за счет чего движется торпеда в воде
За счет чего движется торпеда в воде
Торпеды наших дней
По габаритно-весовым характеристикам американские торпеды подразделяются на две основные категории: тяжелые — калибром 482-и 533 мм и малогабаритные — от 254 до 324 мм.
Неодинаковы торпеды и по длине. Для американских торпед характерна стандартная длина, соответствующая принятой в ВМС США длине торпедных аппаратов — 6,2 м (в других странах 6,7—7,2). Это ограничивает возможности помещения запасов топлива, а следовательно, и дальность хода торпед.
По характеру своего маневрирования после выстрела торпеды бывают прямоидущими, маневрирующими и самонаводящимися. В зависимости от способа взрыва существуют торпеды контактные и неконтактные.
Большинство современных торпед — дальноходные, способные поражать цели на дистанциях 20 км и более. По скорости нынешние торпеды во много раз превосходят образцы периода второй мировой войны.
В боевом зарядном отделении торпеды, кроме взрывчатого вещества, помещаются взрыватели и запальные приспособления.
Чтобы на стреляющем корабле не произошло взрыва снаряженной торпеды от случайного сотрясения, толчка, взрыва вблизи корабля или от удара торпеды о воду в момент выстрела, у инерционного ударника есть специальное предохранительное приспособление, стопорящее маятник.
Рис. 18. Схемы устройства американских торпед:
а —парогазовая: 1 — запальный стакан; 2 — инерционный ударник; 3 — запирающий кран; 4 — машинный кран; 5 — прибор расстояния; 5—машина; 7 — курок; 8— гироскопический прибор; 9 —гидростатический прибор; 10 — Керосиновый резервуар; 11 — машинный регулятор;
б — электрическая: 1 —взрывчатое вещество; 2 — взрыватель; 3 — аккумуляторы; 4 — электродвигатели; 5 — пусковой контактор; 6 — гидростатический прибор; 7 — гироскопический прибор; 8 — вертикальный руль; 9 — передний винт; 10 — задний винт; 11 — горизонтальный руль; 12 —баллоны со сжатым воздухом; 13 — прибор для сжигания водорода
Предохранительное устройство связано с валом вертушки, вращающейся под действием встречного потока воды. При движении торпеды вертушка отстопоривает маятник, опуская иглы и сжимая боевую пружину бойка. Ударник приводится в боевое положение только тогда, когда торпеда после выстрела пройдет в воде 100т— 200 м.
Предохранительное устройство от случайного взрыва состоит здесь также из вертушки. Вал вертушки вращает генератор постоянного тока, который вырабатывает энергию и заряжает конденсатор, выполняющий роль аккумулятора электрической энергии.
В начале движения торпеда безопасна — цепь от генератора к конденсатору разомкнута при помощи колеса-замедлителя, и детонатор находится внутри предохранительной камеры. Когда торпеда пройдет определенную часть пути, вращающийся вал вертушки поднимет детонатор из камеры, колесо-замедлитель замкнет цепь и генератор начнет заряжать конденсатор.
Для предохранения торпеды от преждевременного взрыва вблизи стреляющего корабля расположенный в лобовом ударнике стержень бойка стопорится предохранительной вертушкой. После выстрела торпедой вертушка начинает вращаться и полностью отстопорит боек, когда торпеда удалится на некоторое расстояние от корабля.
Стремление повысить эффективность действия торпед привело к созданию неконтактных взрывателей, способных увеличить вероятность попадания в цель и поражать корабли в наименее защищенную часть — днище.
Неконтактный взрыватель замыкает цепь запала и взрывателя торпеды не в результате динамического удара (контакта с целью, непосредственного удара о корабль), а в результате воздействия на него различных полей, создаваемых кораблем. К ним относятся магнитные, акустические, гидродинамические и оптические поля.
Установку глубины хода торпеды с неконтактным взрывателем производят так, чтобы взрыватель срабатывал точно под днищем цели.
Для придания торпеде хода применяются различные двигатели. Парогазовые торпеды, например, приводятся в движение поршневой машиной, работающей на смеси водяного пара с продуктами сгорания керосина или другой горючей жидкости.
В парогазовой торпеде, обычно в задней части воздушного резервуара, помещается водяной отсек, в котором находится пресная вода, подаваемая для испарения в подогревательный аппарат.
В кормовой части торпеды, разделенной на отсеки (у американской торпеды Мк.15, например, кормовая часть имеет три отсека), помещаются подогревательный аппарат (камера сгорания), главная машина и механизмы, управляющие движением торпеды по направлению и глубине.
Силовая установка вращает гребные винты, которые сообщают торпеде поступательное движение. Во избежание постепенного снижения давления воздуха из-за неплотности укупорки воздушный резервуар разобщается с машиной посредством специального приспособления, имеющего запирающий кран.
Перед выстрелом запирающий кран открывается, и воздух подходит к машинному крану, который специальными тягами соединен с курком.
Во время движения торпеды в торпедном аппарате курок откидывается. Машинный кран начинает автоматически впускать воздух из воздушного резервуара в подогревательный аппарат через машинные регуляторы, которые поддерживают установленное постоянное давление воздуха в подогревательном аппарате.
Вместе с воздухом в подогревательный аппарат поступает через форсунку керосин. Он воспламеняется посредством специального зажигательного приспособления, расположенного на крышке подогревательного аппарата. В этот аппарат поступает также вода для испарения и снижения температуры горения. В результате сгорания керосина и парообразования создается парогазовая смесь, которая поступает в главную машину и приводит ее в действие.
В кормовом отделении рядом с главной машиной расположены гироскоп, гидростатический аппарат и две рулевые машинки. Одна из них служит для управления ходом торпеды в горизонтальной плоскости (удержание заданного направления) и действует от гироскопического прибора. Вторая машинка служит для управления ходом торпеды в вертикальной плоскости (удержание заданной глубины) и действует от гидростатического аппарата.
Действие гироскопического прибора’ основано на свойстве быстровращающегося (20—30 тыс. об/мин) волчка сохранять в пространстве направление оси вращения, полученное в момент запуска.
Прибор запускается сжатым воздухом во время движения торпеды в трубе торпедного аппарата. Как только выпущенная торпеда по какой-либо причине начнет уклоняться от направления, заданного ей при выстреле, ось волчка, оставаясь в неизменном положении в пространстве и действуя на золотничок рулевой машинки, перекладывает вертикальные рули и тем самым направляет торпеду по заданному направлению.
Гидростатический аппарат, расположенный в нижней части корпуса торпеды, действует по принципу равновесия двух сил — давления столба воды и пружины. Изнутри торпеды на диск давит пружина, упругость которой устанавливается перед выстрелом в зависимости от того, на какой глубине торпеда должна идти, а снаружи — столб воды.
Рис. 19. Надводный поворотный пятитрубный торпедный аппарат
Если выстреленная торпеда идет на глубине больше заданной, то избыток давления воды на диск через систему рычагов передается к золотничку рулевой машинки, управляющей горизонтальными рулями, которая изменяет положение рулей. В результате перекладки рулей торпеда начнет подниматься вверх. При ходе торпеды выше заданной глубины давление уменьшится и рули переложатся в обратную сторону. Торпеда опустится вниз.
В хвостовой части торпеды расположены гребные винты, насаженные на валы, соединенные с главной машиной. Имеются здесь и четыре пера, на которых закреплены вертикальные и горизонтальные рули для управления ходом торпеды по направлению и глубине.
В военно-морских силах иностранных государств особенно значительное распространение получили электрические торпеды.
Электрические торпеды состоят из четырех основных частей: боевого зарядного отделения, аккумуляторного отделения, кормовой и хвостовой частей (рис. 18, б).
Двигателем электрической торпеды служит электромотор, работающий от электрической энергии аккумуляторных батарей, расположенных в аккумуляторном отделении.
Электроторпеда по сравнению с парогазовой торпедой имеет важные преимущества. Во-первых, она не оставляет за собой видимого следа, чем обеспечивается скрытность атаки. Во-вторых, во время движения электроторпеда более устойчиво держится на заданном курсе, так как в отличие от парогазовой торпеды она при движении не изменяет ни веса, ни положения центра тяжести. Кроме того, у электрической торпеды сравнительно малая шумность, производимая двигателем и приборами, что особенно ценно при атаке.
Существует три основных способа использования торпед. Стрельба торпедами производится с надводных (с надводных кораблей) и подводных (с подводных лодок) торпедных аппаратов. Торпеды могут также сбрасываться в воду с воздуха самолетами и вертолетами.
Принципиально новым является использование торпед в качестве боевых частей противолодочных ракет, пуск которых осуществляется противолодочными ракетными средствами, устанавливаемыми на надводных кораблях.
Торпедный аппарат состоит из одной или нескольких труб с установленными на них приборами (рис. 19). Надводные торпедные аппараты могут быть поворотными и неподвижными. Поворотные аппараты (рис. 20) монтируются обычно в диаметральной плоскости корабля на верхней палубе. Неподвижные торпедные аппараты, которые также могут состоять из одной, двух и более торпедных труб, размещаются, как правило, внутри надстройки корабля. В последнее время на некоторых иностранных кораблях, в частности на современных торпедных атомных подводных лодках, торпедные аппараты монтируются под некоторым углом (10°) к диаметральной плоскости.
Такое расположение торпедных аппаратов связано с тем, что в носовой части торпедных подводных лодок размещается приемо-излучающая гидроакустическая аппаратура.
Подводный торпедный аппарат похож на неподвижный надводный торпедный аппарат. Как и неподвижный надводный аппарат, подводный имеет в каждом конце трубы по крышке. Задняя крышка открывается в торпедный отсек подводной лодки. Передняя крышка открывается прямо в воду. Ясно, что если одновременно открыть обе крышки, то в торпедный отсек проникнет морская вода. Поэтому подводный, как и неподвижный надводный, торпедный аппарат снабжен механизмом взаимозамкнутости, предотвращающим одновременное открытие двух крышек.
Рис. 20. Схема устройства надводного поворотного торпедного аппарата:
Рис. 21. Схема стрельбы торпедой по движущейся цели (торпедный треугольник)
Для выстреливания торпеды из торпедного аппарата используются сжатый воздух либо пороховой заряд. Выстреленная торпеда движется к цели при помощи своих механизмов.
Так как торпеда обладает скоростью движения, сравнимой со скоростью хода кораблей, необходимо при выстреле торпедой по кораблю или транспорту давать ей угол упреждения в направлении движения цели. Элементарно это можно пояснить следующей схемой (рис. 21). Предположим, в момент выстрела корабль, стреляющий торпедой, находится в точке А, а корабль противника в точке В. Для того чтобы торпеда попала в цель, ее необходимо выпустить по направлению АС. Это направление выбирается с таким расчетом, чтобы торпеда, прошла путь АС за такое же время, за которое корабль противника проходит расстояние ВС.
При указанных условиях торпеда должна встретиться с кораблем в точке С.
Для увеличения вероятности попадания в цель применяется стрельба несколькими торпедами по площади, которая ведется методом веера или методом последовательного выпуска торпед.
При стрельбе методом веера торпедные трубы разводят относительно друг друга на несколько градусов и выпускают торпеды залпом. Раствор трубам дают такой, чтобы расстояние между двумя рядом идущими торпедами в момент пересечения предполагаемого курса корабля-цели не превышало длины этого корабля.
Тогда из нескольких выпущенных торпед хотя бы одна должна попасть в цель. При стрельбе последовательным выпуском торпед они выстреливаются одна за другой через определенные промежутки времени, рассчитываемые в зависимости от скорости движения торпед и длины цели.
Установка торпедных аппаратов в определенном положении для стрельбы торпедами достигается при помощи приборов управления торпедной стрельбой (рис. 22).
Рис. 22. Американский прибор управления торпедной стрельбой (МК-27):
1 — маховик горизонтального наведения; 2 — шкала; 3 — визир
Рис. 23. Американская противолодочная торпеда МК-32
Так как все американские атомные лодки оборудованы устройством быстрого заряжания торпед, то число аппаратов на них снижено с 8 до 4. На американских и английских атомных лодках торпедные аппараты действуют на гидравлическом принципе выстреливания, что обеспечивает безопасность, безпузырность и бездифферентность торпедной стрельбы.
На вооружении подводных лодок находятся торпеды различных типов, предназначенные для поражения подводных и надводных целей. Для борьбы с надводными целями подводные лодки применяют в основном прямо идущие тяжелые торпеды с зарядом взрывчатого вещества 200—300 кг, а для поражения подводных лодок — самонаводящиеся электрические противолодочные торпеды.
Кстати
Вероятней всего, вспоминая о советском опыте, Борис Обносов подразумевал универсальную самонаводящуюся электроторпеду УСЭТ-80 (дальность хода 25 тысяч метров, скорость 40 узлов). Она была принята на вооружение в начале 1980-х годов.
Как бы то ни было, заявление Бориса Обносова воодушевило и заинтриговало военных аналитиков. К примеру, капитан 1 ранга запаса Василий Дандыкин заявил, что для ВМФ России это особенное событие.
Долгая дорога в дюнах
Надо признать, что идея поставить торпеды на «электрический ход» возникла довольно давно. Виной тому очевидные в прямом и переносном смысле слова недостатки тепловых энергосиловых установок. Их мощность зависит от глубины хода торпеды.
Всё дело в том, что по ходу движения торпеды необходимо удалять продукты сгорания во внешнее пространство, то есть в воду. И чем больше глубина и, соответственно, забортное давление, тем больше энергии уходит на эту работу. В предельных величинах можно достичь такой глубины, на которой вся мощность двигателя будет расходоваться на удаление выхлопа, и торпеда просто остановится. Попутным недостатком тепловых энергоустановок, вытекающим из необходимости удалять продукты сгорания, является видимый на водной поверхности след от движения торпеды.
Как всё начиналось
В Советском Союзе первые электроторпеды появились в конце тридцатых годов прошлого века. Тогда они обладали массой недостатков. Затем по ходу развития научно-исследовательских и опытно-конструкторских работ (НИОКР) наши системы постепенно совершенствовались.
Справка
К 1942 году советские конструкторы создали электрическую торпеду ЭТ-80. Её батарея из 80 свинцово-кислотных аккумуляторов размещалась в отдельном отсеке, заменившем воздушный резервуар. В ЭТ-80 применялся биротативный электродвигатель ПМ5-2. Дальность торпеды была 4.000 м, скорость хода 29 узлов, масса взрывчатого вещества 400 кг.
Многие специалисты, несмотря на очевидные технические трудности, связанные с поиском наиболее эффективных аккумуляторов, всё-таки полагают, что за торпедами на электрической тяге будущее. Поскольку энергоёмкость топлива для тепловой энергетической силовой установки, в общем, ограничена, и в обозримом будущем резерв будет исчерпан (хотя и этот постулат предполагает исключения). Так что в целом электрические торпеды прогрессивнее, надёжнее и безопаснее тепловых.
Бесшумная, дальнобойная и универсальная. смерть
По мнению ряда экспертов, изделие, о котором говорил Борис Обносов, называется ТЭ-2. Так, к примеру, думают специалисты американского сетевого издания The Drive.
Справка
Американские эксперты полагают, что ТЭ-2 предназначена для уничтожения как подводных лодок, так и крупных надводных судов, а также стационарных надводных целей, в том числе портовой инфраструктуры.
Похоже, у ТЭ-2 есть одна интересная особенность: кроме системы самонаведения, она обладает и возможностью управления по проводам. Причём это только на первый взгляд кажется архаикой. Торпеды с проводным наведением могут изменить курс атаки или же полностью отключиться, если оператор сочтёт это нужным. Кроме того, поскольку оператор может использовать данные гидролокатора корабля или подводной лодки вместо данных бортового гидролокатора торпеды, у ТЭ-2 есть больше шансов добраться до цели.
А что у США?
Справка
Гордость и предубеждение
ВМС США гордятся Mark 48 и утверждают, что это самая быстрая, самая бесшумная и самая смертоносная торпеда в мире. Однако с каждым из пунктов этого утверждения можно поспорить. Касательно скорости, ничто не сравнится с российской суперкавитирующей торпедой «Шквал». Это продукция ещё советского ОПК.
Справка
Справка
Главным преимуществом этого «ужаса из глубин» является практически стопроцентная неуязвимость от средств противодействия противника. Уникальные возможности аппарата позволят ВМФ бороться с авианосными и корабельными ударными группами вероятного противника на любых направлениях океанского театра военных действий, поражать объекты береговой инфраструктуры на межконтинентальной дальности, подчёркивают эксперты Министерства обороны России.
Само собой, подлинные ТТХ «Посейдона» в открытом доступе не встретишь.
Торпеда – смертоносная стальная «сигара»
Парогазовые торпеды, впервые изготовленные во второй половине XIX столетия, стали активно использоваться с появлением подводных лодок. Особенно преуспели в этом германские подводники, потопившие только за 1915 год 317 торговых и военных судов с общим тоннажем 772 тыс. тонн. В межвоенные годы появились усовершенствованные варианты, которые могли применяться самолетами. В годы Второй мировой войны торпедоносцы сыграли огромную роль в противоборстве флотов воюющих сторон.
Современные торпеды оснащены системами самонаведения и могут оснащаться боеголовками с различным зарядом, вплоть до атомного. На них продолжают использоваться парогазовые двигатели, созданные с учетом последних достижений техники.
История создания
Идея атаки вражеских кораблей самодвижущимися снарядами возникла в XV веке. Первым задокументированным фактом стали идеи итальянского инженера да Фонтана. Однако технический уровень того времени не позволял создать рабочих образцов. В XIX веке идею доработал Роберт Фултон, который и ввел в использование термин «торпеда».
Для управления по глубине использовались горизонтальные рули. Спустя год аналогичный проект предложил англичанин Роберт Уайтхед, который оказался проворнее российского коллеги и запатентовал свою разработку.
Именно Уайтхед начал использовать гиростат и соосную гребную установку.
Первым государством, взявшим на вооружение торпеду, стала Австро-Венгрия в 1871 году.
В течение последующих 3 лет торпеды поступили в арсеналы многих морских держав, в том числе и России.
Устройство
В головной части корпуса размещен заряд взрывчатого вещества с приборами, обеспечивающими подрыв боеголовки.
В следующем отсеке расположен запас топлива, вид которого зависит от типа установленного ближе к корме двигателя. В хвостовой части установлен гребной винт, рули глубины и направления, которые могут управляться автоматически или дистанционно.
Принцип работы силовой установки парогазовой торпеды основан на использовании энергии парогазовой смеси в поршневой многоцилиндровой машине или турбине. Возможно использование жидкого топлива (в основном керосин, реже спирт), а также твердого (пороховой заряд или любое вещество, выделяющее значительный объем газа при контакте с водой).
При использовании жидкого топлива на борту имеется запас окислителя и воды.
Горение рабочей смеси происходит в специальном генераторе.
Поскольку при сгорании смеси температура достигает 3,5-4,0 тыс. градусов, то имеется риск разрушения корпуса камеры сгорания. Поэтому в камеру подается вода, снижающая температуру горения до 800°C и ниже.
Основным недостатком ранних торпед с парогазовой силовой установкой стал хорошо различимый след выхлопных газов. Это стало причиной появления торпед с электрической установкой. Позднее в качестве окислителя стали использовать чистый кислород или концентрированную перекись водорода. Благодаря этому отработавшие газы полностью растворяются в воде и след от движения практически отсутствует.
При использовании твердого топлива, состоящего из одного или нескольких компонентов, не требуется использование окислителя. Благодаря этому факту снижается вес торпеды, а более интенсивное газообразование твердого топлива обеспечивает увеличение скорости и дальности хода.
В качестве двигателя применяются паротурбинные установки, оснащенные планетарными редукторами для снижения частоты вращения вала гребных винтов.
Принцип работы
На торпедах типа 53-39 перед применением следует вручную установить параметры глубины движения, курса и примерной дистанции до цели. После этого необходимо открыть предохранительный кран, установленный на магистрали подачи сжатого воздуха в камеру сгорания.
При прохождении торпедой трубы пускового аппарата происходит автоматическое открытие главного крана, и начинается подача воздуха непосредственно в камеру.
Одновременно начинается распыл керосина через форсунку и розжиг образовавшейся смеси при помощи электрического прибора. Установленная в камере дополнительная форсунка подает пресную воду из бортового резервуара. Смесь подается в поршневой двигатель, который начинает раскручивать соосные гребные винты.
Например, в германских парогазовых торпедах G7a использован 4-цилиндровый двигатель, оборудованный редуктором для привода соосных винтов, вращающихся в противоположном направлении. Валы полые, установлены один внутри другого. Применение соосных винтов позволяет уравновешивать отклоняющие моменты и поддерживается заданный курс движения.
Часть воздуха при пуске подается на механизм раскрутки гироскопа.
После начала контакта головной части с потоком воды начинается раскрутка крыльчатки предохранителя боевого отделения. Предохранитель оснащен прибором задержки, обеспечивающим взвод ударника в боевое положение через несколько секунд, за которые торпеда отойдет от места пуска на 30-200 м.
Отклонение торпеды от заданного курса корректируется ротором гироскопа, воздействующим на систему тяг, связанную с исполнительной машиной рулей направления. Вместо тяг могут использоваться электрические приводы. Ошибка в глубине хода определяется механизмом, уравновешивающим усилие пружины давлением столба жидкости (гидростат). Механизм связан с исполнительной машинкой руля глубины.
Сравнительные характеристики некоторых торпед подводных лодок периода Второй мировой войны приведены ниже.
Параметр | G7a | 53-39 | Mk.15mod 0 | Тип 93 |
---|---|---|---|---|
Производитель | Германия | СССР | США | Япония |
Диаметр корпуса, мм | 533 | 533 | 533 | 610 |
Вес заряда, кг | 280 | 317 | 224 | 610 |
Тип ВВ | Тротил | ТГА | Тротил | — |
Предельная дальность хода, м | до 12500 | до 10000 | до 13700 | до 40000 |
Рабочая глубина, м | до 15 | до 14 | — | — |
Скорость хода, уз | до 44 | до 51 | до 45 | до 50 |
Наведение на цель
Простейшей методикой наведения является программирование курса движения. Курс учитывает теоретическое прямолинейное смещение цели за время, необходимое для прохождения расстояния между атакующим и атакуемым кораблем.
Заметное изменение скорости хода или курса атакуемым кораблем приводит к прохождению торпеды мимо. Ситуацию отчасти спасает запуск нескольких торпед «веером», что позволяет перекрывать больший диапазон. Но подобная методика не гарантирует поражения цели и ведет к перерасходу боекомплекта.
До Первой мировой войны предпринимались попытки создания торпед с корректировкой курса по радиоканалу, проводам или иным способам, но до серийного производства дело не дошло. Примером может служить торпеда Джона Хаммонда Младшего, которая использовала для самонаведения свет прожектора вражеского корабля.
Для обеспечения наведения в 30-е годы стали разрабатываться автоматические системы.
Первыми стали системы наведения по акустическому шуму, издаваемому гребными винтами атакуемого судна. Проблемой являются малошумные цели, акустический фон от которых может оказаться ниже шума винтов самой торпеды.
Для устранения подобной проблемы создана система наведения по отраженным сигналам от корпуса корабля или создаваемой им кильватерной струи. Для корректировки движения торпеды могут применяться методики телеуправления по проводам.
Боевая часть
Боевой заряд, расположенный в головной части корпуса состоит из заряда взрывчатого вещества и взрывателей. На ранних моделях торпед, применявших в Первую мировую войну, использовалось однокомпонентное взрывчатое вещество (например, пироксилин).
Для подрыва применялся примитивный детонатор, установленный в носовой части. Срабатывание ударника обеспечивалось только в узком диапазоне углов, близком к перпендикулярному попаданию торпеды в цель. Позднее стали применятся усы, связанные с бойком, которые расширили диапазон этих углов.
Дополнительно стали устанавливаться инерционные взрыватели, срабатывавшие в момент резкого замедления движения торпеды. Использование таких детонаторов потребовало введения предохранителя, которым стала крыльчатка, раскручиваемая потоком воды. При использовании электрических взрывателей крыльчатка соединяется с миниатюрным генератором, заряжающим конденсаторную батарею.
Взрыв торпеды возможен только при определенном уровне заряда батареи. Подобное решение обеспечило дополнительную защиту атакующего корабля от самоподрыва. К моменту начала Второй мировой стали применяться многокомпонентные смеси, обладающие повышенной разрушающей способностью.
Так, в торпеде 53-39 используется смесь тротила, гексогена и алюминиевой пудры.
Боевое применение
Любопытные факты
Были разработаны торпеды больших размеров, предназначенные для доставки крупных боеголовок.
Примером такого вооружения может служить советская торпеда Т-15, имевшая вес около 40 т при диаметре 1500 мм.
Оружие предполагалось использовать для атаки побережья США термоядерными зарядами мощностью 100 мегатонн.