за счет ферменты ускоряют химические реакции

За счет ферменты ускоряют химические реакции

Каким образом катализаторы, в частности ферменты, повышают скорость химических реакций? Прежде всего мы должны вспомнить о том, что в любой популяции молекул индивидуальные молекулы при постоянной температуре сильно различаются по количеству содержащейся в них энергии и что распределение общей энергии между молекулами описывается колоколообразной кривой. Одни молекулы обладают высокой энергией, а другие более низкой, но в большинстве из них содержится количество энергии, близкое к среднему значению. Химическая реакция типа за счет ферменты ускоряют химические реакциипротекает потому, что в любой момент времени некоторая доля молекул А обладает большей внутренней энергией по сравнению с другими молекулами данной популяции, и этой энергии оказывается достаточно для достижения ими вершины энергетического барьера (рис. 9-3) и перехода в активную форму, называемую переходным состоянием. Энергией активации называется количество энергии в калориях, необходимое для того, чтобы все молекулы I моля вещества при определенной температуре достигли переходного состояния, соответствующего вершине энергетического (активационного) барьера. В этой точке существует равная вероятность того, что достигшие ее молекулы вступят в реакцию с образованием продукта Р или вернутся обратно на уровень непрореагировавших молекул А (рис. 9-3). Скорость любой химической реакции пропорциональна концентрации молекул, находящихся в переходном состоянии. Следовательно, скорость химической реакции будет очень высокой, если на вершине энергетического барьера находится значительная доля молекул А, и очень низкой, если доля таких молекул невелика.

Существуют два основных пути повышения скорости химической реакции.

за счет ферменты ускоряют химические реакции

Рис. 9-3. Катализаторы снижают энергию активации (энергетический, или активационный, барьер) химических реакций, не влияя при этом на полное изменение свободной энергии в ходе реакции и на конечное состояние равновесия. Вершина энергетического барьера соответствует переходному состоянию.

Первый путь повышение температуры, т.е. ускорение теплового движения молекул, которое приводит к увеличению доли молекул, обладающих достаточной внутренней энергией для достижения переходного состояния. Как правило, повышение температуры на 10 °С вызывает ускорение химической реакции приблизительно в два раза.

Второй путь ускорения химической реакции добавление катализатора. Катализаторы ускоряют химические реакции, находя «обходные пути», позволяющие молекулам преодолевать активационный барьер на более низком энергетическом уровне. Катализатор (обозначим его буквой С) на промежуточной стадии реакции взаимодействует с реагентом А с образованием нового комплекса или соединения СА, переходному состоянию которого соответствует значительно более низкая энергия активации по сравнению с переходным состоянием реагента А в некатализируемой реакции (рис. 9-3). Затем комплекс реагент-катализатор (СА) распадается на продукт Р и свободный катализатор, который может опять соединиться с другой молекулой А и повторить весь цикл. Именно таким образом катализаторы снижают энергию активации химической реакции; в их присутствии гораздо более значительная доля молекул данной популяции вступает в реакцию в единицу времени. Ферменты, так же как и другие катализаторы, соединяются с своими субстратами в ходе каталитического цикла.

Источник

Ферменты: их свойства и значение

за счет ферменты ускоряют химические реакции

Ферменты или энзимы – это особые виды белков, которые являются биологическими катализаторами, то есть ускоряют протекание химических реакций. Они обусловливают как процессы синтеза, так и процессы распада веществ в организме.

Ферменты отвечают за большую работу, которая происходит в клетках и тканях организма. Они действуют как катализаторы, чтобы помочь производить и ускорять химические реакции. Когда клетке нужно что-то сделать, она почти всегда использует фермент для ускорения работы. А больше о строении клетки читайте в учебнике по биологии за 8 класс В.И. Соболя.

Ферменты очень специфичны. Это означает, что каждый класс фермента катализирует превращение только конкретного типа вещества, для которого он был изготовлен.

Благодаря большим размерам молекул ферментов возникает сильное электрическое поле, в котором ферменты приобретают асимметричной формы, ослабляет связи и обусловливает изменение их структуры. Ферменты имеют специальный карман на своей поверхности – активный центр. Молекула, на которую они должны реагировать, четко вписывается прямо в этот карман. Молекула или вещество, с которой фермент реагирует, называется субстратом.

Реакция происходит между ферментом и субстратом в активном центре. После завершения реакции ферментом выделяется новая молекула или вещество.

Влияние на ферменты

Окружающая среда фермента и субстрата может влиять на скорость реакции. В некоторых случаях окружающую среду может заставить фермент перестать работать или даже распутываться. Вот несколько вещей, которые могут влиять на активность ферментов:

температура – температура может влиять на скорость реакции. Чем она выше, тем быстрее произойдет реакция. Оптимальное действие большинства ферментов проявляется при температуре 37-40 °С. Однако в какой-то момент температура станет настолько высокой, что фермент перестанет функционировать.

pH – во многих случаях уровень pH или кислотность среды вокруг фермента и субстрата могут влиять на скорость реакции. Например, фермент желудочного сока пепсин действует лучше в кислой среде (рН 1,5-2,5), а трипсин, который является в двенадцатиперстной кишке, максимально активен при рН 7-8. Экстремальный pH (высокий или низкий), как правило, замедляет реакцию или даже прекратит реакцию вообще.

Концентрация – более высокая концентрация субстрата или фермента может увеличить скорость реакции.

Ингибиторы – это молекулы, которые специально созданы для остановки активности ферментов. Они могут просто замедлить реакцию или вообще прекратить ее. Некоторые ингибиторы связываются с ферментом, заставляя его менять форму и не работать. Противоположностью ингибитора является активатор, который может помочь ускорить реакцию.

за счет ферменты ускоряют химические реакции

Интересные факты о ферментах:

Ферменты не исчезают после того, как выполняют свою работу. Их можно использовать снова и снова.

Многие лекарства и яды действуют как ингибиторы ферментов. Некоторые змеиные яды являются ингибиторами.

Ферменты часто используются в промышленных сферах: для пищевой промышленности, производства бумаги и моющих средств.

В слюне человека есть фермент под названием амилаза, который помогает расщеплять крахмал или гликоген во время жевания.

Ферменты играют важную роль в разрушении нашей пищи, чтобы наши органы могли принимать ее. Существуют специальные ферменты для расщепления различных видов продуктов. Они находятся в нашей слюне, желудке, поджелудочной железе и тонком кишечнике.

Не забывайте, что у нас не только можна читать, но и просматривать интересные темы по биологии в разделе «Онлайн уроки за 8 класс по биологии». Узнавайте больше о рецепторах внутренних органов, эндокринной системе, репродуктивном здоровье и многое другое.

Источник

За счет ферменты ускоряют химические реакции

§ 11. Общие представления о ферментах

Ферменты, или энзимы, – это биологические катализаторы, ускоряющие химические реакции. Общее число известных ферментов составляет несколько тысяч. Практически все химические реакции, протекающие в живых организмах, осуществляются при их участии. Ферменты ускоряют химические реакции в 10 8 – 10 20 раз. Они играют решающую роль в важнейших биологических процессах: в обмене веществ, в мышечном сокращении, в обезвреживании чужеродных веществ, попавших в организм, в передаче сигнала, в транспорте веществ, свертывании крови и многих других. Для клетки ферменты абсолютно необходимы, без них клетка, а следовательно, и жизнь, не могли бы существовать.

Слово фермент произошло от латинского fermentum – закваска, энзим в переводе с греческого означает «в дрожжах». Первые сведения о ферментах были получены еще в XIX веке, но только в начале XX века были сформулированы теории действия ферментов, и лишь в 1926 году Джеймс Самнер впервые получил очищенный фермент в кристаллическом виде – уреазу Уреаза катализирует гидролитическое расщепление мочевины:

за счет ферменты ускоряют химические реакции

Самнер обнаружил, что кристаллы уреазы состоят из белка. В 30-е гг. прошлого столетия Джон Нортон с коллегами получили в кристаллическом виде пищеварительные ферменты трипсин и пепсин, а также установили, что они, как и уреаза, по своей природе являются белками. В результате этих исследований сформировалась точка зрения о белковой природе ферментов, которая многократно впоследствии подтверждалась. И только значительно позже у некоторых РНК была обнаружена способность осуществлять катализ; такие РНК получили название рибозимов, или РНК-ферментов. Рибозимы составляют незначительную часть от всех ферментов, поэтому мы далее будем говорить о ферментах белках.

Сходства и различия ферментов с небелковыми катализаторами

Ферменты имеют ряд общих свойств с химическими небелковыми катализаторами:

а) не расходуются в процессе катализа и не претерпевают необратимых изменений;

b) ускоряют как прямую, так и обратную реакции, не смещая при этом химического равновесия;

c) катализируют только те реакции, которые могут протекать и без них;

d) повышают скорость химической реакции за счет снижения энергии активации (рис. 26).

Химическая реакция протекает потому, что некоторая доля молекул исходных веществ обладает большей энергией по сравнению с другими молекулами, и этой энергии достаточно для достижения переходного состояния. Ферменты, как и химические катализаторы, снижают энергию активации, взаимодействуя с исходными молекулами, в связи с этим число молекул, способных достичь переходного состояния, возрастает, вследствие этого увеличивается и скорость ферментативной реакции.

за счет ферменты ускоряют химические реакции

Рис.26. Влияние фермента на энергию активации

Ферменты, несмотря на определенное сходство с небелковыми химическими катализаторами, отличаются от них по ряду параметров:

a) ферменты обладают более высокой эффективностью действия, например, фермент каталаза, катализирующий реакцию: 2Н2О2 = 2Н2О + О2, ускоряет ее приблизительно в 10 12 раз, эффективность же платины как катализатора этой реакции приблизительно в один миллион раз ниже;

b) ферменты обладают более высокой специфичностью в сравнении с небелковыми катализаторами, они ускоряют более узкий круг химических реакций, например, уже упомянутый фермент уреаза катализирует только одну реакцию – гидролиз мочевины, протеазы способны расщеплять только белки, но не действуют на углеводы, липиды, нуклеиновые кислоты и другие вещества. С другой стороны, платина способна катализировать различные реакции (гидрирования, дегидрирования, окисления), она катализирует как реакцию получения аммиака из азота и водорода, так и гидрирование непредельных жирных кислот (эту реакцию используют для получения маргарина);

c) ферменты эффективно действуют в мягких условиях: при температуре 0 – 40 о С, при атмосферном давлении, при значениях рН, близких к нейтральным, в более жестких условиях ферменты денатурируют и не проявляют своих каталитических качеств. Для эффективного химического катализа часто требуются жесткие условия – высокое давление, высокая температура и наличие кислот или щелочей. Например, синтез аммиака в присутствии катализаторов проводят при 500 – 550 о С и давлении 15 – 100 МПа;

d) активность ферментов в сравнении с химическими катализаторами может более тонко регулироваться различными факторами. В клетке существует множество веществ как увеличивающих, так и снижающих скорости ферментативных реакций.

Структура ферментов

за счет ферменты ускоряют химические реакции

Рис. 27. Кофермент А

Если кофермент прочно связан с ферментом, то в этом случае он представляет простетическую группу сложного белка. Кофакторы могут выполнять следующие функции:

a) участие в катализе;

b) осуществление взаимодействия между субстратом и ферментом;

c) стабилизация фермента.

Каталитически активный комплекс фермент – кофактор называют холоферментом. Отделение кофактора от холофермента приводит к образованию неактивного апофермента:

Холофермент за счет ферменты ускоряют химические реакцииапофермент + кофактор.

В молекуле фермента присутствует активный центр. Активный центр – это область молекулы фермента, в которой происходит связывание субстрата и его превращение в продукт реакции. Размеры фермента, как правило, значительно превышают размеры их субстратов. Активный центр занимает лишь незначительную часть молекулы фермента (рис. 28).

за счет ферменты ускоряют химические реакции

Рис. 28. Относительные размеры молекулы фермента и субстрата

Активный центр образуют аминокислотные остатки полипептидной цепи. В двухкомпонентных ферментах в состав активного центра может входить и небелковый компонент. В молекуле фермента присутствуют аминокислотные остатки, которые не участвуют в катализе и во взаимодействии с субстратом. Однако они весьма существенны, так как формируют определенную пространственную структуру фермента. Наиболее часто в составе активного центра содержатся полярные (серин, треонин, цистеин) и заряженные (лизин, гистидин, глутаминовая и аспарагиновая кислоты) аминокислотные остатки. Аминокислотные остатки, образующие активный центр, в полипептидной цепи находятся на значительном расстоянии и оказываются сближенными при формировании третичной структуры (рис. 29).

за счет ферменты ускоряют химические реакции

Рис. 29. Активный центр

Например, в активный центр химотрипсина (пищеварительного фермента, расщепляющего белки) входят остатки гистидина – 57, аспарагиновой кислоты – 102, серина – 195 (цифрами указаны порядковые номера в полипептидной цепи). Несмотря на удаленность друг от друга этих аминокислотных остатков в полипептидной цепи, в пространстве они расположены рядом и формируют активный центр фермента.

Интересно знать! При иммунизации животных веществом, являющимся аналогом переходного состояния какого либо субстрата, могут быть получены антитела, способные катализировать преобразование субстрата, такие антитела получили название каталитических или абзимов. Используя такой подход, можно направленно получать катализаторы практически для любой реакции.

Некоторые ферменты синтезируются в неактивной форме в виде так называемых проферментов, которые затем под действием определенных факторов активируются. Например, пищеварительные ферменты химотрипсин и трипсин образуются в результате активации химотрипсиногена и трипсиногена.

Номенклатура и классификация ферментов

Часто названия ферментов образуются путем прибавления суффикса к названию субстрата, на который он воздействует. Например, названия фермента уреаза произошло от английского слова urea – мочевина, протеазы (ферменты, расщепляющие белки) – от слова протеин. Многие ферменты имеют тривиальные названия, не связанные с названием их субстратов, например, пепсин и трипсин. Существуют и систематические названия ферментов, включающие названия субстратов и отражающие характер катализируемой реакции.

Интересно знать! Фермент, катализирующий реакцию

АТФ + D-глюкоза за счет ферменты ускоряют химические реакции АДФ + D-глюкоза – 6 – фосфат,

носит систематическое название АТФ: гексоза 6-фосфотрансфераза.

В соответствии с катализируемой реакцией все ферменты делятся на 6 классов.

1. Оксидоредуктазы. Катализируют окислительно-восстановительные реакции

2. Трансферазы. Катализируют реакции межмолекулярного переноса групп:

3. Гидролазы. Катализируют реакции гидролиза:

4. Лиазы. Катализируют реакции присоединения групп по двойным связям и обратные реакции.

5. Изомеразы. Катализируют реакции изомеризации (внутримолекулярный перенос групп).

6. Лигазы. Катализируют соединение двух молекул, сопряженное с гидролизом АТФ.

В свою очередь каждый класс подразделяют на подклассы, подклассы – на подподклассы. Ферментам, образующим подподклассы, присваивается порядковый номер. В итоге каждый фермент имеет свой четырехзначный номер.

Источник

За счет ферменты ускоряют химические реакции

§ 11. Общие представления о ферментах

Ферменты, или энзимы, – это биологические катализаторы, ускоряющие химические реакции. Общее число известных ферментов составляет несколько тысяч. Практически все химические реакции, протекающие в живых организмах, осуществляются при их участии. Ферменты ускоряют химические реакции в 10 8 – 10 20 раз. Они играют решающую роль в важнейших биологических процессах: в обмене веществ, в мышечном сокращении, в обезвреживании чужеродных веществ, попавших в организм, в передаче сигнала, в транспорте веществ, свертывании крови и многих других. Для клетки ферменты абсолютно необходимы, без них клетка, а следовательно, и жизнь, не могли бы существовать.

Слово фермент произошло от латинского fermentum – закваска, энзим в переводе с греческого означает «в дрожжах». Первые сведения о ферментах были получены еще в XIX веке, но только в начале XX века были сформулированы теории действия ферментов, и лишь в 1926 году Джеймс Самнер впервые получил очищенный фермент в кристаллическом виде – уреазу Уреаза катализирует гидролитическое расщепление мочевины:

за счет ферменты ускоряют химические реакции

Самнер обнаружил, что кристаллы уреазы состоят из белка. В 30-е гг. прошлого столетия Джон Нортон с коллегами получили в кристаллическом виде пищеварительные ферменты трипсин и пепсин, а также установили, что они, как и уреаза, по своей природе являются белками. В результате этих исследований сформировалась точка зрения о белковой природе ферментов, которая многократно впоследствии подтверждалась. И только значительно позже у некоторых РНК была обнаружена способность осуществлять катализ; такие РНК получили название рибозимов, или РНК-ферментов. Рибозимы составляют незначительную часть от всех ферментов, поэтому мы далее будем говорить о ферментах белках.

Сходства и различия ферментов с небелковыми катализаторами

Ферменты имеют ряд общих свойств с химическими небелковыми катализаторами:

а) не расходуются в процессе катализа и не претерпевают необратимых изменений;

b) ускоряют как прямую, так и обратную реакции, не смещая при этом химического равновесия;

c) катализируют только те реакции, которые могут протекать и без них;

d) повышают скорость химической реакции за счет снижения энергии активации (рис. 26).

Химическая реакция протекает потому, что некоторая доля молекул исходных веществ обладает большей энергией по сравнению с другими молекулами, и этой энергии достаточно для достижения переходного состояния. Ферменты, как и химические катализаторы, снижают энергию активации, взаимодействуя с исходными молекулами, в связи с этим число молекул, способных достичь переходного состояния, возрастает, вследствие этого увеличивается и скорость ферментативной реакции.

за счет ферменты ускоряют химические реакции

Рис.26. Влияние фермента на энергию активации

Ферменты, несмотря на определенное сходство с небелковыми химическими катализаторами, отличаются от них по ряду параметров:

a) ферменты обладают более высокой эффективностью действия, например, фермент каталаза, катализирующий реакцию: 2Н2О2 = 2Н2О + О2, ускоряет ее приблизительно в 10 12 раз, эффективность же платины как катализатора этой реакции приблизительно в один миллион раз ниже;

b) ферменты обладают более высокой специфичностью в сравнении с небелковыми катализаторами, они ускоряют более узкий круг химических реакций, например, уже упомянутый фермент уреаза катализирует только одну реакцию – гидролиз мочевины, протеазы способны расщеплять только белки, но не действуют на углеводы, липиды, нуклеиновые кислоты и другие вещества. С другой стороны, платина способна катализировать различные реакции (гидрирования, дегидрирования, окисления), она катализирует как реакцию получения аммиака из азота и водорода, так и гидрирование непредельных жирных кислот (эту реакцию используют для получения маргарина);

c) ферменты эффективно действуют в мягких условиях: при температуре 0 – 40 о С, при атмосферном давлении, при значениях рН, близких к нейтральным, в более жестких условиях ферменты денатурируют и не проявляют своих каталитических качеств. Для эффективного химического катализа часто требуются жесткие условия – высокое давление, высокая температура и наличие кислот или щелочей. Например, синтез аммиака в присутствии катализаторов проводят при 500 – 550 о С и давлении 15 – 100 МПа;

d) активность ферментов в сравнении с химическими катализаторами может более тонко регулироваться различными факторами. В клетке существует множество веществ как увеличивающих, так и снижающих скорости ферментативных реакций.

Структура ферментов

за счет ферменты ускоряют химические реакции

Рис. 27. Кофермент А

Если кофермент прочно связан с ферментом, то в этом случае он представляет простетическую группу сложного белка. Кофакторы могут выполнять следующие функции:

a) участие в катализе;

b) осуществление взаимодействия между субстратом и ферментом;

c) стабилизация фермента.

Каталитически активный комплекс фермент – кофактор называют холоферментом. Отделение кофактора от холофермента приводит к образованию неактивного апофермента:

Холофермент за счет ферменты ускоряют химические реакцииапофермент + кофактор.

В молекуле фермента присутствует активный центр. Активный центр – это область молекулы фермента, в которой происходит связывание субстрата и его превращение в продукт реакции. Размеры фермента, как правило, значительно превышают размеры их субстратов. Активный центр занимает лишь незначительную часть молекулы фермента (рис. 28).

за счет ферменты ускоряют химические реакции

Рис. 28. Относительные размеры молекулы фермента и субстрата

Активный центр образуют аминокислотные остатки полипептидной цепи. В двухкомпонентных ферментах в состав активного центра может входить и небелковый компонент. В молекуле фермента присутствуют аминокислотные остатки, которые не участвуют в катализе и во взаимодействии с субстратом. Однако они весьма существенны, так как формируют определенную пространственную структуру фермента. Наиболее часто в составе активного центра содержатся полярные (серин, треонин, цистеин) и заряженные (лизин, гистидин, глутаминовая и аспарагиновая кислоты) аминокислотные остатки. Аминокислотные остатки, образующие активный центр, в полипептидной цепи находятся на значительном расстоянии и оказываются сближенными при формировании третичной структуры (рис. 29).

за счет ферменты ускоряют химические реакции

Рис. 29. Активный центр

Например, в активный центр химотрипсина (пищеварительного фермента, расщепляющего белки) входят остатки гистидина – 57, аспарагиновой кислоты – 102, серина – 195 (цифрами указаны порядковые номера в полипептидной цепи). Несмотря на удаленность друг от друга этих аминокислотных остатков в полипептидной цепи, в пространстве они расположены рядом и формируют активный центр фермента.

Интересно знать! При иммунизации животных веществом, являющимся аналогом переходного состояния какого либо субстрата, могут быть получены антитела, способные катализировать преобразование субстрата, такие антитела получили название каталитических или абзимов. Используя такой подход, можно направленно получать катализаторы практически для любой реакции.

Некоторые ферменты синтезируются в неактивной форме в виде так называемых проферментов, которые затем под действием определенных факторов активируются. Например, пищеварительные ферменты химотрипсин и трипсин образуются в результате активации химотрипсиногена и трипсиногена.

Номенклатура и классификация ферментов

Часто названия ферментов образуются путем прибавления суффикса к названию субстрата, на который он воздействует. Например, названия фермента уреаза произошло от английского слова urea – мочевина, протеазы (ферменты, расщепляющие белки) – от слова протеин. Многие ферменты имеют тривиальные названия, не связанные с названием их субстратов, например, пепсин и трипсин. Существуют и систематические названия ферментов, включающие названия субстратов и отражающие характер катализируемой реакции.

Интересно знать! Фермент, катализирующий реакцию

АТФ + D-глюкоза за счет ферменты ускоряют химические реакции АДФ + D-глюкоза – 6 – фосфат,

носит систематическое название АТФ: гексоза 6-фосфотрансфераза.

В соответствии с катализируемой реакцией все ферменты делятся на 6 классов.

1. Оксидоредуктазы. Катализируют окислительно-восстановительные реакции

2. Трансферазы. Катализируют реакции межмолекулярного переноса групп:

3. Гидролазы. Катализируют реакции гидролиза:

4. Лиазы. Катализируют реакции присоединения групп по двойным связям и обратные реакции.

5. Изомеразы. Катализируют реакции изомеризации (внутримолекулярный перенос групп).

6. Лигазы. Катализируют соединение двух молекул, сопряженное с гидролизом АТФ.

В свою очередь каждый класс подразделяют на подклассы, подклассы – на подподклассы. Ферментам, образующим подподклассы, присваивается порядковый номер. В итоге каждый фермент имеет свой четырехзначный номер.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *