2666 optimized и 3200 default в 720p

реклама

Именно в комментах к видео появилась идея с замерами 1% и 0.1%

Тест в каждой игре при каждом режиме памяти проводился 3 раза, результаты усреднялись. Если какой-то из результатов сильно отличался от остальных (в двух тестах 70-72, в третьем 60), его результаты отбрасывались, и тест проводился снова. Между каждым прогоном система перегружалась.

В первую очередь я отказался от частоты памяти 2133. Сегодня эта частота представляет лишь теоретический интерес. Все процессоры и матплаты поддерживают из коробки бОльшую частоту. А вот режимов с частотой 2666 будет 2 – стандартный XMP и с выжатыми таймингами. Частота 2666 интересна тем, что это максимальная частота для чипсетов, не поддерживающих разгон (на платформе Intel), и будет интересно посмотреть, на что способна память в таком режиме. Итак, память тестировалась в следующих режимах:

реклама

2666 XMP. Основные тайминги 16-18-18-36. Остальные тайминги Авто

2666 opt (Optimized). 12-16-16-28-1T, TRFC=280, TREFI=65535, остальные тайминги выставлены вручную (но не «добиты» до самых минимальных значений из-за недостаточности времени на тестирование стабильности).

3200 default. 15-19-19-34, tCWL=15, все остальные тайминги Авто.

3200 opt. 15-19-19-34-1T, TRFC=330, TREFI=65535, остальные тайминги выставлены вручную.

реклама

3400 opt. 16-20-20-34-1T, TRFC=350, TREFI=65535, остальные тайминги выставлены вручную.

Таблица с таймингами

Процессор во всех тестах Core i7 8700K на частоте 4,8 ГГц. Режим максимальной производительности включен как в Windows, так и в биос материнской платы.

Результаты в AIDA64 Memory Benchmark

2666 МГц очень сильно улучшает показатели после настройки таймингов и приближается к лидерам по времени задержки. Посмотрим, к чему это приведет в играх.

Тестовый стенд

ЦП: Core i7 8700K @ 4.8 GHz, северный мост @ 4.4 GHz

МП: Asus Z370-A, версия биос 0616

Кулер: Phanteks PH-TC14PE + Noctua NF-A15

ОЗУ: 2*8GB Geil Super Luce 2666

ВК: Zotac Geforce GTX 1080 AMP + Accelero Xtreme III @ 2000/10800

БП: Corsair RM650

Корпус: Fractal Design Define R5 + 3x bequiet Silent Wings 2 140 mm

SSD: 2x Crucial M4 128GB, Crucial MX300 525GB, Kingfast 250GB

ОС: Windows 10 x64 LTSB

Версия драйвера ВК: 398.11

Для теста преимущественно отобраны игры, в которые я играю и знаю, в каких локациях производительность наименее зависит от видеокарты. Замеры среднего фпс и 1% и 0.1% фпс производились Fraps. К сожалению, пришлось отказаться от тестирования в Rise of Tomb Raider, т.к. Fraps в данной игре не работал. Также если не использовался бенчмарк, то не делалось никаких «прогревочных» пробежек по траектории, чтобы исключить лаги. Именно эти лаги мы сейчас и ищем.

Список игр

Assassin’s Creed Origins. Разрешение 1080p, пресет Ultra High. Используется встроенный бенчмарк, т.к. в данную игру я не играл. Тест производительности в Fraps запускался и останавливался вручную.

Fallout 4. Разрешение 1080p, пресет Ultra. Казалось бы, старая игра на древнейшем движке, но в данной игре есть место, где фпс зависит только от производительности оперативной памяти – верхушка завода Корвега. Фпс замерялся в течение 20 секунд при неподвижности персонажа. Тут я приведу только средний фпс. Также проведено тестирование при входе в Diamond City (13 cекунд).

Far Cry 5. Разрешение 1080p, пресет Ultra. Используется встроенный бенчмарк. Тест производительности в Fraps запускался и останавливался вручную.

Grand Theft Auto 5. Используется встроенный бенчмарк. Изначально я хотел использовать поездку по городу, но так и не смог научиться быстро ездить без аварий (в отличие от Watch Dogs 2). Настройки смотрите на скриншотах. Игра сама предложила подобные настройки при старте. Тест производительности в Fraps запускался вручную на 116 секунд в момент запуска последнего теста (и охватывал весь последний тест).

Kingdom Come Deliverance. Разрешение 1080p, пресет Very High. Поездка на быстрой лошади от мельницы до Ратае и через центральную улицу Ратае в течение 50 секунд. В отличие от видеосравнения тестовый отрезок заканчивается почти сразу после выезда за границу города.

Witcher 3. Разрешение 1080p, пресет Ultra. Поездка на лошади через Новиград в течение 50 секунд. В отличие от видеосравнения тестовый отрезок заканчивается почти сразу после выезда за границу города.

Watch Dogs 2. Разрешение 1080p, пресет Ультра. Поездка по центральной улице на быстром авто (одинаковом для каждого прогона) в течение 45 секунд. В отличие от видеосравнения обратно я уже не возвращаюсь, т.е. еду по дороге в одну сторону.

Результаты

Assassin’s Creed Origins 1080p

Различия между режимами очень небольшие. 2666 opt быстрее 3200 def.

Fallout 4 1080p

Рассмотрим пока спуск в Diamond City

Разница между лучшим и худшим результатом (avg и 1%) около 15%. 2666 опять опережает 3200 def.

Far Cry 5 1080p

Очень маленькая разница по среднему фпс, но вполне ощутимая по 1 и 0.1%. 2666 без оптимизаций отстает от остальных режимов, которые в свою очередь почти не отличаются между собой

Grand Theft Auto 5 1080p

С результатами GTA5 все не так однозначно. Средний фпс от прогона к прогону почти не отличался, а вот 1% и особенно 0.1% плавали в весьма широких пределах.

Kingdom Come Deliverance 1080p

В последней версии 1.5 (update: уже доступна 1.6) игра избавилась от фризов и просадок фпс при беге по городу на своих двоих. Но если скакать во весь опор на лошади, то фпс все еще провисает, хотя и меньше, чем на релизной версии. 2666 opt оказался гораздо ближе к оптимизированным 3200 и 3400, чем к 3200 без оптимизаций.

Watch Dogs 2 1080p

Стоп! Самая требовательная к скорости оперативной памяти игра показала минимальную разницу? Не может того быть! Может, если учесть настройки. В 1080p на Ultra настройках GTX 1080 почти постоянно работает на пределе, потому и такая небольшая разница.

720p

Тестирование в 720p я провел не во всех играх. Тестировать в 720p Fallout 4 и GTA 5 нет никакого смысла – в них и при 1080p видеокарта не загружена (это видно на видео). В Kingdom Come Deliverance видеокарта бОльшую часть времени загружена на максимум, но в моменты просадок фпс загрузка GPU падает. Итак, в 720p я протестирую Assassin’s Creed Origins, Witcher 3 и Far Cry 5. Watch Dogs 2 и завод Корвега из Fallout 4 оставлю напоследок.

Assassin’s Creed Origins 720p

Разница между режимами в 720p немного больше, чем в 1080p, но вновь ничего выдающегося.

Witcher 3 720p

Средний фпс растет, но 1% и 0.1% падает… Тестировать в 3200 opt я не стал – всего 2,3% разницы между 3400 и 2666 делает этот тест бессмыссленным.

Far Cry 5 720p

Всего 2 режима, т.к. их результаты показывают бессмысленность остального тестирования. Всего 3-4% разницы между 2666 и 3400 (+27% или +733 МГц частоты!) в 720p.

Watch Dogs 2 720p custom settings

А теперь немного хардкора. Снижаем разрешение до 720p, включаем пресет Ультра, а потом снижаем тени на Высоко и выключаем «Туман Сан-Франциско» и «Тень объектов в свете фар».

Помимо основных 5 режимов тестируем в следующих:

2666 XMP + TRFC, TREFI. Режим 2666 XMP кроме TRFC=280, TREFI=65535

2666 12-16-28-1T. Основные тайминги настроены вручную, все остальные на Авто

2666 opt no TRFC, TREFI. 2666 opt кроме TRFC и TREFI на Авто

2666 opt, subtim=auto. Основные тайминги, TRFC, TREFI настроены вручную, все остальные тайминги на Авто

2666 opt, TREFI=auto. 2666 opt кроме TREFI на Авто.

2666 opt, TRFC=auto. 2666 opt кроме TRFC на Авто.

2666 opt cl=14. 2666 opt кроме cl=14

2666 opt CR=2T. 2666 opt кроме Command Rate=2T

3267 opt. Тайминги аналогичны 3200 opt. Можитель процессора 47, шина 102.1

Каждый тест выполнялся 2 раза.

Наконец-то реальная разница между различными режимами! 2666 opt на 13-14% быстрее 2666 XMP, а 3400 opt в свою очередь на 10-11% быстрее 2666 opt, а разница между 2666 XMP и 3400 opt составляет 25%. Но есть одно но. Подобная разница получилась в одной игре, в разрешении 720p, с немного сниженными настройками, при использовании Core i7 8700K на частоте 4,8 ГГц и Geforce GTX 1080. Хочется тут вставить видео со святым отцом из «Очень страшного кино»

Еще из интересного можно отметить, что 2666 со всеми настроенными таймингами, кроме TRFC+TREFI, равен режиму 2666 XMP с настроенными TRFC+TREFI.

Повышение TRFC c 280 до дефолтных 467 (для частоты 2666) на производительность по сути не влияет.

Настройка только TRFC+TREFI после активации XMP профиля уже ощутимо улучшает производительность.

Ну и напоследок тест на заводе Корвега в Fallout 4. Особенность данной точки, что фпс тут не зависит ни от видеокарты, ни от процессора, а только от производительности оперативной памяти. Тест проводился всего 1 раз ввиду высокой повторяемости результатов. Приведен средний фпс.

Здесь разница меньше, чем в WD2 – всего 13,5% между лучшим и худшим результатом. Сами результаты позволяют оценить влияние каждого параметра на производительность.

Заключение

Через пару дней после начала подробных тестов я подумал, что занимаюсь чем-то бесполезным, и все основные ответы уже есть в записанных ранее видео. В общем-то, так и вышло. 2666 МГц с оптимизированными таймингами в подавляющем большинстве случаев не сильно уступает 3200 и 3400 (также с настроенными таймингами) и всегда превосходит 3200 с дефолтными таймингами. Основную роль в этом играет тайминг TREFI, но и остальные далеко небесполезны.

Ощутимую разницу удалось получить лишь в игре Watch Dogs 2 в разрешении 720p с немного сниженными настройками графики. Можно, конечно, было бы сказать, что со временем таких игр станет больше, но с момента выхода WD2 прошло более полутора лет, и новые игры показывают куда меньшую зависимость от производительности памяти.

Ссылка на архив со всеми результатами и скриншотами таймингов и результатов в AIDA64.

Источник

Руководство по задержке оперативной памяти – насколько важна латентность RAM

Тайминги оперативной памяти какие лучше

Хотя это, пожалуй, один из самых простых компонентов для установки, понимание того, что заставляет вашу оперативную память работать, – это совсем другая игра.

Эти невинно выглядящие планки памяти гораздо сложнее, чем кажутся. Давайте сегодня попробуем упростить один аспект – задержку памяти.

Мы рассмотрим, что это значит, как это может повлиять на ваши рабочие нагрузки, и поможем вам понять, следует ли вам гнаться за этими молниеносными скоростями или искать комплекты памяти с низкой задержкой.

Скорость оперативной памяти и задержка

В то время как скорость памяти (или скорость передачи данных) определяет, насколько быстро ваш контроллер памяти может обращаться к памяти или записывать данные в память, задержка ОЗУ фокусируется на том, как скоро он может начать процесс.

Скорость памяти измеряется в МТ/с (мегапередачи в секунду), а задержка – в наносекундах.

Прежде чем мы углубимся в расчёт латентности памяти или задержки ОЗУ, вам следует знать несколько терминов:

Латентность памяти

Проще говоря, латентность – это задержка.

Эта задержка может быть измерена в наносекундах (реальное время). Однако, когда дело доходит до цифровой электроники, мы часто используем тактовый цикл, потому что таким образом мы получаем сравнительные числа, которые не зависят от частоты или скорости передачи данных.

Тайминги памяти

В отличие от задержки, тайминги памяти (эта последовательность чисел, которую вы видите на вашем модуле памяти) измеряются в тактовых циклах.

Таким образом, каждое число в таймингах памяти, например 16-19-19-39, указывает количество тактов или циклов, необходимых для выполнения определенной задачи.

Вот краткий обзор того, что означают эти тайминги, от первого до последнего (всё измеряется в тактовых циклах).

Чтобы упростить ситуацию, представьте себе пространство памяти в виде гигантской электронной таблицы со строками и столбцами, где каждая ячейка может содержать двоичные данные (0 или 1).

Вычисление задержки RAM или задержки CAS

CAS Latency – это время, которое требуется вашей памяти для ответа на запрос от контроллера памяти. Вот таблица, которая упростит вам этот процесс:

В этом разделе мы узнаем, как рассчитать задержку ОЗУ.

Конечно, вы также можете использовать калькулятор задержки ОЗУ, если хотите пропустить математику.

Однако, поскольку рекламируемая задержка CAS измеряется в тактовых циклах, нам необходимо учитывать скорость памяти, чтобы получить реальную задержку CAS в наносекундах.

Вот формула, которую следует использовать: (CL×2000)/Частота

Допустим, у нас есть комплект памяти DDR4-3200 CL16. Вы получаете задержку в наносекундах (16×2000)/3200 = 10 нс.

Задержка First Word

Теперь, если вам интересно, как насчёт других таймингов памяти? Разве они не влияют на задержку?

Тем не менее, задержка CAS по-прежнему является наиболее часто используемой метрикой для сравнения латентности памяти, поскольку она более непосредственно влияет (немедленно), насколько быстро ваш модуль ОЗУ отвечает на запрос.

Однако, некоторые инженеры говорят о преимуществах использования задержки First Word, когда речь идёт о памяти. Эта задержка учитывает временные показатели первичной памяти вместе с длиной пакета, чтобы получить задержку, которая, по сути, говорит вам, сколько времени требуется, чтобы прочитать слово из памяти.

ОЗУ с низкой задержкой или высокоскоростная ОЗУ

Рассмотрим следующие три комплекта:

Как вы думаете, какой из них «самый быстрый»?

Что ж, тут всё становится немного сложнее (или интереснее).

Для 3D и активных рабочих нагрузок

Мы проверили это на себе. И оказывается, что сама задача настолько сильно ограничена IPC и тактовой частотой одного ядра процессора, что не имеет значения, какую задержку вы выберете, пока скорость передачи данных или тайминги памяти не будут активно препятствовать производительности процессора.

Процессор Ryzen 9 5950ХБенчмарк (среднее за 10 прогонов)
DDR4-3600 CL 201230,75
DDR4-3600 CL 161237,50
DDR4-2666 CL 201230,88

Как видно, с процессорами Ryzen как более низкие тайминги, так и более низкие скорости передачи данных влияют на производительность самого процессора (даже одноядерного).

Однако это открывает интересную дискуссию.

Следует ли вам брать более дешёвый комплект DDR4-2666 CL20 (или комплект DDR4-2666 CL16) вместо немного более дорогого комплекта DDR4-3600 CL20, если вы собираетесь получить аналогичную производительность?

Я бы сказал нет. Вы увидите лучшую производительность с более быстрым набором памяти для любой задачи, которая возлагает активную нагрузку непосредственно на ЦП, распределенную по нескольким ядрам.

Одним из примеров этого является быстрая прокрутка таймлайна Premiere Pro со сжатым исходным материалом.

Для рабочих нагрузок рендеринга CPU/GPU

Краткий ответ – не имеет большого значения. Если это ваши основные рабочие нагрузки, мы рекомендуем отдавать приоритет стабильности системы, а не гнаться за незначительной выгодой.

Часто задаваемые вопросы о латентности памяти

Смешивание оперативной памяти с разной задержкой плохая идея?

Да. Смешанная память, как правило, не идеальна. Это справедливо даже в том случае, если у вас разные тайминги памяти.

Что касается того, какое поведение ожидать, есть две возможности:

Как проверить задержку CAS моей оперативной памяти?

Вы можете узнать текущую задержку памяти в кратчайшие сроки! Сначала скачайте CPU-Z с официального сайта CPUID.

После того, как вы установите и запустите CPU-Z, вы должны увидеть экран, подобный этому (конечно, аппаратное обеспечение и спецификации будут вашими) –

Перейдите на вкладку «Память» и вы должны увидеть список, в котором указана частота вашей памяти (не скорость передачи данных), а также тайминги вашей памяти, такие как задержка CAS.

Что такое SPD в CPU-Z

SPD, или Serial Presence Detect, представляет собой стандартизированную EEPROM (электрически стираемую программируемую постоянную память), которая позволяет вашей системе получить доступ к спецификациям памяти.

Таким образом, когда ваша система выполняет «POST» (самопроверка при включении питания), она получает доступ к спецификациям памяти, используя информацию, хранящуюся здесь. На этом этапе она мгновенно узнает, какие спецификации JEDEC установлены для вашей памяти, в дополнение к нескольким другим вещам.

Более того, она также увидит любые профили XMP, которые были загружены в вашу память, как вы можете видеть на снимке экрана выше. Затем ваш BIOS может предложить способ «одним щелчком» установить спецификации для этого профиля XMP, прочитав его.

Имейте в виду, что это не ваши текущие настройки памяти. На этой вкладке отображается только то, что считывается с ваших модулей памяти.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *