за счет чего взлетает ракета
Почему ракеты взлетают
Любовь Карась
Один из популярных детских вопросов «Почему ракеты летают?» для многих остается без ответа. Изучение космонавтики требует глубоких знаний по физике, ракетостроению, астрономии и в других отраслях. Т&Р объясняют, как происходит одно из самых завораживающих научных событий, и рассказывают, благодаря чему ракеты сохраняют скорость, не переворачиваются и преодолевают силу притяжения.
Как устроен реактивный двигатель
Русский революционер и изобретатель Николай Кибальчич создал первый в мире проект аппарата с реактивным двигателем. Однако ученый был казнен. В начале XX века эту идею стал развивать К.Э. Циолковский. Ученый разработал саму схему реактивного двигателя, который работал на жидком топливе.
Несмотря на всю сложность конструкции современных космических кораблей, ракета — один из самых простых летательных аппаратов. В основе ее устройства лежит принцип, согласно которому всякое действие рождает противодействие. Ракета летит, выбрасывая определенное вещество из своей хвостовой части. Несмотря на всю эту простоту, ракеты разрабатывались и совершенствовались в течение более чем семисот лет.
Луис Блумфилд. «Как все работает. Законы физики в нашей жизни»
Движение ракеты предполагает действие двух равных и противоположно направленных сил
Аналогично этому работает реактивный двигатель. Топливо и окислитель попадают в рабочую камеру, смешиваются, сгорают в зоне горения, выделяя огромное количество тепла, которого достаточно для движения.
Траектория полета
Многие убеждены, что ракеты взлетают вертикально, однако это не так. Ракетное топливо может закончиться через 10 минут, а при вертикальном взлете этого времени просто не хватит для выхода на орбиту.
Современные ракеты взлетают вертикально на самом первом этапе, а далее меняют траекторию и двигаются под углом по отношению к Земле. Чем выше высота полета, тем заметнее угол. Ракета совершает гравитационный разворот — маневр, при котором направление тяги совпадает или противоположно направлению движения, изменяющемуся под действием силы тяжести. Этот маневр используется в момент выведения на орбиту или при посадке с нее.
Ускорение ракеты, взлетающей под углом к горизонту: g — ускорение свободного падения, ae — вклад двигателя в ускорение, a — итоговое ускорение ракеты
Как обеспечивается устойчивость ракеты
Действие трех скоростей
eponim2008
Жизнь замечательных имен
Короткие истории о вещах и о людях, давших им свое имя
Как взлетает ракета?
Взлетом космической ракеты сейчас можно полюбоваться и по телевизору, и в кино. Ракета вертикально стоит на бетонном стартовом столе. По команде из пункта управления включаются двигатели, мы видим загорающееся внизу пламя, мы слышим нарастающий рев. И вот ракета в клубах дыма отрывается от Земли и сначала медленно, а потом все быстрее и быстрее устремляется вверх. Через минуту она уже на такой высоте, куда не могут подняться самолеты, а еще через минуту – Космосе, в околоземном безвоздушном пространстве.
Двигатели ракеты называются реактивными. Почему? Потому что в таких двигателях сила тяги является силой реакции (противодействия) силе, которая отбрасывает в противоположную сторону струю раскаленных газов, получаемых от сгорания топлива в специальной камере. Как известно, согласно третьему закону Ньютона сила этого противодействия равна силе действия. То есть, сила, поднимающая ракету в космическое пространство равна силе, которую развивают раскаленные газы, вырывающиеся из сопла ракеты. Если Вам кажется невероятным, что газ, которому положено быть бесплотным, забрасывает на космическую орбиту тяжеленную ракету, вспомните о том, что сжатый в резиновых баллонах воздух успешно поддерживает не только велосипедиста, но и тяжелые самосвалы. Раскаленный добела газ, вырывающийся из сопла ракеты – тоже полон силы и энергии. Настолько, что после каждого старта ракеты стартовый стол ремонтируют, добавляя выбитый огненным вихрем бетон.
Третий закон Ньютона можно сформулировать иначе, как закон сохранения импульса. Импульсом называется произведение массы на скорость. В терминах закона сохранения импульса старт ракеты можно описать так.
Первоначально импульс космической ракеты, покоящейся на стартовой площадке, был равен нулю (Большая масса ракеты, умноженная на нулевую ее скорость). Но вот включен двигатель. Топливо сгорает, образуя огромное количество газообразных продуктов сгорания. Они имеют высокую температуру и с высокой скоростью истекают из сопла ракеты в одну сторону, вниз. Это создает вектор импульса, направленный вниз, величина которого равна массе истекающего газа, умноженного на скорость этого газа. Однако, в силу закона сохранения импульса, суммарный импульс космической ракеты относительно стартовой площадки должен быть по-прежнему равен нулю. Поэтому тут же возникает вектор импульса, направленный вверх, уравновешивающий систему «ракета – отбрасываемые газы». За счет чего возникнет этот вектор? За счет того, что стоящая до тех пор неподвижно ракета начнет движение вверх. Импульс, направленный вверх, будет равен массе ракеты, умноженной на ее скорость.
Если двигатели ракеты мощные, ракета очень быстро набирает скорость, достаточную для того, чтобы вывести космический корабль на околоземную орбиту. Эта скорость называется первой космической скоростью и равна приблизительно 8 километрам в секунду.
Мощность двигателя ракеты определяется в первую очередь тем, какое топливо сгорает в двигателях ракеты. Чем выше температура сгорания топлива, тем мощнее двигатель. В самых ранних советских ракетных двигателях топливом был керосин, а окислителем – азотная кислота. Сейчас в ракетах используется более активные (и более ядовитые) смеси. Топливом в современных американских ракетных двигателях является смесь кислорода и водорода. Кислородно-водородная смесь очень взрывоопасна, но при сгорании выделяет огромное количество энергии.
megavolt_lab
Записки сумасшедшего ракетчика
В этом блоге я буду много писать о ракетах и космических аппаратах, но для начала давайте разберемся с тем, что же такое ракета и за счет чего она летает. Ведь кроме ракеты есть еще немало видов техники, умеющей летать.
Есть тип летательных аппаратов, которые могут обходиться вообще без двигателя. Это аэростаты (воздушные шары). Летают только засчет силы Архимеда. В сети есть много видео, где люди развлечения ради запускают самодельные воздушные шары с камерой, как они пишут, в космос. Вот пример такого видео:
Но как же подняться выше предельных высот для самолетов и воздушных шаров? Вот тут-то нас и выручит ракета. Основное отличие ракеты от других видов летательных аппаратов состоит в том, что полет ракеты практически никак не зависит от внешних условий (плотности воздуха, его состава и т. п.), поскольку все, что ей нужно для полета у нее с собой.
Для того, чтобы ракета полетела, нужно чтобы сила, с которой она отталкивается от рабочего тела (эту силу называют тягой двигателя) превышала вес ракеты. Параметр, показывающий, во сколько раз тяга двигателя превышает вес ракеты, называется тяговооруженность ракеты.
Современная ракета Союз очень тяжелая. Ее масса вместе с топливом и поднимаемым ей космическим кораблем составляет 307,7 тонн. Для того, чтобы поднять такую массу, ракете нужно выбрасывать рабочее тело с огромной скоростью: от 2,5 км/с, до 3 км/с, что примерно в 9 раз превышает скорость звука у поверхности Земли.
Вот, как выглядит старт этой ракеты:
Но для успешного полета ракете мало только двигателя и топлива. Нужна еще, как минимум, система стабилизации. Дело в том, что сила тяги двигателя прикладывается к ракете снизу, гораздо ниже ее центра тяжести, поэтому ракета в течение всего полета находится в состоянии неустойчивого равновесия. Чтобы понять смысл этих слов попробуйте удержать карандаш острием на пальце.
Работает она очень просто: «крылышки» (называются стабилизаторы) увеличивают площадь поверхности корпуса ракеты позади центра тяжести. При отклонении ракеты от курса набегающий поток воздуха давит на боковую поверхность корпуса тем сильнее, чем больше эта поверхность. Поскольку позади центра тяжести поверхность больше, чем впереди, воздух давит на нее сильнее, заставляя ракету повернуться вокруг центра тяжести и вернуться на курс.
Разумеется, такая система работает только в атмосфере. В космосе, где воздуха нет, аэродинамические стабилизаторы бесполезны. Для космических ракет применяется активная система стабилизации. Она состоит из гироскопа, бортовой электроники и маленьких подруливающих двигателей.
Вот здесь можно посмотреть на то, как работает гироскоп:
Основываясь на показания датчиков, следящих за положением гироскопа относительно ракеты, бортовая электроника выдает команды исполнительным механизмам на изменение положения маленьких подруливающих двигателей, расположенных рядом с основным двигателем. Они изменяют направление вектора тяги, создавая вращательный момент, возвращающий ракету в заданное положение.
На этой фотографии изображен двигатель центрального блока ракеты Союз. Кроме основных четырех сопел видны четыре маленьких сопла, расположенные по краям блока. Это и есть подруливающие двигатели. Они закреплены на кардановом подвесе, поэтому могут поворачиваться.
На этом пока все. В следующей статье я расскажу о том, как ракеты выводят на орбиту космические аппараты.
Как рассказать о космических ракетах детям
Космос интересует детей своей загадочностью. Им важно знать, почему на небе появляются звезды, что такое Луна и как летают ракеты. В действительности даже сложные процессы ребенку можно объяснить простыми словами. Главное — переходить от простого к сложному.
Рассказ про ракету для 1 класса
Перед тем, как составить рассказ про космические ракеты для детей 1 класса, спросите их, что им известно о космосе. Это подстегнет интерес учащихся и поможет настроиться на внимательное слушание.
Чтобы малыш получил представление о космосе и ракетах, сначала расскажите ему про атмосферу. Это такой воздушный слой, окутывающий нашу планету. Чем больше высота, тем меньше воздуха. У поверхности Земли атмосфера плотная и густая. В небе, где летают самолеты и плавают облака, воздух разреженный, а в космосе его почти нет.
Ракеты летают очень быстро, поэтому не могут перемещаться в атмосфере, где воздух очень плотный. Поэтому их выводят на орбиту — такую высоту, где летательные аппараты не падают обратно вниз и не улетают в космос.
Чтобы вывести корабль в космическое пространство, понадобится как-то поднять его с поверхности Земли. Для этого используют большие моторы, работающие на ракетном топливе.
На чем летит ракета
Ракеты работают на топливе, которое состоит из керосина и жидкого кислорода. Может показаться странным: зачем нужен дополнительный кислород, если керосин и так хорошо горит? — Всё просто: когда горит огонь, нам кажется, что сгорает только топливо — дрова, угли, газ. Но вместе с ними расходуется много кислорода, которым мы дышим вместе с воздухом. Кислород нужен для горения так же, как нужны дрова или уголь.
В космическом пространстве кислорода нет, поэтому его делают жидким и помещают в летательный аппарат. При запуске двигателя окислитель (жидкий кислород) смешивается с горючим (керосином, водородом) в камере сгорания и воспламеняется. Образуется много горячего газа, который с огромной силой выбрасывается из ракеты наружу. Он выходит из нижней части двигателя, где расположены специальные отверстия — сопла.
Ракета двигается за счет отталкивающего действия газа. Когда он выбрасывается из ее «хвоста» вниз, она начинает лететь в противоположную сторону, т.е. вверх. Сила, поднимающая корабль, называется реактивной.
Очень хорошо принцип взлета корабля показывает сдувающийся шарик. Надуйте его и разожмите пальцы, удерживающие отверстие. Шарик полетит за счет толкающей его струи воздуха, выбрасываемой наружу. Такое сообщение для 1 класса с наглядным примером будет более информативно.
Из чего состоит ракета и как она взлетает
Ракета — это своего рода несколько маленьких ракет, соединенных друг с другом. Такие элементы называются ступенями:
Современные космолеты очень большие. В среднюю модель поместилось бы 500 грузовиков. Так много горючего нужно для вывода корабля в космос.
При запуске корабля начинает гореть топливо в первой ступени. За счет мощных двигателей она поднимает летательный аппарат высоко в небо — на высоту от 40 км. Представьте, что 50 самых высоких небоскребов планеты поставили друг на друга.
Когда топливо в первой ступени заканчивается, она автоматически отсоединяется и падает вниз, полностью сгорая в атмосфере. Следом начинает работать вторая ступень, она выводит ракету еще выше и отсоединяется после догорания горючего.
Третья ступень задействуется после автоматического отсоединения второй. Она и выводит летательный аппарат на орбиту. Теперь корабль может двигаться почти совсем без топлива и не падать. Хотя немного топлива всё-таки нужно для корректировки орбиты, для стыковки с орбитальной станцией и для направления спускаемого аппарата назад к Земле.
Как закрепить знания
Чтобы ребенок запомнил все услышанное, задайте ему несколько вопросов: что ты знаешь о космических ракетах, как они летают, почему они такие большие? Выслушайте ответы детей, поправьте, если они что-то напутали. Похвалите за хорошие познания.
Детям будет очень интересно самим нарисовать корабль в космосе, поэтому творческое задание — лучшее закрепление знаний, полученных из вашего сообщения. Объяснить детям принцип работы звездолетов и других видов транспорта будет проще, если они стараются изучить вопрос самостоятельно. По этой причине следует заинтересовать их, попросив детей объяснить их собственные ответы.
Экспериментальная деятельность «Почему взлетает ракета?»
Любовь Федотова
Экспериментальная деятельность «Почему взлетает ракета?»
Провели с детьми интересный эксперимент,после возникшего вопроса: «Почему ракета взлетает?» Все получилось спонтанно, но интересно. Да и провести такой эксперимент довольно просто и быстро, так как, практически, все есть под рукой. Необходимо:
— бельевой шнур (лучше пластиковый,
И теперь небольшая подготовка:
— надуваем шарик, но не завязываем, а держим рукой, слегка перекрутив край;
— приклеиваем к нему с помощью скотча коктейльную трубочку;
— в отверстие трубочки пропускаем шнур и натягиваем его.
а Маша держала другой конец шнура, стоя на стуле. Наша ракета взлетала с Земли (снизу) и неслась к неизведанной планете (вверх).
Фотоотчет «Опытно-экспериментальная деятельность» Программные задачи: Образовательные: • обобщать знания детей об электричестве; • познакомить детей с причиной возникновения и проявления.
«Опытно — экспериментальная деятельность детей дома» В каждом ребенке заложено стремление познавать окружающий мир. Дети каждый день стараются узнать что-то новое, и у них всегда много вопросов.
Консультация «Экспериментальная деятельность в детском саду» Экспериментальная деятельность в детском саду. «То, что я услышал, я забыл. То, что я увидел, я помню. То, что я сделал, я знаю». (Конфуций).
Консультация «Экспериментальная деятельность в ДОУ» ЭКСПЕРИМЕНТАЛЬНАЯ ДЕЯТЕЛЬНОСТЬ В ДОУ Самое лучшее открытие- то, которое ребенок делает сам. Раульф У. Эмерсон философ Экспериментирование.
Опытно-экспериментальная деятельность «Путешествие капельки» Опытно-экспериментальная деятельность в средней группе «Путешествие капельки» Конспект НОД «Опытно-экспериментальная деятельность». Итоговое.
Опытно-экспериментальная деятельность в детском саду Китайская пословица гласит: «Расскажи – и я забуду, покажи – и я запомню, дай попробовать – и я пойму». Усваивается всё прочно и надолго,.
Экспериментальная деятельность в работе учителя-логопеда Развитие речи и экспериментирование тесно связаны между собой. Для повышения эффективности коррекционной работы на логопедическом занятии.
Экспериментальная деятельность для детей 5 лет «Волшебница соль» презентация разработана для дошкольников 5 лет, в которой рассказывается об опытах, демонстрирующих свойства поваренной соли. Цель:изучить.
Экспериментальная деятельность в летний период Опыты с воздухом. Опыт 1. Перевернуть стакан вверх дном и медленно опустить его в банку. Обратить внимание детей на то, что стакан нужно.