за счет чего движется ракета в космосе
Реактивное движение и ракета
От чего оттолкнуться в космосе?
У поверхности Земли можно оттолкнуться от поверхности либо от находящихся на ней предметов. Для передвижения по поверхности используют ноги, колеса, гусеницы и так далее. В воде и воздухе можно отталкиваться от самих воды и воздуха, имеющих определенную плотность, и потому позволяющих взаимодействовать с ними. Природа для этого приспособила плавники и крылья.
Человек создал двигатели на основе пропеллеров, которые во много раз увеличивают площадь контакта со средой за счет вращения и позволяют отталкиваться от воды и воздуха. А как быть в случае безвоздушного пространства? От чего отталкиваться в космосе? Там нет воздуха, там ничего нет. Как осуществлять полеты в космосе? Вот тут-то и приходит на помощь закон сохранения импульса и принцип реактивного движения. Разберем подробнее.
Импульс и принцип реактивного движения
Импульс это произведение массы тела на его скорость. Когда тело неподвижно, его скорость равна нулю. Однако тело обладает некоторой массой. При отсутствии сторонних воздействий, если часть массы отделится от тела с некоторой скоростью, то по закону сохранения импульса, остальная часть тела тоже должна приобрести некоторую скорость, чтобы суммарный импульс остался по-прежнему равным нулю.
Причем скорость оставшейся основной части тела будет зависеть от того, с какой скоростью отделится меньшая часть. Чем эта скорость будет выше, тем выше будет и скорость основного тела. Это понятно, если вспомнить поведение тел на льду или в воде.
Если два человека будут находиться рядом, а потом один из них толкнет другого, то он не только придаст тому ускорение, но и сам отлетит назад. И чем сильнее он толкнет кого-либо, тем с большей скоростью отлетит сам.
Наверняка, вам приходилось бывать в подобной ситуации, и вы можете представить себе, как это происходит. Так вот, именно на этом и основано реактивное движение.
Ракеты, в которых реализован этот принцип, выбрасывают некоторую часть своей массы на большой скорости, вследствие чего сами приобретают некоторое ускорение в противоположном направлении.
Потоки раскаленных газов, возникающие в результате сгорания топлива, выбрасываются через узкие сопла для придания им максимально большой скорости. При этом, на величину массы этих газов уменьшается масса ракеты, и она приобретает некую скорость. Таким образом реализован принцип реактивного движения в физике.
Принцип полета ракеты
В ракетах применяют многоступенчатую систему. Во время полета нижняя ступень, израсходовав весь свой запас топлива, отделяется от ракеты, чтобы уменьшить ее общую массу и облегчить полет.
Количество ступеней уменьшается, пока не остается рабочая часть в виде спутника или иного космического аппарата. Топливо рассчитывают таким образом, чтобы его хватило как раз для выхода на орбиту.
При посадках на космические тела рассчитывают количество топлива для посадки и на обратный путь, если он запланирован.
megavolt_lab
Записки сумасшедшего ракетчика
В этом блоге я буду много писать о ракетах и космических аппаратах, но для начала давайте разберемся с тем, что же такое ракета и за счет чего она летает. Ведь кроме ракеты есть еще немало видов техники, умеющей летать.
Есть тип летательных аппаратов, которые могут обходиться вообще без двигателя. Это аэростаты (воздушные шары). Летают только засчет силы Архимеда. В сети есть много видео, где люди развлечения ради запускают самодельные воздушные шары с камерой, как они пишут, в космос. Вот пример такого видео:
Но как же подняться выше предельных высот для самолетов и воздушных шаров? Вот тут-то нас и выручит ракета. Основное отличие ракеты от других видов летательных аппаратов состоит в том, что полет ракеты практически никак не зависит от внешних условий (плотности воздуха, его состава и т. п.), поскольку все, что ей нужно для полета у нее с собой.
Для того, чтобы ракета полетела, нужно чтобы сила, с которой она отталкивается от рабочего тела (эту силу называют тягой двигателя) превышала вес ракеты. Параметр, показывающий, во сколько раз тяга двигателя превышает вес ракеты, называется тяговооруженность ракеты.
Современная ракета Союз очень тяжелая. Ее масса вместе с топливом и поднимаемым ей космическим кораблем составляет 307,7 тонн. Для того, чтобы поднять такую массу, ракете нужно выбрасывать рабочее тело с огромной скоростью: от 2,5 км/с, до 3 км/с, что примерно в 9 раз превышает скорость звука у поверхности Земли.
Вот, как выглядит старт этой ракеты:
Но для успешного полета ракете мало только двигателя и топлива. Нужна еще, как минимум, система стабилизации. Дело в том, что сила тяги двигателя прикладывается к ракете снизу, гораздо ниже ее центра тяжести, поэтому ракета в течение всего полета находится в состоянии неустойчивого равновесия. Чтобы понять смысл этих слов попробуйте удержать карандаш острием на пальце.
Работает она очень просто: «крылышки» (называются стабилизаторы) увеличивают площадь поверхности корпуса ракеты позади центра тяжести. При отклонении ракеты от курса набегающий поток воздуха давит на боковую поверхность корпуса тем сильнее, чем больше эта поверхность. Поскольку позади центра тяжести поверхность больше, чем впереди, воздух давит на нее сильнее, заставляя ракету повернуться вокруг центра тяжести и вернуться на курс.
Разумеется, такая система работает только в атмосфере. В космосе, где воздуха нет, аэродинамические стабилизаторы бесполезны. Для космических ракет применяется активная система стабилизации. Она состоит из гироскопа, бортовой электроники и маленьких подруливающих двигателей.
Вот здесь можно посмотреть на то, как работает гироскоп:
Основываясь на показания датчиков, следящих за положением гироскопа относительно ракеты, бортовая электроника выдает команды исполнительным механизмам на изменение положения маленьких подруливающих двигателей, расположенных рядом с основным двигателем. Они изменяют направление вектора тяги, создавая вращательный момент, возвращающий ракету в заданное положение.
На этой фотографии изображен двигатель центрального блока ракеты Союз. Кроме основных четырех сопел видны четыре маленьких сопла, расположенные по краям блока. Это и есть подруливающие двигатели. Они закреплены на кардановом подвесе, поэтому могут поворачиваться.
На этом пока все. В следующей статье я расскажу о том, как ракеты выводят на орбиту космические аппараты.
Почему ракеты взлетают
Любовь Карась
Один из популярных детских вопросов «Почему ракеты летают?» для многих остается без ответа. Изучение космонавтики требует глубоких знаний по физике, ракетостроению, астрономии и в других отраслях. Т&Р объясняют, как происходит одно из самых завораживающих научных событий, и рассказывают, благодаря чему ракеты сохраняют скорость, не переворачиваются и преодолевают силу притяжения.
Как устроен реактивный двигатель
Русский революционер и изобретатель Николай Кибальчич создал первый в мире проект аппарата с реактивным двигателем. Однако ученый был казнен. В начале XX века эту идею стал развивать К.Э. Циолковский. Ученый разработал саму схему реактивного двигателя, который работал на жидком топливе.
Несмотря на всю сложность конструкции современных космических кораблей, ракета — один из самых простых летательных аппаратов. В основе ее устройства лежит принцип, согласно которому всякое действие рождает противодействие. Ракета летит, выбрасывая определенное вещество из своей хвостовой части. Несмотря на всю эту простоту, ракеты разрабатывались и совершенствовались в течение более чем семисот лет.
Луис Блумфилд. «Как все работает. Законы физики в нашей жизни»
Движение ракеты предполагает действие двух равных и противоположно направленных сил
Аналогично этому работает реактивный двигатель. Топливо и окислитель попадают в рабочую камеру, смешиваются, сгорают в зоне горения, выделяя огромное количество тепла, которого достаточно для движения.
Траектория полета
Многие убеждены, что ракеты взлетают вертикально, однако это не так. Ракетное топливо может закончиться через 10 минут, а при вертикальном взлете этого времени просто не хватит для выхода на орбиту.
Современные ракеты взлетают вертикально на самом первом этапе, а далее меняют траекторию и двигаются под углом по отношению к Земле. Чем выше высота полета, тем заметнее угол. Ракета совершает гравитационный разворот — маневр, при котором направление тяги совпадает или противоположно направлению движения, изменяющемуся под действием силы тяжести. Этот маневр используется в момент выведения на орбиту или при посадке с нее.
Ускорение ракеты, взлетающей под углом к горизонту: g — ускорение свободного падения, ae — вклад двигателя в ускорение, a — итоговое ускорение ракеты
Как обеспечивается устойчивость ракеты
Действие трех скоростей
Физика космического полета
Россия всегда была космической державой. Запуск первого искусственного спутника Земли (4 октября 1957 года), полет первого космонавта (12 апреля 1961 года, Ю.А.Гагарин), полет первой женщины- космонавта (16 июня 1963 года, В. Терешкова), первый выход человека в открытый космос (18 марта 1965 года, А. Леонов), запуск первых космических аппаратов для исследования космических объектов, первые орбитальные станции.
Космические полеты сопровождаются следующими физическими явлениями: реактивное движение, невесомость и явление тяготения.
Реактивное движение. Описано в учебнике А.В.Перышкин, Е.М. Гутник «Физика 9 кл».: учебник для общеобразовательных учреждений/ А. В. Перышкин. – М.: Дрофа, 2012.
Реактивное движение возникает за счет того, что от тела отделяется и движется какая- то его часть, в результате чего тело приобретает противоположно направленный импульс (из учебника).
Объяснить реактивное движение можно на основе закона сохранения импульса. Согласно закону сохранения импульса, суммарный импульс замкнутой системы тел до взаимодействия равен суммарному импульсу тел после взаимодействия. Самый простой пример реактивного движения – полёт воздушного шарика, из которого выходит воздух. Если мы надуем шарик и отпустим его, он начнёт лететь в сторону, противоположную движению выходящего из него воздуха.
На законе сохранения импульса основана реактивная тяга. При движении ракеты с реактивным двигателем в результате сгорания топлива из сопла выбрасывается, струя жидкости или газа (реактивная струя). В результате взаимодействия двигателя с вытекающим веществом появляется реактивная сила. Так как ракета вместе с выбрасываемым веществом является замкнутой системой, то импульс такой системы не меняется со временем.
Реактивная сила возникает в результате взаимодействия только частей системы. Внешние силы не оказывают никакого влияния на её появление.
До того, как ракета начала двигаться, сумма импульсов ракеты и горючего была равна нулю. Следовательно, по закону сохранения импульса после включения двигателей сумма этих импульсов тоже равна нулю.
История открытия реактивного движения:
К. Циолковский создал проект поезда на воздушной подушке, в основе которого принцип реактивного движения. Сейчас много таких машин используется для движения над водой и над землей в условиях бездорожья: над болотами, переувлажненными полями, пашнями.
Невесомость. Описано в учебнике А.В.Перышкин «Физика 7 кл».: учебник для общеобразовательных учреждений/ А. В. Перышкин. – М.: Дрофа, 2012. и в учебнике А.В.Перышкин, Е.М.Гутник «Физика 9 кл».: учебник для общеобразовательных учреждений/ А. В. Перышкин. – М.: Дрофа, 2012.
Данное явление сопровождает космонавтов в космосе.
Это явление объясняется тем, что тело движется только под действием силы тяжести- свободно падает. В момент движения падающее тело не действует на падающую вместе с ним опору.
Явление невесомости описывал в своей книге К.Э. Циолковский «Вне Земли». Ю. Гагарин перед своим полетом читал эту книгу и был удивлен тем, что все процессы, происходящие в космосе, были верно описаны.
Явление тяготения. Закон всемирного тяготения. Описано в учебнике А.В.Перышкин «Физика 7 кл».: учебник для общеобразовательных учреждений/ А. В. Перышкин. – М.: Дрофа, 2012. И А.В.Перышкин, Е.М Гутник «Физика 9 кл».: учебник для общеобразовательных учреждений/ А. В. Перышкин. – М.: Дрофа, 2012.
Притяжение всех тел во Вселенной друг к другу называется Всемирным тяготением (из учебника «Физика 7 класс»).
Взаимодействие между телами во Вселенной осуществляется особым полем, которое стали называть гравитационным. У этого поля есть некоторые особенности. Самая главная и самая интересная особенность – поле является всепроникающим.
История открытия закона всемирного тяготения:
Закон всемирного тяготения, который является одним из универсальных законов природы. Согласно закону, все материальные тела притягивают друг друга, причём величина силы тяготения не зависит от химических и физических свойств тел, от состояния их движения, от свойств среды, где находятся тела. Тяготение на Земле проявляется, прежде всего, в существовании силы тяжести, являющейся результатом притяжения всякого материального тела Землёй. С этим связан термин «гравитация» (от лат. gravitas — тяжесть), эквивалентный термину «тяготение».
Закон тяготения гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.
Этот закон нашел свое применение для тел, которые имеют форму шара, его можно использовать для материальных точек, а также он приемлем для шара, имеющего большой радиус, где этот шар может взаимодействовать с телами, гораздо меньшими, чем его размеры.
Интересные факты:
Почему ракеты-носители всегда летят по дуге?
Все ракеты, которые сегодня запускают в космос с теми или иными целями, движутся по очень похожим дугообразным траекториям. Но зачем делать дугу? Неужели ракеты не могут лететь вертикально вверх?
Чтобы стабильно двигаться по орбите, скорость космического корабля должна быть равна скорости с которой он падает на Землю. Это не позволит кораблю упасть, и при этом он не будет отдаляться от планеты на слишком большое расстояние. Однако ниже примерно 100 км сделать это практически невозможно, потому что сопротивление воздуха слишком быстро замедлит движение корабля.
Но выше этой границы космоса или, как ее называют, линии Кармана, корабль может разгоняться до достаточно высокой скорости — более 7 км в секунду. Благодаря этому после отключения двигателя аппарат будет дрейфовать в космосе с той же скоростью, с которой падает, и, следовательно, вращаться вокруг Земли.
Объекты на орбите имеют ту же массу, что и на Земле. Они все еще обладают той же инерцией и на них также действует гравитационное притяжение планеты. Они падают, но если они удаляются с той же скоростью, с какой падают, то никогда не упадут на поверхность Земли.
Ракеты-носители запускают по дугообразой траектории для правильного выхода аппарата на орбиту. На первом этапе космический корабль движется вверх, преодолевая сопротивление воздуха, а когда выше 100 километров атмосфера становится достаточно разреженной, ракета изменяет свою траекторию, чтобы с минимальным расходом топлива выйти на заданную орбиту. Если ракету-носитель запускать сразу под углом к горизонту, сопротивление воздуха будет сильнее и не факт, что она сможет преодолеть его и выйти на стабильную орбиту.