за счет чего взлетает дирижабль

Пара слов про дирижабли

За дирижаблями, возможно, снова будущее. Они как дроны, только могут быть огромными и висеть в воздухе неделями.

Я как-то обещал рассказать про советскую стратегическую концепцию о заправке дизельных подлодок с помощью дирижаблей. Дирижабль должен был стать мобильной базой и сразу разведпунктом. Но про это позже.

Чтобы разобраться, как вообще такая клюква возможна, давайте сначала разберёмся, что такое дирижабль.

за счет чего взлетает дирижабль
Wikimedia Commons, Hindenburg disaster, 1937

Сначала посмотрите на картинку. Это катастрофа Гинденбурга в 1937 году. Можно сказать, что именно из-за неё кончилась эра пассажирских дирижаблей. Она ужасна и прекрасна одновременно.

Что такое дирижабль?

Это летательный аппарат легче воздуха, то есть летающий за счёт силы Архимеда.

Его просто вытесняет наверх до тех пор, пока вес, заключённый в его объёме, не будет равняться такому же весу воздуха, способного занять данный объём.

Упрощая, вы можете на земле наполнить шар гелием (менее плотным, чем окружающий воздух). Он поднимет вас до определённой высоты. Там, стравливая гелий, вы можете начать опускаться. Если ветер в нужную сторону (либо вы знаете высоту, где он в нужную сторону) — вы можете оказаться там, где нужно.

Естественно, в этом методе куча недостатков, и конструкцию можно докрутить.

за счет чего взлетает дирижабль
Авария (1916). Здесь видно этот каркас.

Чтобы вы понимали перспективу дирижаблей в перевозках, уже в 30-е годы их крейсерская скорость была 120 километров в час. То есть весь трафик, который сейчас лежит на автодорогах и железных дорогах, можно было бы пустить воздухом. И именно таково было светлое будущее.

Подбираемся к связи с подлодками

В начале двадцатого века дирижабли активно использовали для военных действий. В Германии было 11 боевых дирижаблей. Радиус действия как у самолетов, высота 2400 метров, цели — бомбометание и разведка.

Однако оказалось, что всю эту конструкцию очень легко сбить. Попасть по дирижаблю просто, и даже десять камер не сильно помогут, если попадётся настойчивый пилот вражеского истребителя. Да и практика полётов Z-7 показала, что враги быстро это поняли.

А ещё дирижабль проще бомбить, чем расстреливать. Просто зашёл повыше — и под тобой объект размером с городскую площадь.

Но бои показали, что дирижабли тоже вполне могут преподнести пару сюрпризов. Например, сбросить балласт и резко «подпрыгнуть» выше доступной тогдашним истребителям высоты — это было ключевым фактором выживания. А ещё дирижабль мог спрятаться в облако и не высовываться. Ну и хорошее защитное вооружение позволяло более-менее внятно отбиваться от нескольких самолётов.

Наземные станции старались захватить ночью дирижабль прожектором, чтобы его было хорошо видно — и тогда ему крышка, потому что попасть могли почти все.

С другой стороны, напомню, дирижабли всё же обладают совершенно чудовищной грузоподъёмностью. А вот самолёты (и подлодки) тогда были очень и очень ограничены в плане радиуса действия. Начали пробовать прикручивать самолёты к дирижаблям. Сначала по три штуки:

за счет чего взлетает дирижабль
Чёртовы протоссы

Теперь про подлодки. Тогда, в эпоху дирижаблей, у подлодок не было зенитного перископа. То есть никто не думал, что нужно будет смотреть наверх. Это был явный баг, и эксплоит очень быстро нашёлся — дирижабль мог часами и днями наблюдать за акваторией сверху, откуда было отлично видно всё то, что шастает под водой, на десятки метров.

Подлодки были тупо медленнее, чем дирижабли даже против умеренного ветра.

Но тоже не срослось, следующее поколение лодок уже было отлично оборудовано всем нужным.

В результате дирижабли вытеснили в оборону — они могли хорошо отражать атаки вражеских самолётов некоторое время, плюс обладали прекрасными возможностями для разведки, конкретно — прямого наблюдения. Последняя прекрасная доктрина — это использовать их как морские базы снабжения. Дизельные подлодки были не очень автономными, и во многом зависели от запаса топлива. Дирижабль мог висеть где нужно, издалека видеть корабли противника, давать наводку своим лодкам, дожидаться их возвращения с задания, заправлять с воздуха и снабжать — и уходить. Предполагалось даже, что будет специальная спускаемая корзина для этих действий — сам дирижабль мог оставаться очень высоко.

Но если в качестве разведки для наведения лодок их использовали, то вот в качестве дозаправщика — уже нет, насколько я понимаю.

Инфраструктура

Для хранения дирижабля нужен эллинг или причальная башня.

за счет чего взлетает дирижабль
Вывод дирижабля «Московский химик-резинщик» из эллинга 1920-е

Немцы быстро поняли, что просто так дирижабль из эллинга вывести для решения боевых задач довольно сложно, поэтому использовали поворотные эллинги, позволяющие решить проблему бокового ветра.

На причальных башнях всё было хорошо — если не считать того, что те же немцы знатно обломались с русской зимой. Дело в том, что снег просто берёт и сажает дирижабль, если его чем-то не накрыть. Если снега чуть больше пары сантиметров — то заодно ещё и эпически калечит каркас.

С другой стороны, описан случай с R-101, который на причале выдержал ветер 153 км/ч. Это такой, который обычно уносит плохо закреплённые дома.

Для полноценной посадки крупного дирижабля и установки его в стационарную позицию нужна была команда в 300-700 человек.

за счет чего взлетает дирижабль
Мобильная причальная башня

Теперь про то, почему они больше длинные, чем широкие на ретрофото. Тут тоже интересная история — поначалу в конструкции ориентировались на глубоководных рыб, и делали примерно 10 к 1 по длине. Потом начали проводить испытания в аэродинамических трубах и пришли к тому, что меньшее лобовое сопротивление достигается при соотношении 5 к 1.

Поздние дирижабли стали настолько большими, что их начали снабжать интеркомом — сначала акустическим, потом и электрическим.

Гинденбург

36 членов экипажа, 61 пассажир. 15 баллонов с инертным гелием, дирижабль (предположительно) мог удерживать позицию в воздухе при 6-7 пробитых баллонах. Скорость 135 км/ч. Это идеальный пассажирский лайнер люкс-класса. Он был «мостиком» через атлантический океан, использовался для регулярного пассажирского сообщения и был почти «Конкордом» тех лет. По шику. Вот тут в Вики заботливо наковыряны из разных пруфов и перечислены его полёты.

Проблема с Гинденбургом была только в том, что гелий никак не получалось достать, и вместо него решили использовать водород. Водород отличается от гелия тем, что радостно и очень громко жахает. Огромная ёмкость со взрывоопасным газом? Ну, тогда многим это казалось хорошей идеей. Надо было лишь слегка доделать конструкцию и правила, чтобы избежать проблем. Вот как описывает решение похожей проблемы Петр Павлович Ионов в книге «Дирижабли и их военное применение» (Государственное военное издательство, 1937, кстати, очень рекомендую как источник пруфов):

«Для предупреждения воспламенения горючего (газолин) кабины, в которых оно помещается, имеют специальное оборудование. Весь дирижабль вентилируется во избежание скапливания паров газолина, а электрическая проводка специально обеспечена от возможности коротких замыканий. Уменьшена также опасность электрических разрядов во время грозы тем, что все металлические части соединены между собою и могут реагировать, как клетка Фарадея, сильно рассеивая электрический разряд.»


То есть да, на Гинденбурге смонтировали хорошее пожаротушение, всем дали специальную форму, каблуки на обуви экипажа поменяли, чтобы не накапливалась статика от трения об пол, у пассажиров отбирали всё то, что могло стать причиной возгорания. Кроме сигар — их разрешалось курить в специальной изолированной по типу батискафа зоне. Не лишать же сигар благородных донов, правильно?

А тут результат расследования:

Группа ученых из Юго-Западного исследовательского института в городе Сан-Антонио в штате Техас сделала вывод, что возгорание на борту дирижабля, который вскоре после трагедии стали называть «Нацистским Титаником», произошло из-за статического электричества, которое возникло между наружной оболочкой дирижабля и каркасом в результате грозы. В это же время по неизвестной причине произошла утечка газа (вероятно, был поврежден один из баллонов с водородом) и газ проник в вентиляционные шахты.
Во время заземления посадочных канатов из-за разницы потенциалов между частями наружной оболочки и каркасом возникла искра, и воздухо-водородная смесь на борту дирижабля воспламенилась. Ранее немецкими и американскими учеными уже выдвигались версии об утечке газа, однако существовали разногласия в отношении того, что привело к его воспламенению.
Источник.


В результате погибли 13 пассажиров и 22 члена экипажа. Ещё сгорел один из наземных рабочих.

За посадкой наблюдали очень многие, поэтому есть видео. Это стабилизированная версия пары плёнок, сам момент горения примерно на 26-й секунде:

Надо сказать, что тогда на такие фото и видео реагировали совершенно иначе, чем сегодня. Публика не была приучена к таким зрелищам, и это вызывало неподдельный ужас. Естественно, получилась очень пугающая история, особенно с точки зрения продаж билетов в самый безопасный вид трансатлантического транспорта. И вот примерно так кончилась эра пассажирских дирижаблей.

Сейчас огромные воздушные шары никто не строит, но применение у этих аппаратов всё же есть. Как я говорил, это отличные «долгоиграющие» дроны. Например, с них можно раздавать интернет.

Источник

Смогут ли дирижабли вновь завоевать небо

за счет чего взлетает дирижабль

В прошлом веке дирижабли перевозили тяжелые грузы, выполняли трансатлантические рейсы, летали над Северным полюсом. В военное время их использовали для разведки и уничтожения объектов противника, заграждения и корректировки огня артиллерии, подготовки десантников. Увлечение человека скоростями, сложности в использовании водорода в качестве подъемного газа при высокой стоимости более безопасного гелия, свело на нет использование медленных и неповоротливых «цеппелинов».

Катастрофа дирижабля «Гинденбург» не была первой или самой крупной по количеству человеческих жертв. Но именно падение немецкого «цеппелина» было снято на кинопленку и облетело весь мир. Образ роскошного и безопасного воздушного судна сгорел за 32 секунды вместе с обшивкой гондолы дирижабля, внутри которой находилось 200 тыс. кубометров водорода. После более чем 30 лет пассажирских путешествий на коммерческих дирижаблях, в которых десятки тысяч человек пролетели более 1 млн км, совершив более 2 000 рейсов без единой травмы, эра пассажирских дирижаблей на водородном топливе подошла к концу.

Сегодня этот вид транспорта получает второе рождение. Малый углеродный след, низкая стоимость перевозки груза, в том числе негабаритного, и способность проникать в труднодоступные районы — преимущества, которые позволят дирижаблям снова занять свое место на небосводе. А современные технологии сделают их надежнее и безопаснее.

Пока единственный действующий нерекламный дирижабль — пассажирский Zeppelin NT. Судно длиной 75 м предлагает обзорные экскурсии по Германии и Швейцарии. Цена билета на 30-минутный тур — около €260.

Но энтузиасты дирижаблестроения уверяют, что если все сложится удачно, уже через три-пять лет полеты небесных гигантов, как пассажирских так и грузовых, вполне могут стать обычным делом.

Семь преимуществ современного дирижабля

Кто создает дирижабли сегодня

Flying Whales

Французская компания Flying Whales планирует начать доставку грузов в отдаленные районы дирижаблями LCA60T уже в 2024 году. На финансирование всей программы до ввода в эксплуатацию первого судна Flying Whales необходимо €400–500 млн. Компания планирует построить 150 дирижаблей за десять лет.

за счет чего взлетает дирижабль

LCA60T — гибридный дирижабль с жесткой конструкцией для перевозки тяжелых грузов на расстояния в 300–500 км. Первоначально аппараты будут иметь запасы обычного авиационного керосина на выработку электроэнергии для полета. По словам директора по продажам, маркетингу и операциям Flying Whales Мишеля Рено, сейчас компания разрабатывает водородный топливный элемент для полностью электрической силовой установки. Производители надеются сократить углеродный след со вторым поколением LCA60T, запланированным на 2025 год.

Индонезия, Гайана и канадская провинция Квебек намерены испытать дирижабли Flying Whales как дополнительное решение для районов, где географические и климатические ограничения затрудняют строительство транспортной инфраструктуры. Заинтересованность в этом виде воздушных судов выразило Национальное управление лесного хозяйства Франции.

за счет чего взлетает дирижабль

Компания Flying Whales планирует использовать дирижабли в гуманитарных и спасательных миссиях для транспортировки аварийного оборудования в районы, пострадавшие от стихийных бедствий, или для эвакуации людей. Она ведет переговоры с крупными международными игроками, в том числе ООН.

Hybrid Air Vehicles

В мае 2021 года британский производитель дирижаблей Hybrid Air Vehicles (HAV) назвал ряд маршрутов, которые он намерен обслуживать с 2025 года. Один из них — Барселона–Пальма-де-Майорка. Его 100-местный гибридный дирижабль Airlander 10 преодолеет 200 км между этими городами за 4,5 часа. Другие запланированные маршруты включают Ливерпуль–Белфаст — 5 часов 20 минут, Осло–Стокгольм — 6,5 часов и Сиэтл–Ванкувер — четыре часа.

за счет чего взлетает дирижабль

Первоначальная конфигурация дирижабля в 2025 году будет состоять из четырех двигателей внутреннего сгорания. Комбинация этих двигателей с технологией Airlander может снизить выбросы до 75% по сравнению с самолетами с неподвижным крылом. Выброс CO2 на одного пассажира на дирижабле составит около 4,5 кг против примерно 53 кг на реактивном самолете. Со временем все четыре двигателя Airlander 10 будут электрическими, что сократит уровень выбросов к 2030 году до 95%.

Гибридный дирижабль сочетает аэродинамическую подъемную силу самолета, подъемные газы дирижабля и векторную тягу вертолета.

По словам HAV, дирижабль выдержит высокие и низкие температуры, сильный ветер и даже удары молнии в соответствии с теми же нормативными стандартами, что и другие пассажирские самолеты.

Интерьер кабины, рассчитанной на 90–100 человек, выглядит не хуже, а возможно и лучше, чем бизнес-класс в обычном самолете. Первоначальный дизайн салона гибридного дирижабля включает плюшевые сиденья и окна от пола до потолка, предлагающие много места, естественного света и видов на мир внизу.

за счет чего взлетает дирижабль

«Пандемия заставляет людей думать о полетах по-другому, уделяя меньше внимания скорости и больше — влиянию на окружающую среду, комфорту и личному пространству», — уверен генеральный директор HAV Том Гранди.

Характеристики Airlander 10:

Hybrid Air Vehicles не ограничивается пассажирскими перевозками. Следующим аппаратом в линейке Airlander станет грузовой Airlander 50. Полностью электрический дирижабль будет доступен к 2033 году. Его углеродный след составит 1,15 кг на 1 т груза на 1 км пути.

за счет чего взлетает дирижабль

Технология Airlander рассчитана на масштабирование. В будущем появится модель, способная перевозить 200 т грузов на большие расстояния.

Характеристики Airlander 50:

По следам Умберто Нобиле

Компания Hybrid Air Vehicles подписала сделку на поставку дирижабля Airlander 10 шведской туристической фирме OceanSky Cruises, которая намерена пролететь на судне над Северным полюсом с исследователем Арктики Робертом Своном в качестве руководителя экспедиции.

Организаторы хотят показать, что путешествия и воздушные перевозки могут быть экологически устойчивыми, а технологии LTA (lighter than air) способны предоставить человечеству эффективные средства передвижения и работать в районах, где нет инфраструктуры и цивилизации.

За один рейс дирижабль сможет принять на борт 16 гостей и семь членов экипажа. Предположительно, 100 пионеров уже получили приглашение на участие.

Lighter Than Air (LTA) Research

LTA — амбициозный проект сооснователя Google Сергея Брина. Компания занимается аэрокосмическими исследованиями и разработками, создает экспериментальные и сертифицированные пилотируемые и дистанционно пилотируемые дирижабли.

Известно, что 200-метровый дирижабль будет доставлять гуманитарную помощь, включая продукты питания и припасы, в отдаленные районы мира, к которым нелегко добраться из-за ограниченной или разрушенной инфраструктуры.

LTA намерена создать семейство летательных аппаратов с нулевыми выбросами углекислого газа.

Компания будет тесно сотрудничать с некоммерческой организацией Брина по оказанию помощи при стихийных бедствиях Global Support and Development (GSD).

В 2019 году LTA зарегистрировала дирижабль Pathfinder 1, оснащенный 12 электродвигателями и способный перевозить 14 человек.

Atlas LTA

Израильская компания Atlas LTA имеет российские корни. Основатель и руководитель Atlas LTA Геннадий Верба до этого занимал пост председателя Совета директоров группы компаний «РосАэроСистемы», которая вела разработку и строительство дирижаблей.

за счет чего взлетает дирижабль

Электрические дирижабли Atlas, по мнению создателей, — идеальные инструменты для путешествий по небу. Каждая модель оснащена бортовым баром, камбузом и задней смотровой площадкой со стеклянным полом и окнами от пола до потолка. Дирижабли Atlas рассчитаны на высоту полета от 300 до 1 500 м и крейсерскую скорость около 60–80 км/ч. Такие характеристики обеспечат пассажирам лучшие впечатления от осмотра достопримечательностей.

Дирижабли оснащены полностью электрическими силовыми установками и смогут проводить в воздухе до 2,5 часов в автономном режиме. Гибридная электрическая силовая установкой позволит увеличить время в полете до 6–10 часов.

Ожидается, что помимо туристического направления, аппараты можно будет использовать для мониторинга и авиационных работ, как в пилотируемом, так и в беспилотном режиме.

Дирижабль Atlant НПО «РосАэроСистемы» разработало еще в 2017 году. Но из-за проблем с финансированием в России проект так и не увидел свет.

за счет чего взлетает дирижабль

Atlant — комбинированное судно, которое сочетает качества самолета, вертолета и судна на воздушной подушке. Система якорей-анкеров позволит использовать дирижабль там, где нет никакой инфраструктуры. Atlant, имея грузоподъемность свыше 100 т, сможет перевозить тяжелые негабаритные грузы.

за счет чего взлетает дирижабль

Кроме грузоперевозок и доставки гуманитарной помощи в пострадавшие районы, такой дирижабль подойдет для борьбы с лесными или любыми другими пожарами, распространяющимися на большой территории. Из-за своей низкой скорости Atlant может сбрасывать воду медленнее и точнее, чем самолет, не повреждая деревья внизу. А способность вертикально приземляться на воду и быстро наполнять большие резервуары делает его очень эффективным.

за счет чего взлетает дирижабль

В будущем Atlant будет использоваться и для элитного туризма.

По словам Геннадия Вербы, из такого дирижабля можно сделать летающую яхту с высоким уровнем комфорта, недостижимым ни на каком другом летательном аппарате, за счет больших палубных площадей и сплошного остекления, посадки на воду.

Компания уже подписала протоколы о намерении продать 35 дирижаблей. Среди клиентов — Всемирная продовольственная программа ООН и поставщики компонентов для ветрогенераторов Siemens Gamesa Renewable Energy и Vestas Wind Systems.

Исследование Джулиана Ханта

Исследование, проведенное в 2019 году под руководством ученого из Международного института прикладного системного анализа Джулиана Ханта, показало что можно развивать отрасль, основанную на дирижаблях, используя реактивный поток как энергетическую среду для перевозки грузов по всему миру.

Реактивное течение — это сильные ветра, которые дуют с запада на восток на высоте от 8 до 12 км над поверхностью Земли со средней скоростью 165 км/ч. Дирижабли, летающие в струйном потоке, могут снизить выбросы CO2 и потребление топлива, так как ветер будет вносить большую часть энергии, необходимой для перемещения дирижабля между пунктами назначения.

По подсчетам ученых, кругосветный перелет в северном полушарии займет 16 дней, в южном полушарии — 14 дней вместо 60 дней на морском судне и потребует всего 4% топлива, затраченного кораблем. Энергия необходима лишь для того, чтобы войти в реактивный поток и выйти из него.

Источник

За счет чего взлетает дирижабль

за счет чего взлетает дирижабль

за счет чего взлетает дирижабль

за счет чего взлетает дирижабль

за счет чего взлетает дирижабль

за счет чего взлетает дирижабль

ФИЗИЧЕСКИЕ ОСНОВЫ ПОЛЕТА ДИРИЖАБЛЯ (или ПРАКТИЧЕСКИЙ ИНТЕРЕС К СЕРЬЕЗНЫМ ОТКРЫТИЯМ)

за счет чего взлетает дирижабль

Автор работы награжден дипломом победителя II степени

Этим летом мы с семьёй отдыхали в Италии. Там мы видели большие красочные воздушные шары, на которых летали люди. Однако, это меня не удивляло, потому что и над Калугой иногда летают воздушные шары, да и в детстве мне часто покупали воздушные шарики, которые «рвались» ввысь. Хотя вопрос, как летают воздушные шары, как регулируется высота, и, самое главное, как с помощью воздушного шара можно попасть из одного города в другой, меня начал интересовать еще в Калуге. Вскоре после увиденных мною парящих воздушных шаров я увидела в Венеции модель, которая меня заинтересовала (Приложение1, рис. 1). Продавец ответила мне, что это дирижабль, однако папа сказал, что это очень условная модель, и что дирижабли на самом деле должны быть другими. Вот тогда-то я впервые и заинтересовалась дирижаблями. Особенно, когда родители мне объяснили, что дирижабли были нескольких типов: у одних, оболочка была изготовлена из ткани, а у других – из гофрированного металла. Причем, вопросами изучения дирижаблей занимался наш великий земляк К.Э.Циолковский. Конечно, после того, как мы вернулись в Калугу, я сразу же пошла с родителями в его музей, и тогда уже более осознанно попыталась понять и историю дирижаблей, и физику их полетов (Приложение 1, рис. 2). И позже я еще раз сходила в Государственный музей истории космонавтики им. К.Э. Циолковского (Приложение 1, рис. 3). И вот я заинтересовалась историей создания дирижаблей и почему они летают.

Цель: изучить историю дирижаблестроения и понять принципы их движения в воздухе.

Гипотеза: условия и принципы полета дирижабля в воздухе аналогичны плавающему в воде флакону с шампунем.

1. Изучить историю дирижаблей и выявить интересные факты.

2. Рассмотреть действие силы Архимеды на тела, погруженные в жидкость или газ.

3. Провести сравнительный анализ между дирижаблем и воздушным шаром.

4. Рассмотреть причины изменения вертикального положения дирижабля

5. Рассмотреть причины изменения вертикального положения флакона с шампунем.

6. Провести анализ различий между дирижаблем и флаконом с шампунем.

Объект исследования:техническая модель дирижабля.

Предмет исследования:условия успешногополета дирижабля.

— работа с первоисточниками: изучение и отбор информации из литературы и сети Интернет по теме работы;

— методы моделирования, сравнения, качественный анализ и обобщение;

— экспериментальный метод и интерпретация данных.

Актуальность работы: интерес к полетам дирижаблей в настоящее время сложно переоценить, в связи с тем, что дирижаблестроение претерпевает «второе» дыхание. Однако, в отличие от дирижаблей прошлых столетий, используемых в основном в военных и исследовательских целях, современное дирижаблестроение носит скорее развлекательный характер, повышающий настроение человека и его эмоциональный настрой. Тем не менее, вопросы исследования полетов дирижаблей в настоящее время сложно переоценить.

1.1. Интересные факты из истории дирижаблей

По определению, дирижаблем называют летательный аппарат легче воздуха, аэростат с двигателем. Двигатель и позволяет дирижаблю двигаться независимо от направления воздушных потоков.

Изобретателем дирижабля считается Жан Батист Мари Шарль Мёнье. Дирижабль Мёнье должен был быть сделан в форме эллипсоида (Приложение 2). Управляемость должна была быть осуществлена с помощью трех пропеллеров. Французский инженер Анри Жиффар сконструировал первый в мире дирижабль и в сентябре 1852 года поднялся на нем над Парижским ипподромом и пролетел примерно 30 километров со средней скоростью 10 километров в час. Вот от этого полета и отсчитывают эру моторной авиации и эру дирижаблей.

Развитие дирижаблей шло по трем конструктивным направлениям: мягкие, полужесткие, жесткие.

Мягкие дирижабли, по сути, похожи на воздушные шары.

Дирижабли полужёсткого типа имеют в нижней части металлическую оболочку.

Жёсткие дирижабли. Собирался металлический каркас (как клетка для птиц) и обтягивался снаружи тканью.

Эра расцвета дирижаблей пришлась на 20-30-е годы ХХ века. В эти годы в центре внимания всего мира были арктические исследования. Ледоколы штурмовали арктические льды.

Великий К. Э. Циолковский критиковал мягкие дирижабли не голословно (невозможность держать высоту, высокая вероятность пожаров, плохая горизонтальная управляемость), еще в 80-х годах XIX века он рассчитал и предложил проект большого грузового дирижабля жесткой конструкции с металлической обшивкой.

К. Э. Циолковский внимательно следил за развитием мировой науки. Ежедневно (а то и по два раза в день) почтальон приносил в двухэтажный домик на улицу Брута (так тогда называлась улица, носящая теперь имя Циолковского) увесистую сумку с письмами и научными журналами, среди которых были и присланные из-за рубежа.

Конструкция всех дирижаблей проста: огромный сигарообразный резервуар, наполненный водородом или гелием, кабина и два поворотных двигателя. Для подъема аэростата в небо использовали водород, хранившийся внутри жёсткого каркаса в многочисленных отсеках или баллонах.

Наиболее мощными воздухоплавательными державами были Россия, имевшая в Петербурге более двух десятков аппаратов, и Германия, обладавшая 18 дирижаблями.

В СССР первый дирижабль построили в 1923 году (Приложение 2). Значение дирижаблей в то время уделялось очень много времени, достаточно отметить, что некоторое время даже г. Долгопрудный назывался Дирижаблестроем. Несмотря на то что дирижабли действительно были созданы советскими учеными в Ленинграде и после переданы Дирижаблестрою, полностью справиться с задачей, обойдясь только советскими работниками, предприятие не смогло. Так, в 1933 году для разработки дирижабля полужесткого типа в СССР был приглашен итальянский специалист Умберто Нобиле. Нобиле справился, и полужесткий советский дирижабль «СССР В-5» создал. Потом создали «СССР В-6», и он даже установил мировой рекорд продолжительности полета. Но после ряда аварий перед началом войны — в 1933 году — было принято решение «законсервировать» Дирижаблестрой, что и было сделано. Газета «Труд» не забывает упомянуть имя, известное практически всем: ведутся «опытные работы по постройке цельнометаллического дирижабля по проектам виднейшего ученого и изобретателя нашего Союза К. Циолковского».

Интерес к дирижаблям не угасал в течение всего ХХ века, особенно когда начались различные энергетические кризисы. В конце ХХ – начале XXI века интерес к дирижаблям вновь усилился вследствие резкого подорожания моторного топлива и их очевидных преимуществ перед авиацией. Чем же так привлекает дирижабль?

При использовании гелия он намного безопаснее самолёта. Ведь гелий не заполняет полностью весь корпус дирижабля, а находится в мешках. Лопнет один мешок – работают остальные. Дирижабль гораздо экологичнее. Для его движения не обязательно использовать углеводородное топливо. Можно применить атомные двигатели, электродвигатели, в том числе на солнечных батареях, и т.д.

При современном дирижаблестроении используются как прежние, ранее не реализованные идеи К.Э. Циолковского, так и новые разработки, которые позволяют контролировать подъёмную силу дирижабля, совершать вертикальные взлёт и посадку, зависать в воздухе почти без затрат энергии, садиться вертикально на воду и твёрдую поверхность и т.д.

В отечественной разработке находятся гибриды дирижабля и самолёта, которые могут быть использованы в любом режиме – самолётном, вертолётном, как морское судно на воздушной подушке и т.д. Разрабатываются также беспилотные варианты дирижаблей, управляемые с Земли, для перевозки грузов, видеонаблюдения, телекоммуникационных целей и др.

1.2. Сила Архимеда. Практическое изучение закона

Вопрос, как могут летать дирижабли, изготовленные из гофрированного металла, не давал мне покоя, но – помог случай. Через день, после поездки в Венецию, я увидела в море очень красивый камень, который захотела показать своему брату Илье, я подумала позвать его, но потом решила сама принести ему этот камень, одно только меня смущало, смогу ли я его поднять? Представьте – смогла. Но когда я начала его вытаскивать из воды, он стал очень тяжелым, и мне пришлось позвать на помощь папу. Когда я у него спросила, почему камень стал таким тяжелым, он мне ответил, что пока камень был в воде, она «помогала» мне его поднять, а когда, камень вытащили из воды, то эта помощь закончилась. Однако, папа добавил, что когда камень находится в воздухе, то воздух тоже «помогает» поднять камень, но только значительно меньше, чем вода. И тогда я впервые услышала закон Архимеда: на тело, погруженное в жидкость или газ, действует направленная вверх выталкивающая сила, равная весу жидкости или газа в объеме этого тела. А так как вес воздуха в объеме камня будет намного меньше веса воды в этом же объеме, то поэтому «помощь» воздуха при подъеме камня практически незаметна.

1.3. Дирижабль и воздушный шар. Качественный анализ информации

И тогда я поняла, что и обыкновенный воздушный шарик, и воздушный шар, на котором могут летать люди, и дирижабль – все это может летать, потому, что на них действует сила Архимеда со стороны воздуха. И началось… Я везде пыталась найти аналогию, между водой и воздухом, тем более на море и того, и другого – достаточно.

Например, я поняла, что и дирижабль, и воздушный шар поднимаются в воздух под воздействием силы Архимеда. чем лучше дирижабль воздушного шара, да тем же, чем моторная лодка лучше парусника. Воздушный шар может только, как и парусник, воспользоваться попутным ветром, а дирижабль может (из-за своих двигателей) лететь даже против ветра, правда не сильного, но и моторная лодка, также не может противостоять сильным порывам ветра. Конечно, команда моторной лодки может опустить парус, а у дирижабля так не получится, но, тем не менее, мне кажется, что аналогия здесь есть.

На вопрос, чтобы же лучше использовать: дирижабль или воздушный шар, ответ будет следующим: все зависит от целей (Таблица 1).

Таблица 1. Сравнительный анализ воздушного шара и дирижабля

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *