закон обратного отношения между объемом и содержанием понятия логика

Закон обратного отношения между объемами и содержаниями понятий

закон обратного отношения между объемом и содержанием понятия логика закон обратного отношения между объемом и содержанием понятия логика закон обратного отношения между объемом и содержанием понятия логика закон обратного отношения между объемом и содержанием понятия логика

закон обратного отношения между объемом и содержанием понятия логика

закон обратного отношения между объемом и содержанием понятия логика

Содержание и объем понятия

Всякое понятие имеет содержание и объем. Содержанием понятия называется совокупность существенных признаков одноэлементного класса или класса однородных предметов, отраженных в этом понятии. Содержанием понятия “квадрат” является совокупность двух сщественных признаков: “быть прямоугольником” и “иметь равные стороны”.

Объемом понятия называют совокупность (класс) предме­тов, которая мыслится в понятии. Объективно, т. е. вне созна­ния человека, существуют различные предметы, например, школьники. Под объемом понятия “школьник” подразумевает­ся множество всех школьников, которые существуют сейчас, су­ществовали ранее и будут существовать в будущем. Класс (или множество) состоит из отдельных объектов, которые называ­ются его элементами. В зависимости от их числа множества делятся на конечные и бесконечные. Например, множество сто­лиц государств конечно, а множество натуральных чисел беско­нечно. Множество (класс) А называется подмножеством (под­классом) множества (класса) В, если каждый элемент А является элементом В. Такое отношение между подмножеством А и множеством В называется отношением включения класса А в класс В и записывается так: А Ì. В. Читается: класс А входит в класс В. Это отношение вида и рода (например, класс “стол” входит в класс “мебель”).

Классы А и В являются тождественными (совпадающими), если А Ì В и В Ì А, что записывается как А º В.

Закон обратного отношения между объемами и содержаниями понятий

В этом законе речь идет о понятиях, находящихся в родо­видовых отношениях. Объем одного понятия может входить в объем другого понятия и составлять при этом лишь его часть. Например, объем понятия “хищная рыба” целиком входит в объ­ем другого, более широкого по объему понятия “рыба” (состав­ляет часть объема понятия “рыба”). При этом содержание пер­вого понятия оказывается шире, богаче (содержит больше при­знаков), чем содержание второго. На основе обобщения такого рода примеров можно сформулировать следующий закон: чем шире объем понятия, тем уже его содержание, и наоборот. Этот закон называется законом обратнох-о отношения между объе­мами и содержаниями понятий. Он указывает на то, что чем

меньше информации о предметах, заключенной в понятии, тем шире класс предметов и неопределеннее его состав (например, “водопад”), и наоборот, чем больше информации в понятии (например, “крупный водопад” или “крупный водопад в Канаде”), тем уже и определеннее круг его предметов, или даже мыслится только один предмет.

§ 2. Отношения между понятиями

Предметы мира находятся друг с другом во взаимосвязи и взаимообусловленности. Поэтому и понятия, отражающие эти предметы, также находятся в определенных отношениях. Далекие друг от друга по своему содержанию понятия, не имеющие общих признаков, называются несравнимыми (например, “поэма” и “колодец”; “невоспитанность” и “радуга”), остальные понятия называются сравнимыми.

Сравнимые понятия делятся по объему на совместимые (объемы этих понятий совпадают полностью или частично) и несовместимые (их объемы не имеют общих элементов).

Источник

Закон обратного отношения между объемом и содержанием понятия

закон обратного отношения между объемом и содержанием понятия логика закон обратного отношения между объемом и содержанием понятия логика закон обратного отношения между объемом и содержанием понятия логика закон обратного отношения между объемом и содержанием понятия логика

закон обратного отношения между объемом и содержанием понятия логика

закон обратного отношения между объемом и содержанием понятия логика

Отношение между объемом и содержанием понятия было сформулировано в виде закона еще в XVII в. (логике Пор-Рояля). Коротко его можно выразить так: чем богаче содержание понятия, тем уже его объем и, наоборот, чем беднее содержание понятия, тем шире его объем. Например, содержание понятия четного числа богаче понятия натурального числа. Поэтому объем четного числа уже объема натурального числа. Аналогично этому содержание понятия «металл» богаче понятия «химический элемент» и, следовательно, объем понятия «металл» уже объема понятия «химический элемент». Обратите внимание, что закон обратного отношения применим к понятиям, находящимся друг к другу в отношении «частного» к «общему» или, точнее, «вида» и «рода».

Четные числа, как известно, составляют специфический вид натуральных чисел, а последние по отношению к ним являются родом. Точно так же металлы составляют часть или вид среди общего рода химических элементов. Термины «шире» и «уже», «богаче» и «беднее» употребляются при формулировке закона для краткости. Более развернуто они означают, что содержание будет богаче, если оно включает большее количество отличительных или существенных признаков. Объем соответственно считается более узким, если он содержит меньшее количество элементов.

Более точная формулировка закона обратного отношения между содержанием и объемом понятия может быть дана в таком виде: если объем одного понятия составляет часть другого, имеющего тот же род, то содержание второго составляет часть содержания первого понятия, и наоборот, когда содержание одного понятия есть часть содержания другого, тогда объемы понятий находятся в обратном отношении.

Несмотря на свою очевидность, этот закон не раз оспаривался в истории философии и методологии науки. Еще совсем недавно он подвергался критике сторонниками диалектической логики.

Какие доводы выдвигаются против закона обратного отношения между содержанием и объемом понятия?

Поскольку прогресс науки приводит к образованию новых, более общих и глубоких теорий, постольку эти понятия и теории не могут рассматриваться как более бедные по содержанию, считают критики данного закона. Другие идут еще дальше и заявляют, что такие общие понятия содержат все богатство особенного и единичного. Но эти доводы не выдерживают критики, во-первых, потому, что более общие понятия хотя и могут быть более глубокими, но они не могут сохранять в своем содержании специфические особенности менее общих и тем более единичных понятий. Другое дело, что в сочетании с той информацией, которая содержится в таких понятиях, более общие понятия дают более глубокое объяснение изучаемых явлений. Во-вторых, критики закона обратного отношения не учитывают тот факт, что процесс познания идет не только от частного к общему, от конкретного к абстрактному, но и в обратном направлении – от абстрактного к конкретному знанию. Абстракции создаются именно для того, чтобы глубже понять конкретную действительность, а это становится возможным только в единстве более общих и менее общих понятий. В-третьих, если бы критики закона были правы, тогда не стоило сохранять менее общие понятия и теории, но характерная особенность научного познания состоит именно в преемственности развития, сохранении и удержании всего того ценного, что достигнуто на предшествующих этапах познания.

Источник

Закон обратного отношения между содержанием и объёмом понятия

Пример расширения объёма понятия с одновременным уменьшением содержания МГУ → Государственный университет → Университет → ВУЗ → Учебное (образовательное) заведение → Учреждение образования → Учреждение → Организация → Субъект публичного права → Субъект права

Закон применим только при вхождении объёма одного понятия в объём другого, например: «животное» — «собака». Закон не работает для несовпадающих понятий, например: «книга» — «кукла».

См. также

Примечания

Литература

закон обратного отношения между объемом и содержанием понятия логика

Логические операции с понятиями

Законы: Закон обратного отношения между содержанием и объёмом понятияМатематическая
(теоретическая,
символическая)

2 константы: импликация (закон обратного отношения между объемом и содержанием понятия логика) • Круги Эйлера/Диаграмма Венна • Теория множеств

Полезное

Смотреть что такое «Закон обратного отношения между содержанием и объёмом понятия» в других словарях:

Понятия — Понятие форма мышления, отражающая существенные свойства, связи и отношения предметов и явлений в их противоречии и развитии; мысль или система мыслей, обобщающая, выделяющая предметы некоторого класса по определённым общим и в совокупности… … Википедия

Содержание понятия — Содержание понятия это совокупность существенных и отличительных признаков предмета, качества или множества однородных предметов, отражённых в этом понятии, поскольку с точки зрения логики всякое понятие имеет содержание и объём. Например,… … Википедия

Логика — Гр … Википедия

Маймон, Соломон — В Википедии есть статьи о других людях с такой фамилией, см. Маймон. Соломон Маймон Salomon Maimon нем. Arndt, портрет Соломона Маймона Имя при рождении: Шлойме Хайман … Википедия

Множество — У этого термина существуют и другие значения, см. Множество (значения). Запрос «Целое» перенаправляется сюда; о типе данных в программировании см. Целое (тип данных). Множество одно из ключевых понятий математики, в частности, теории… … Википедия

Формальная логика — Формальная логика конструирование и исследование правил преобразования высказываний, сохраняющих их истинностное значение безотносительно к содержанию входящих в эти высказывания понятий. Формальная логика, в отличие от неформальной,… … Википедия

Многозначная логика — Многозначная логика тип формальной логики, в которой допускается более двух истинностных значений для высказываний. Первую систему многозначной логики предложил польский философ Ян Лукасевич в 1920 году[1]. В настоящее время существует… … Википедия

Круги Эйлера — Пример кругов Эйлера. Буквами обозначены, например, свойства: живое существо, человек, неживая вещь Круги Эйлера[1] геометрическая схема, с помощью которой можно изобразить отношения … Википедия

Кризис математических основ — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

Алгебра логики — Не следует путать с булевой алгеброй. Алгебра логики (алгебра высказываний) раздел математической логики, в котором изучаются логические операции над высказываниями[1]. Чаще всего предполагается (т. н. бинарная или двоичная логика, в… … Википедия

Источник

Закон обратного соотношения между объёмом и содержанием понятия

Поможем написать любую работу на аналогичную тему

Закон обратного отношения между объемом и содержанием понятия – увеличение(уточнение)содержания понятия ведет к образованию понятия с меньшим объемом,уменьшение(расширение)содержания понятия ведёт к образованию понятия с большим объёмом

Всякое понятие имеет содержание и объем. Содержанием понятия называется совокупность существенных признаков одноэлементного класса или класса однородных предметов, отраженных в этом понятии. Содержанием понятия «ромб» является совокупность двух существенных признаков: «быть параллелограммом» и «иметь равные стороны».

Объемом понятия называют класс обобщаемых в нем предметов. Объективно, т.е. вне сознания человека, существуют различные предметы, например животные. Под объемом понятия «животное» подразумевается множество всех животных, которые существуют сейчас, существовали ранее и будут существовать в будущем. Класс (или множество) состоит из отдельных объектов, которые называются его элементами. В зависимости от их числа множества делятся на конечные и бесконечные. Например, множество планет Солнечной системы конечно, а множество натуральных чисел бесконечно. Множество (класс) А называется подмножеством (подклассом) множества (класса) В, если каждый элемент А является элементом В. Такое отношение между подмножеством А и множеством В называется отношением включения класса А в класс В и записывается так: Это отношение вида и рода (например, класс «ель» входит в класс «дерево»).

Отношение принадлежности элемента а классу А записывается так: (например, а — «Байкал» и А — «озеро»).

Классы А и В являются тождественными (совпадающими), если А V В и В V А, что записывается как Закон обратного отношения между объемами и содержаниями понятий

Источник

Закон обратного отношения между объемом и содержанием понятия логика

Рекомендовано Министерством общего и профессионального образования Российской Федерации в качестве учебного пособия для студентов высших учебных заведений

кафедра философии Московского государственного социального университета и д-р филос. наук проф. А.Л. Никифоров

В научном познании, практической деятельности и повседневной жизни нам постоянно приходится убеждать своих собеседников и оппонентов в правильности и обоснованности своих утверждений, гипотез и мнений, т.е. аргументировать их. Хотя на убеждение людей могут влиять также их эмоции, настроения, чувства, склонности и даже предубеждения, все же наибольшей убедительностью обладают несомненно доводы (или аргументы), опирающиеся прежде всего на разум и факты.

Логике принадлежит центральная роль в обосновании правильности наших рассуждений, так как именно соблюдение ее правил предохраняет нас от ошибочных выводов. По сути дела, логика была создана Аристотелем как наука, позволяющая различать правильные определения и умозаключения от неправильных и тем самым вскрывать ошибки в рассуждениях и публичных речах ораторов. Однако в дальнейшем логика стала утрачивать свои связи с ораторским искусством и риторикой, все больше замыкаясь в рамках собственных проблем. Это даже дало повод известному немецкому философу И. Канту заявить, что со времен Аристотеля логика не сделала ни одного значительного шага вперед.

К счастью, давно наметившаяся тенденция к символизации и формализации логики привела со временем к новому мощному ее подъему, завершившемуся возникновением символической (или математической) логики. В отличие от аристотелевской логики, превратившейся в небольшую часть новой логики, последняя разработала точные и эффективные методы формального анализа, опирающиеся на концепции, методы и технику математики. Эти методы во многом способствовали возникновению теории алгоритмов, приемов математического моделирования и программирования для решения сложных задач техники, экономики, торговли и транспорта и тем самым развертыванию компьютерной революции в мире.

Нетрудно, однако, понять, что формализация рассуждений, алгоритмизация и компьютеризация предполагают развитую способность к анализу конкретных задач, содержательных способов рассуждений, которые ведутся на естественном языке и служат основой для дальнейшего формального анализа.

Особое значение содержательные рассуждения приобретают при оценке тех данных, на которые, как на посылки, опираются большинство наших выводов в ходе аргументации. Пожалуй, именно рациональный и критический анализ этих данных составляет важнейшую и вместе с тем труднейшую часть любого конкретного исследования. Наряду с дедукцией (или выводом заключений из посылок) здесь для обобщения и оценки самих данных постоянно приходится обращаться к индукции, аналогии и статистике, заключения которых хотя и не являются достоверными, а лишь вероятными, но тем не менее они весьма существенны для окончательных выводов. К такого рода правдоподобным рассуждениям часто прибегают в ходе спора, дискуссии или полемики.

Но как бы ни были обоснованы разумные доводы в отдельности, их надо еще выстроить в логически последовательную систему, чтобы добиться наибольшей эффективности убеждения. А это требует основательного знакомства с логикой. К сожалению, сложившаяся практика преподавания логики в гуманитарных высших учебных заведениях не ориентирует студентов на те конкретные реалии, с которыми они будут встречаться в своей будущей профессии. Вместо изучения современных методов рассуждения и аргументации их заставляют обсуждать искусственно придуманные примеры, подогнанные под умозаключения традиционного типа. По-прежнему в учебниках пестрят примеры силлогизмов, соритов, дилемм, трилемм и других построений традиционной логики, представляющих в основном исторический интерес, поскольку все они могут рассматриваться как частные случаи более общей современной концепции дедуктивной логики. Еще хуже излагаются идеи индукции, аналогии, статистических умозаключений, представляющие собой частные случаи вероятностной логики.

Недостаток существующих руководств, пособий и учебников по логике состоит в том, что в них проблемы дедуктивных рассуждений, логического вывода излагаются в отрыве от правдоподобных рассуждений, логического подтверждения обобщений и гипотез. Иногда дедукция даже рассматривается как вывод частных следствий из общих положений. Но в таком случае сразу же возникает вопрос: откуда и как получаются общие положения?

Реальный процесс рассуждений в науке и повседневной деятельности показывает, что логический вывод и подтверждение, достоверные и правдоподобные рассуждения взаимно предполагают и дополняют друг друга. С помощью правдоподобных рассуждений удается оценить степень вероятности или подтверждение обобщений, предположений и гипотез, по которым происходят споры или дискуссии. Посредством дедукции обычно выводятся логические следствия из них, которые сопоставляются с данными наблюдений, опыта и практики, и тем самым обеспечивается их проверка. Вот почему знание логики необходимо для каждого, кто стремится овладеть искусством аргументации и рационального убеждения.

Спорить и убеждать можно, конечно, опираясь и на так называемый здравый смысл, но он тоже, хотя и в неявной форме, основывается на применении простейших законов логики. Когда же приходится вскрывать и анализировать возникающие в ходе спора ошибки, тогда явное обращение к логике становится неизбежным. Поэтому именно логика помогает овладеть навыками критического мышления и рациональной аргументации.

Искусство критического и рационального мышления, как и любое другое мастерство, приобретается путем систематической работы над собой с помощью тренировок и упражнений, беспристрастного и строгого анализа собственной деятельности, преодоления ошибок и заблуждений. Сознательное и вдумчивое усвоение основных понятий, принципов и методов логики, их умелое применение в тех областях деятельности, в которых сосредоточены интересы обучающегося, будут способствовать овладению мастерством аргументации.

В настоящем учебном пособии освещается весь материал, который требуется обязательной программой для гуманитарных вузов. В первой части рассматриваются вопросы дедуктивной логики и правдоподобных рассуждений. Во второй части обсуждаются основные проблемы, относящиеся к аргументации, причем главное внимание обращается на диалог, как ту реальную среду, в рамках которой происходят споры, дискуссии, диспуты и полемики.

Предлагаемая вниманию читателя книга возникла из курса лекций, прочитанных в Московском государственном социальном университете (МГСУ). Автор выражает благодарность за ценные советы и критические замечания по рукописи, сделанные первым проректором МГСУ, академиком Российской академии социальных наук В.И. Митрохиным, а также коллегами по кафедре, профессорами С.И. Гончаруком и В.А. Поповым.

Часть первая. Дедуктивные и правдоподобные рассуждения

1 ГЛАВА. Предмет и задачи логики

1.1. Логика как наука

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *