Что такое баллистическая ракета
Что такое баллистическая ракета
Баллистическая ракета
Баллистические ракеты могут запускаться с разнообразных пусковых установок: стационарных — шахтных или открытых, мобильных — на базе колёсного или гусеничного шасси, самолётов, кораблей и подводных лодок.
По области применения баллистические ракеты делятся на стратегические и тактические. Часто можно встретить разделение ракет по дальности полёта, хотя никакой общепринятой стандартной классификации ракет по дальности нет. Различные государства и неправительственные эксперты применяют разные классификации дальностей ракет. Здесь приводится классификация, принятая в договоре о ликвидации ракет средней и малой дальности:
Межконтинентальные ракеты и ракеты средней дальности часто используют в качестве стратегических и оснащают ядерными боеголовками. Их преимуществом перед самолётами является малое время подлёта (менее получаса при межконтинентальной дальности) и бо́льшая скорость головной части, что сильно затрудняет их перехват даже современной системой ПРО.
Содержание
Историческая справка
Первые теоретические работы, связанные с описываемым классом ракет, относятся к исследованиям К. Э. Циолковского с 1896 года систематически занимавшегося теорией движения реактивных аппаратов. 10 мая 1897 года в рукописи «Ракета» К. Э. Циолковский вывел формулу [1] (получившую название «формула Циолковского»), которая установила зависимость между:
Формула Циолковского и сегодня составляет важную часть математического аппарата, используемого при проектировании ракет. В 1903 году русский ученый, в статье «Исследование мировых пространств реактивными приборами» и последовавших её продолжениях (1911 и 1914) разработал некоторые положения теории полёта ракет (как тела переменной массы) и использования жидкостного ракетного двигателя.
К 1929 году К. Э. Циолковский разработал теорию движения многоступенчатых ракет в условиях действия земной гравитации, выдвинул ряд идей, нашедших применение в ракетостроении: графитовых газовых рулей для управления полётом ракеты; использования компонентов топлива для охлаждения стенок камеры сгорания и сопла; насосной системы подачи компонентов топлива; использование в системах стабилизации гироскопа, применение многокомпонентных ракетных топлив (в том числе, рекомендовал топливные пары: жидкий кислород с водородом, кислород с углеводородами) и др.
В 1917 году, Роберт Годдард из Смитсоновского института в США запатентовал изобретение, значительно повышавшее эффективность работы силовой установки за счёт применения на жидкостном ракетном двигателе сопла Лаваля. Это решение вдвое повышало эффективность ракетного двигателя и имело огромное влияние на последующие работы Германа Оберта, и команды Вернера фон Брауна.
В 1920-х годах, научные исследования и экспериментальные работы по разработке ракетных технологий, вели несколько стран. Однако, благодаря экспериментам в области жидкостных ракетных двигателей и систем управления, в лидеры по разработке технологий баллистических ракет вышла Германия.
Индексы и наименования межконтинентальных баллистических ракет, ракет средней и малой дальности
СССР (Россия)
Отечественное наименование | Кодовое наименование | |||
---|---|---|---|---|
Оперативно-боевой индекс | Индекс ГРАУ | По Договорам ОСВ, СНВ, РСМД | США | НАТО |
Р-1 | 8А11 | — | SS-1A | Scunner |
Р-2 | 8Ж38 | — | SS-2 | Sibling |
Р-5М | 8К51 | — | SS-3 | Shyster |
Р-11М | 8К11 | — | SS-1B | Scud A |
Р-7 | 8К71 | — | SS-6 | Sapwood |
Р-7А | 8К74 | — | SS-6 | Sapwood |
Р-12 | 8К63 | Р-12 | SS-4 | Sandal |
Р-12У | 8К63У | Р-12 | SS-4 | Sandal |
Р-14 | 8К65 | Р-14 | SS-5 | Skean |
Р-14У | 8К65У | Р-14 | SS-5 | Skean |
Р-16 | 8К64 | — | SS-7 | Saddler |
Р-16У | 8К64У | — | SS-7 | Saddler |
Р-9 | 8К75 | — | SS-8 | Sasin |
Р-9А | 8К75 | — | SS-8 | Sasin |
Р-26 | 8К66 | — | — | — |
УР-200 | 8К81 | — | — | — |
РТ-1 | 8К95 | — | — | — |
УР-100 | 8К84 | — | SS-11 mod.1 | Sego |
УР-100М (УР-100 УТТХ) | 8К84М | — | SS-11 | Sego |
УР-100К | 15А20 | РС-10 | SS-11 mod.2 | Sego |
УР-100У | 15А20У | РС-10 | SS-11 | Sego |
Р-36 | 8К67 | — | SS-9 mod.1 | Scarp |
Р-36орб. | 8К69 | — | SS-9 mod.3 | Scarp |
РТ-2 | 8К98 | РС-12 | SS-13 mod.1 | Savage |
РТ-2П | 8К98П | РС-12 | SS-13 mod.2 | Savage |
РТ-15 | 8К96 | — | SS-14 | Scamp/Scapegoat |
РТ-20 | 8К99 | — | SS-15 | Scrooge |
Темп-2С | 15Ж42 | РС-14 | SS-16 | Sinner |
РСД-10 «Пионер» | 15Ж45 | РСД-10 | SS-20 | Saber |
УР-100Н | 15А30 | РС-18А | SS-19 mod.1 | Stilleto |
УР-100НУ | 15А35 | РС-18Б | SS-19 mod.2 | Stilleto |
МР УР-100 | 15А15 | РС-16А | SS-17 mod.1 | Spanker |
МР УР-100У | 15А16 | РС-16Б | SS-17 mod.2 | Spanker |
Р-36М | 15А14 | РС-20А | SS-18 mod.1 | Satan |
Р-36МУ | 15А18 | РС-20Б | SS-18 mod.2 | Satan |
Р-36М2 «Воевода» | 15А18М | РС-20В | SS-18 mod.3 | Satan |
РТ-2ПМ «Тополь» | 15Ж58 | РС-12М | SS-25 | Sickle |
«Курьер» | 15Ж59 | — | SS-X-26 | — |
РТ-23У | 15Ж60 | РС-22А | SS-24 mod.1 | Scalpel |
РТ-23 | 15Ж52 | РС-22Б | SS-24 mod.2 | Scalpel |
РТ-23У «Молодец» | 15Ж61 | РС-22В | SS-24 mod.3 | Scalpel |
РТ-2ПМ2 «Тополь-М» | 15Ж65 | РС-12М2 | SS-27 | Sickle B |
РТ-2ПМ1 «Тополь-М» | 15Ж55 | РС-12М1 | SS-27 | Sickle B |
РС-24 «Ярс» | — | — | SS-X-29 | — |
Наименование ракеты | Тип и серия ракеты (способ базирования) | Система вооружения (ракетный комплекс) |
---|---|---|
«Редстоун» | PGM-11A | — |
«Юпитер» | PGM-19A | — |
«Тор» | PGM-17A | WS-315A |
«Атлас-D» | CGM-16D | WS-107A |
«Атлас-E» | CGM-16E | WS-107A-1 |
«Атлас-F» | HGM-16F | — |
«Титан-1» | HGM-25A | WS-107A-2 |
«Титан-2» | LGM-25C | WS-107A-2 |
«Минитмен-1A» | LGM-30A | WS-130 |
«Минитмен-1B» | LGM-30B | — |
«Минитмен-2» | LGM-30F | WS-133B |
«Минитмен-3» | LGM-30G | — |
«Минитмен-3A» | LGM-30G | — |
«Пискипер» (MX) | LGM-118A | — |
«Першинг-1А» | MGM-31 | — |
«Першинг-2» | MGM-31B | — |
«Миджитмен» | MGM-134A | — |
Примечание. Буквенно-цифровые индексы имеют следующие значения:
…GM — управляемая ракета для поражения наземных целей;
С… — пуск ракеты осуществляется с незащищенной наземной пусковой установки;
H… — при пуске ракета поднимается на поверхность из подземного укрытия;
L… — пуск ракеты осуществляется из ШПУ;
M… — пуск ракеты осуществляется с подвижной пусковой установки;
P… — пуск ракеты осуществляется с обвалованной наземной пусковой установки;
… — 30… — порядковый номер типа;
… — … — порядковый номер серии;
WS — WeaponSystem — система вооружения, ракетный комплекс.
Баллистическая ракета
Современные боевые блоки состоят из нескольких элементов, как системы координации траектории, устройства для нейтрализации действий радаров и противоракетных установок противника, топливный блок. Приближение снаряда к цели сопровождается постепенным отсоединением элементов, которые уже выполнили свои функции.
Чтобы понять, как пролегает траектория, нужно представить подброшенный мяч. Если бросать мяч вертикально вверх, он упадет рядом. Если бросить мяч под углом к земле, он отлетит на определенное расстояние. Дальность расстояния зависит от величины угла. Чем острее угол между землей и линией движения, тем дальше улетит мяч.
Справка! Запуск ракет возможен с разных стартовых площадок – стационарных (шахты, открытые зоны) и мобильных (самолеты, морские суда, подводные лодки, специализированные автомобили).
Радиус поражения различается в зависимости от вида баллистической ракеты. Тактические снаряды поражают цель, которая находится на расстоянии до 400 км, малой дальности – 500-1000 км, средней дальности – 1000-5500 км, межконтинентальные – более 5500 км.
Справка! Согласно условиям договора между США и Россией, который подписан в 1988 году, запрещено применять баллистические ракеты малой и средней дальности.
Современные ракеты поднимаются на высоту более 4400 километров. Дальность полета составляет около 950 км (по данным результатов испытаний «Хвасон-15» в Северной Корее). Снаряды запускают на большую высоту во время испытаний, чтобы они не улетели на территорию соседней страны.
Факты
Баллистические ракеты с ядерными боеголовками имеются в арсенале России, США, Китая, Великобритании, Франции, Индии, Пакистана, Северной Кореи и Израиля.
В 2009 году неудачный запуск баллистического снаряда с подводной лодки, курсирующей в Белом море, спровоцировал появление в небе над Норвегией спиралевидного облака голубого оттенка. Запуск производился в рамках испытаний. Две ступени отсоединились в штатном режиме, при отцеплении третьей ступени произошел сбой, который стал причиной аномального атмосферного явления.
Всего 10 запущенных баллистических ракет типа «Сармат» полностью уничтожат население США, что равносильно глобальной гуманитарной катастрофе мирового масштаба. Расчеты проводились на основании данных о погибших в Хиросиме и Нагасаки в 1945 году. Примерное количество погибших в японских городах людей – суммарно около 200-400 тысяч. На Хиросиму и Нагасаки сбросили бомбы мощностью 15-20 килотонн. Мощность современных снарядов составляет около 6,7-7,5 мегатонн.
Что такое баллистическая ракета
Что такое баллистическая ракета
Космический ракетный комплекс «ЗЕНИТ»
Баллистическими ракетами (в 50-х годах использовался термин «баллистические снаряды») называют такие ракеты, у которых траектория полета (за исключением начального участка, который ракета проходит с работающим двигателем) представляет собой траекторию свободно брошенного тела. После выключения двигателя ракета не управляется и движется подобно обычному артиллерийскому снаряду, а ее траектория зависит только от силы тяжести и аэродинамических сил и представляет собой так называемую «баллистическую кривую».
Баллистические ракеты обычно запускаются вертикально вверх или под углами, близкими к 90 градусам, что делает необходимым применение системы управления для вывода ракеты на расчетную траекторию поражения цели.
Чтобы баллистическая ракета могла пролететь сотни и тысячи километров, ей надо сообщить очень высокую скорость полета. Однако и при этом условии получить большую дальность было бы невозможно, если бы ракета совершала полет в плотных слоях атмосферы. Сопротивление воздуха быстро погасило бы ее скорость. Поэтому стратегические баллистические ракеты основной участок своей траектории проходят на очень большой высоте, где плотность воздуха мала, т. е. практически в безвоздушном пространстве.
Вертикальный запуск ракеты позволяет сократить время ее движения в плотных слоях атмосферы и тем самым уменьшить расход энергии на преодоление силы сопротивления воздуха. Через несколько секунд вертикального подъема траектория ракеты искривляется в сторону цели и переходит в наклонную. За счет работы двигателя скорость ракеты непрерывно возрастает вплоть до полного израсходования топлива или выключения (отсечки) двигателя. С этого момента и до падения на землю ракета движется по траектории свободно брошенного тела. Таким образом, траектория баллистической ракеты имеет два участка: активный — от начала взлета до прекращения работы двигателей и пассивный — от момента прекращения работы двигателей до достижения поверхности земли.
Ракеты А-4 на стартовой позиции
Активный участок может быть в свою очередь разделен на отрезки. Баллистическая ракета дальнего действия стартует вертикально с пускового устройства и в течение нескольких секунд движется прямо вверх. Этот участок полета назван стартовым. Далее начинается выведение ракеты на траекторию. Ракета отклоняется от вертикали и, описывая дугу на участке выведения, выходит на последний наклонный участок (участок выключения), на котором происходит отсечка двигателей. Дальнейшая траектория ее полета определяется кинетической энергией, запасенной на активном участке, и может быть точно рассчитана.
Описав эллиптическую дугу вне атмосферы, баллистическая ракета или отделившаяся головная часть ракеты вновь входит в атмосферу, имея практически ту же кинетическую энергию и тот же угол наклона траектории к горизонту, что и при выходе из нее.
После этого начинается последний этап пассивного участка движения — наклонное падение в атмосфере, сопровождающееся некоторой потерей кинетической энергии и весьма значительным нагревом.
Межконтинентальная баллистическая ракета, ее особенности
Современные баллистические ракеты оборудованы защитой от ПРО противника (маскировка, ложные цели, разделяющаяся головная часть) и могут спокойной ее преодолевать. Запуск МБР происходит со стационарных установок, атомных подлодок и мобильных комплексов.
История создания
В начале 20-го века Циолковский сформулировал основные принципы ракетостроения и создал первую схему жидкого реактивного двигателя. Он предсказал, что уже через пару десятилетий человечество начнет осваивать ближний космос.В 1909 году Р. Годдард предложил идею о многоступечатой ракете, где пустая ступень отделялась от конструкции, уменьшая ее массу и увеличивая дальность полета.
В 1937 году в Германии появляется ракетный центр, возглавленный В. Фон Брауном и К. Риделем. В центре была оборудована аэродинамическая труба для испытаний, а также построен завод по сжижению кислорода. Первым созданным изделием стал самолет-снаряд ФАУ-1, на основе которого затем в 1942 году сконструировали баллистическую ракету ФАУ-2. При массе ракеты в 13 тонн дальность полета составляла 300 км со скоростью 1,5 км/с.
Образцы ФАУ-2 и наработки немецких ракетчиков в конце второй мировой войны попали в США и СССР почти одновременно.
На их основе уже через год американцами была создана ракета «Redstone». Ученые СССР в 1948 году разработали ракету Р-1, а затем в 1957 году успешно испытали МБР Р-7 (доработанная Р-1).
Что такое баллистическая ракета
С учетом данного аспекта, у него есть два этапа полета:
Нередко в подобном вооружении применяются многоступенчатые системы разгона. Каждая ступень отсоединяется после отработки топлива, что позволяет увеличить скорость снаряда за счет уменьшения веса.
Разработка баллистической ракеты связана с исследованиями К. Э. Циолковского. Еще в 1897 году он определил связь между скоростью под действием тяги ракетного двигателя, его удельным импульсом, а также массой в начале и конце полета. Расчеты ученого до сих пор занимают важнейшее место при проектировании.
Следующее важное открытие сделал Р. Годдард в 1917. Он применил жидкостный ракетный двигатель для сопла Лаваля. Такое решение вдвое увеличило силовую установку и имело значительный отклик в последующих работах Г. Оберта и команды Вернера фон Брауна.
Параллельно данным открытиям свои исследования продолжал и Циолковский. К 1929 году он разработал многоступенчатый принцип движения с учетом земной гравитации. Также он разработал ряд идей по оптимизации системы сгорания.
Герман Оберт был одним из первых, кто задумался о применении подобных открытий в области космонавтики. Однако раньше него, идеи Циолковского и Годдарда были реализованы командой Вернера фон Брауна в военной сфере. Именно на основе их исследований в Германии появились первые серийно производимые баллистические ракеты «Фау-2» (V2).
8 сентября 1944 года они впервые были применены при бомбардировке Лондона. Однако в ходе оккупации Германии союзниками все документы исследований были вывезены из страны. Дальнейшие разработки велись уже со стороны США и СССР.
Что из себя представляет крылатая ракета
Крылатая ракета — это беспилотный летательный аппарат. По своей структуре и истории создания он ближе к авиации, нежели к ракетостроению. Устаревшее название — самолет-снаряд — оно вышло из употребления, поскольку так называли и планирующие авиабомбы.
Не следует связывать термин «крылатая ракета» с английским cruise missile. К последнему относятся только программно-управляемые снаряды, сохраняющие постоянную скорость большую часть полета.
С учетом специфики строения и применения крылатых ракет выделяют следующие преимущества и недостатки таких снарядов:
История разработки крылатых ракет связана с появлением авиации. Еще до Первой мировой войны возникла идея летающей бомбы. Необходимые для ее реализации технологии были вскоре разработаны:
На фоне подобных технологий сразу в нескольких странах велись разработки летающих снарядов. Большинство из них велись параллельно с работой над автопилотированием и радиоуправлением. Идея оснастить их крыльями принадлежит Ф. А. Цандеру. Именно он в 1924 году опубликовал рассказ «Перелеты на другие планеты».
Первым успешным серийным производством подобных летательных аппаратов принято считать английскую радиоуправляемую воздушную мишень Queen. Первые образцы были созданы в 1931, в 1935 запущено серийное производство Queen Bee (пчелиная матка). Кстати, именно с этого момента беспилотники получили неофициальное название Drone — трутень.
Основной задачей первых беспилотников была разведка. Для боевого применения не хватало точности и надежности, что при высокой стоимости разработки делало производство нецелесообразным.
Несмотря на это, исследования и испытания в данном направлении продолжались, особенно с началом Второй мировой войны.
Первой классической крылатой ракетой принято считать немецкую «Фау-1». Ее испытания прошли 21 декабря 1942, а боевое применение она получила к концу войны против Великобритании.
Как и в случае с баллистическими ракетами, разработки немецких ученых перешли к победителям. Дальнейшую эстафету по проектированию современных крылатых ракет переняли СССР и США. Планировалось использовать их в качестве ядерных боеприпасов. Однако разработка таких снарядов была остановлена в связи с экономической нецелесообразностью и успехом развития баллистических ракет.
Способы защиты
В СПРН входят: группировка искусственных спутников Земли, которая отслеживает старт МБР; радиолокационные станции дальнего обнаружения; загоризонтные радиолокационные станции. Данной системой обладают Россия и Америка.
Оружие упреждающего удара — высокоточные ракеты малой дальности (Pershing-2), способные с большой вероятностью вывести из строя шахтные пусковые установки. Эффективность снижается при использовании противником маскировки в виде ложных ШПУ, т.к. большая часть МБР остается боеспособной.
К концу 20-го века территориальная ПРО не создана (имеет объектовый характер).
Свое развитие система получила после выхода США из договора по ограничению ПРО в 2001 году. Была разработана противоракета GBI и ее облегченная версия PLV. Районы размещения – Калифорния, Аляска, Восточная Европа. Моделирование с перехватом GBI одиночной неманеврирующей ГЧ дало 98% шанс уничтожения.
По мнению зарубежных и российских специалистов использование ГЧ с боевыми блоками индивидуального наведения и современной системой ложных целей делает американскую противоракетную оборону бесполезной. Так из расчетов следует, что вероятность преодоления ПРОракетой «Тополь-М» — 99%.
5 самых мощных ядерных ракет в мире
Для того чтобы определить самую мощную ракету, мы взяли такие показатели как дальность, точность попадания и боевое оснащение.
5. М51
Дальность полета ракеты составляет 10 000 километров. Она поступила в распоряжении стратегических сил Франции в 2010 году. Ее размещают на субмаринах класса Triomphant. На таких подводных лодках имеются 16 пусковых шахт для M51. Головная часть каждой ракеты оснащена четырьмя термоядерными блоками по 300 килотонн или шесть блоков по 100 кт.
МБР оснащена большим количеством систем, усложняющих ее перехват вражескими средствами противовоздушной обороны. Ее высокая точность попадания не оставит противникам ни единого шанса. Точность попадания – 200 метров. Стартовая масса равна 56 тоннам.
4. UGM-133A Трайдент II
Данная межконтинентальная баллистическая ракета создана в США. Она обладает дальностью 11 300 километров. Она базируется на субмаринах класса Огайо. Впервые ее пуск был совершен в 1987 году.
Конструкторы наделили ее продвинутым блоком управления и наведения, что обеспечивает впечатляющую максимальную точность попадания – 90 метров. Высокая дальность поражения целей и вместе с морским базированием, делает ее настоящим смертоносным орудием. Восемь термоядерных блоков по 475 килотонны каждый могут с легкостью стереть с лица земли несколько целей противника. Стартовая масса- 59 тонн.
3. DongFeng 5A
На третьем месте расположилась самая дальнобойная китайская ракета. Она способна поражать цели на расстоянии 13 000 километров. Ее изначально разрабатывали для уничтожения стратегических целей на территории США. О поступлении этой ракеты на дежурство стало известно в 1993 году. Для осуществления управления межконтинентальной баллистической ракетой используется бортовой компьютер и инерциальная система наведения.
Головная часть разделяется, что дает возможность нанести непоправимый урон нескольким важным целям на вражеской территории. Средняя точность ракеты равна 1000 метрам. Однако согласно некоторым данным она в два раза выше – 500 метров. Стартовая масса DongFeng 5A равна 183 тоннам. В боевое оснащение МБР входит шесть ядерных блоков индивидуального наведения. Каждый из них имеет мощность в 350 килотонн.
Примечателен тот факт, что на сегодняшний день в распоряжении Китая находится 36 таких ракет. 13 из них направлены на США.
2. Р-29РМУ2 Синева
На втором месте расположилась российская МБР третьего поколения. Она встала на дежурство в 2007 году. «Синева» способна уничтожать цели на расстоянии в 11500 километров, что дает возможность ликвидировать практически любого врага.
При этом такие межконтинентальные баллистические ракеты базируются на подводных лодках. Таким образом, они могут «достать» любую вражескую цель на Земле. Головную часть оснастили несколькими ядерными боеголовками индивидуального наведения. Управления полетом МБР происходит при помощи ГЛОНАСС. Запуск ракеты можно осуществлять с глубины 55 метров. Стартовая масса Р-29РМУ2 Синева составляет 40 тонн. Точность попадания равна 500 метрам. В боевое оснащение входит десять ядерных блоков индивидуального наведения. Каждый из них обладает мощностью 100 килотонн.
1. P-36M (СС-18 Сатана)
Первое место получила самая мощная ракета не только в России, а и в мире. Созданная еще в советские времена P-36M обладает фантастической дальностью поражения цели – 16000 километров. Ее десять термоядерных блоков могут превратить в горстку пепла 10 индивидуальных целей.
Благодаря эффективной системе преодоления противоракетной обороны не даст возможности противникам помешать ей достигнуть цели. Время готовности «Сатаны» лишь немного превышает минуту. Это значит, что всего через минуту после начала подготовки ракеты, она может вылететь из шахты и сравнять с землей любого агрессора, который решил посягнуть на целостность страны. Именно она в свое время поставила жирную точку в гонке вооружений между Москвой и Вашингтоном.
Американские военные называли эту МБР не иначе как «оружие судного дня». Точность попадания P-36M равна 220 метрам. Стартовая масса составляет 211 тонн. Боевое оснащение состоит из десяти термоядерных блоков, по 800 килотонн мощности каждый.
Чем отличаются крылатые и баллистические ракеты и какие они ещё бывают?
Ввиду неспокойной политической обстановки в мире, новостные сводки все чаще пестрят такими словами, как ”ракета”, ”ракетный удар”, ”баллистическая ракета”, ”крылатая ракета” и многими другим словами, связанными с артиллерией и, собственно, самими ракетами. Проблема в том, что не все понимают, что кроется за столь знакомыми словами. Мы привыкли, что есть ракета, которая ”увозит” человека в космос и есть ракета для уничтожения целей. Давайте разберемся в этом многогранном мире и поймем, чем отличается крылатая от твердотопливной, а криогенная от гиперзвуковой.
Ракета в воздухе выглядит очень красиво. Вот только эта красота не сулит ничего хорошего.
В свою очередь определение самой ракеты в данном контексте звучит следующим образом:
РАКЕ́ТА (от итал. rocchetta – маленькое веретено), летательный аппарат, движущийся под действием реактивной силы (тяги), возникающей при отбрасывании массы сгорающего ракетного топлива (рабочего тела), являющегося частью собственной массы
В военной терминологии можно встретить следующее определение:
Так выглядела прабабушка современной ракеты.
По-настоящему широкое распространение ракетное вооружение получило после Второй мировой войны. Так, например, в 1948 году дальность полета советских ракет Р-1 составляла 270 км, а спустя всего 11 лет были созданы ракеты Р-7А с дальностью до 13 000 км. Как говорится, ”разница на лицо”.
Чем отличаются ракеты
Теперь можно поговорить о том, чем между собой отличаются ракеты. Как правило, обыватели слышат упоминания о крылатых и баллистических ракетах. Это действительно два основных типа, но есть и некоторые другие. Разберем главные из них, но сначала приведу классификацию типов ракет.
Ракеты делятся по типам в зависимости от:
Бесчисленное множество типов ракет.
Теперь остановимся более подробно на основных пунктах, которые могут показаться непонятными.
Отличие ракет по классу
Класс ракет говорит сам за себя. Ракета класса ”воздух-воздух” предназначена для поражения воздушных целей при запуске в воздухе. Такие ракеты запускаются с летательных аппаратов, таких, как самолеты, вертолеты и многочисленные типы беспилотников (БЛА).
Ракеты класса ”земля-воздух” предназначены для поражения воздушных целей с земли. Они могут базироваться как на стационарных пусковых установках, так и на переносных. Самыми известными переносными зенитными ракетными комплексами (ПЗРК) являются Советско-российские ”Игла” и ”Стрела”, а также Американский ”Stinger”. Примечательно, что почти все ПЗРК, применяемые в современных военных конфликтах, создавались еще в восьмидесятые годы прошлого века. Так, например, первая модификация ”Stinger” под номером FIM-92А была создана в 1981 году. Примерно в это же время появились и ”Стрела”, и ”Игла”, и французские ”Mistrale”.
Ракетный комплекс Stinger.
Как видим, класс ракет говорит сам за себя. Особняком стоит только класс ”воздух-поверхность”, который включает в себя ракеты, как для поражения наземных, так и водных целей.
Ракеты наземного базирования в зависимости от их предназначения, размера, дальности и других параметром могут размещаться в шахтных пусковых установках, на специальных наземных площадках и на специальном гусеничном или колесном транспорте. Так же они могут запускаться с кораблей и подводных лодок. Именно поражение наземных целей такими ракетами особенно оправдано, так как можно запускать их в непосредственной близости от территории противника.
Подводные лодки, способные нести мощные ракеты, являются настоящей головной болью военных всего мира. Стоит не заметить ее и в случае удара ракета полетит не с расстояния в несколько тысяч километров, а с нескольких сотен километров. В итоге, на реагирование почти не останется времени.
Не забывайте заходить в наш Telegram-чат. Там самое место для обсуждения высоких технологий. Каждый будет услышан.
Ракета с ядерной боеголовкой
Межконтинентальные ракеты
Несмотря на это, ядерным зарядом могут оснащаться даже ракеты малой дальности. Правда, на практике это не имеет большого смысла, так как применяются такие ракеты, как правило, в региональных конфликтах.
Полет межконтинентальной ракеты.
По дальности полета ракеты делятся на ”ракеты малой дальности”, предназначенные для поражения целей на расстоянии 500-1000 км, ”ракеты средней дальности”, способные нести свой смертоносный груз на расстояние 1000-5500 км и ”межконтинентальные ракеты”, которые могут и через океан перелететь.
Какое топливо используется в ракете
При выборе типа ракетного топлива больше всего всего внимания уделяется особенностям использования ракеты и тому, каким двигателем ее планируется оснастить. Грубо можно сказать, что все типы топлива делятся в основном по форме выпуска, удельной температуре сгорания и КПД. Среди основных типов двигателей выделяется твердотопливные, жидкостные, комбинированные и прямоточные воздушно-реактивные.
Для боевых ракет твердое топливо производится по иной технологии. Обычно им является алюминиевый порошок. Главным плюсом таких ракет является легкость их хранения и возможность работы с ними, когда они заправлены. Кроме этого, такое топливо стоит относительно недорого.
Минусом твердотопливных двигателей является слабый потенциал отклонения вектора тяги. Поэтому для управления в таких ракетах часто используются дополнительные небольшие двигатели на жидком углеводородном топливе. Такая гибридная связка позволяет более полно использовать потенциал каждого источника энергии.
Использование именно комбинированных систем хорошо тем, что позволяет уйти от сложной системы заправки ракеты непосредственно перед запуском и необходимости откачки большого количества топлива в случае его отмены.
Отдельно стоит отметить даже не криогенный двигатель (заправляется сжиженными газами при очень низкой температуре) и не атомный, про который много говорят в последнее время, а прямоточный воздушно-реактивный. Такая система работает за счет создания давления воздуха в двигателе при движении ракеты на большой скорости. В самом двигателе производится впрыск топлива в камеру сгорания и смесь поджигается, создавая давление больше, чем на входе. Такие ракеты способны летать со скоростью, которая в несколько раз превышает скорость звука, но для запуска двигателя нужно давление, которое создается на скорости чуть выше одной скорости звука. Именно поэтому для запуска должны быть использованы вспомогательные средства.
Системы наведения ракет
В наше время почти все ракеты имеют систему наведения. Думаю, не стоит объяснять, что попасть по цели, которая находится на расстоянии сотен или тысяч километров, без точной системы наведения просто невозможно.
Систем наведения и их комбинаций очень много. Только среди основных можно отметить систему командного наведения, электродистанционное наведение, наведение по наземным ориентирам, геофизическое наведение, наведение по лучу, спутниковое наведение, а также некоторые другие системы и их сочетание.
Ракета с системой наведения под крылом самолета.
Система электродистанционного наведения имеет много общего с системой на радиоуправлении, но она обладает более высокой устойчивостью к помехам, в том числе, намеренно создаваемым противником. В случае такого управления команды передаются по проводу, который направляет в ракету все данные, необходимые для поражения цели. Передача таким способом возможна только до момента запуска.
Система наведения по наземным ориентирам состоит из высокочувствительных высотомеров, позволяющих отслеживать положение ракеты на местности и ее рельеф. Такая система применяется исключительно в крылатых ракетах ввиду их особенностей, о которых мы поговорим чуть ниже.
Система геофизического наведения основана на постоянном сопоставлении угла положения ракеты относительно горизонта и звезд с эталонными значениями, заложенными в нее перед стартом. Внутренняя система управления при малейшем отклонении возвращает ракету на курс.
При наведении по лучу ракете нужен вспомогательный источник целеуказания. Как правило, им является корабль или самолет. Внешний радар определяет цель и производит ее отслеживание, если она движется. Ракета ориентируется на этот сигнал и сама наводится на него.
Название системы спутникового наведения говорит само за себя. Наведение на цель производится по координатам системы глобального позиционирования. В основном такая система широко используется в тяжелых межконтинентальных ракетах, которые наводятся на статичные наземные цели.
Что такое баллистическая ракета
Много вопросов возникает в отношении отличий баллистических и крылатых ракет. Отвечая на эти вопросы, можно сказать, что отличия сводятся к траектории полета.
Как это часто бывает, особенности кроются в названии. Так и название крылатой ракеты говорит само за себя. Большую часть пути крылатая ракета держится в воздухе за счет крыльев, представляя из себя по сути самолет. Наличие крыльев обеспечивает ей очень высокую маневренность, позволяющую не только менять траекторию движения, отклоняясь от средств ПВО, но даже лететь на высоте нескольких метров от земли, огибая рельеф. Так ракета и вовсе сможет остаться незамеченной для ПВО.
Это не самолет, а крылатая ракета.
Этот тип ракет имеет меньшую, в сравнении с баллистических, скорость, которая обусловлена, в том числе, более высоким лобовым сопротивлением. Тем не менее, они подразделяются на дозвуковые, сверхзвуковые и гиперзвуковые.
Первые развивают скорость, близкую к скорости звука, но не превышают ее. Примером таких ракет может быть знаменитая американская крылатая ракета ”Томагавк”. Сверхзвуковые ракеты могут развивать скорость до 2,5-3 скоростей звука, а гиперзвуковые, над которыми сейчас работает очень много стран, должны набирать 5-6 скоростей звука.
Еще один пример крылатой ракеты.
Баллистические ракеты летают немного иначе. Они имеют баллистическую траекторию и большую часть своего пути находятся в неуправляемом полете. Грубо говоря, это похоже на то, что ракету просто бросили в противника, как камень. Конечно, есть точный расчет и системы наведения, но именно такой относительно простой способ позволяет нести очень большой заряд, размер и вес которого существенно превышают то, что возьмет ”на борт” крылатая ракета.
Первые научные труды и теоретические работы, связанные с баллистическими ракетами, описаны еще в 1896 году К.Э. Циолковским. Он описал такой тип летательных аппаратов и вывел зависимость между многими компонентами ракеты и ее полета. Формула Циолковского до сих пор составляет важную часть математического аппарата, используемого при проектировании ракет.
Во многом именно этому человеку мы обязаны не только военными, но и мирными ракетами. К.Э. Циолковский.
С какой скоростью летают ракеты?
Прежде, чем ответить на этот вопрос, давайте поймем в чем ее измеряют. Ракеты летают чертовски быстро и говорить о привычных км/ч или м/сек не приходится. Скорость многих современных летательных аппаратов измеряют в Махах.
Непривычная величина измерения скорости появилась не просто так. Название “число Маха” и обозначение “М” предложил в 1929 году Якоб Аккерет. Оно выражается как отношение скорости движения потока или тела к скорости распространения звука в среде, в которой происходит движение. Если учесть, что скорость распространения звуковой волны у поверхности земли примерно равна 331 м/сек (около 1200 км/ч), не трудно догадаться, что единицу можно получить только если поделить 331 на 331. То есть, скорость один Мах (М) у поверхности земли составляет примерно 1200 км/ч. С набором высоты скорость распространения звуковой волны падает из-за уменьшения плотности воздуха.
Таким образом, один Мах у поверхности земли и на высоте 20 000 метров отличается примерно на 10 процентов. Стало быть и скорость тела, которую оно должно развить, чтобы получить число Маха, уменьшается. Упрощенно среди обывателей принято называть число Маха скоростью звука. Если такое упрощение не применяется в точных расчетах, его вполне можно допустить и считать примерно равным величине у поверхности земли.
Ракеты могут запускаться с самолета.
Такую скорость не так легко представить, но крылатые ракеты могут летать на скорости до 5 Махов (примерно 7 000 км/ч в зависимости от высоты). Баллистические ракеты и вовсе способны развивать скорость до 23 Махов. Именно такую скорость на испытаниях показал ракетный комплекс Авангард. Получается, что на высоте 20 000 метров, это будет около 25 000 км/ч.
Конечно, такая скорость достигается на заключительной стадии полета при спуске, но представить, что рукотворный объект может перемещаться с такой скоростью, все равно сложно.
Что скрывается внутри межконтинентальной баллистической ракеты
При больших дальностях пуска полезная нагрузка межконтинентальной баллистической ракеты уходит в космическую высоту на многие сотни километров. Поднимается в слой низкоорбитальных спутников, на 1000−1200 км над Землей, и ненадолго располагается среди них, лишь слегка отставая от их общего бега. А затем по эллиптической траектории начинает скатываться вниз.
Что это, собственно, за нагрузка?
Баллистическая ракета состоит из двух главных частей — разгоняющей части и другой, ради которой затеян разгон. Разгоняющая часть — это пара или тройка больших многотонных ступеней, под завязку набитых топливом и с двигателями снизу. Они придают необходимую скорость и направление движению другой главной части ракеты — головной. Разгонные ступени, сменяя друг друга в эстафете пуска, ускоряют эту головную часть в направлении района ее будущего падения.
Тянуть или толкать?
В ракете все боеголовки расположены на так называемой ступени разведения, или в «автобусе». Почему автобус? Потому что, освободившись сначала от обтекателя, а затем от последней разгонной ступени, ступень разведения развозит боеголовки, как пассажиров по заданным остановкам, по своим траекториям, по которым смертоносные конусы разойдутся к своим целям.
Но так было раньше, на заре разделяющихся головных частей. Сейчас разведение представляет собой совсем другую картину. Если раньше боеголовки «торчали» вперед, то теперь впереди по ходу находится сама ступень, а боеголовки висят снизу, вершинами назад, перевернутые, как летучие мыши. Сам «автобус» в некоторых ракетах тоже лежит в перевернутом состоянии, в специальной выемке в верхней ступени ракеты. Теперь после отделения ступень разведения не толкает, а тащит боеголовки за собой. Причем тащит, упираясь крестообразно расставленными четырьмя «лапами», развернутыми впереди. На концах этих металлических лап находятся направленные назад тяговые сопла ступени разведения. После отделения от разгонной ступени «автобус» очень точно, прецизионно выставляет свое движение в начинающемся космосе с помощью собственной мощной системы наведения. Сам занимает точную тропу очередной боеголовки — ее индивидуальную тропу.
Затем размыкаются специальные безынерционные замки, державшие очередную отделяемую боеголовку. И даже не отделенная, а просто теперь уже ничем не связанная со ступенью боеголовка остается неподвижно висеть здесь же, в полной невесомости. Начались и потекли мгновенья ее собственного полета. Словно одна отдельная ягода рядом с гроздью винограда с другими виноградинами-боеголовками, еще не сорванными со ступени процессом разведения.
Деликатные движения
Теперь задача ступени — отползти от боеголовки как можно деликатнее, не нарушив ее точно выставленного (нацеленного) движения газовыми струями своих сопел. Если сверхзвуковая струя сопла попадет по отделенной боеголовке, то неминуемо внесет свою добавку в параметры ее движения. За последующее время полета (а это полчаса — минут пятьдесят, в зависимости от дальности пуска) боеголовка продрейфует от этого выхлопного «шлепка» струи на полкилометра-километр вбок от цели, а то и дальше. Продрейфует без преград: там же космос, шлепнули — поплыла, ничем не удерживаясь. Но разве километр вбок — это точность сегодня?
Чтобы избежать таких эффектов, как раз и нужны разнесенные в стороны четыре верхние «лапы» с двигателями. Ступень как бы подтягивается на них вперед, чтобы струи выхлопов шли по сторонам и не могли зацепить отделяемую брюшком ступени боеголовку. Вся тяга разделена между четырьмя соплами, что снижает мощность каждой отдельной струи. Есть и другие особенности. Например, если на бубликообразной ступени разведения (с пустотой посередине — этим отверстием она надета на разгонную ступень ракеты, как обручальное кольцо на палец) ракеты «Трайдент-II D5» система управления определяет, что отделенная боеголовка все же попадает под выхлоп одного из сопел, то система управления это сопло отключает. Делает «тишину» над боеголовкой.
Бездны математики
Сказанного выше вполне достаточно для понимания, как начинается собственный путь боеголовки. Но если приоткрыть дверь чуть шире и бросить взгляд чуть глубже, можно заметить, что сегодня разворот в пространстве ступени разведения, несущей боеголовки, — это область применения кватернионного исчисления, где бортовая система ориентации обрабатывает измеряемые параметры своего движения с непрерывным построением на борту кватерниона ориентации. Кватернион — это такое комплексное число (над полем комплексных чисел лежит плоское тело кватернионов, как сказали бы математики на своем точном языке определений). Но не с обычными двумя частями, действительной и мнимой, а с одной действительной и тремя мнимыми. Итого у кватерниона четыре части, о чем, собственно, и говорит латинский корень quatro.
Ступень разведения выполняет свою работу довольно низко, сразу после выключения разгонных ступеней. То есть на высоте 100−150 км. А там еще сказывается влияние гравитационных аномалий поверхности Земли, разнородностей в ровном поле тяготения, окружающем Землю. Откуда они? Из неровностей рельефа, горных систем, залегания пород разной плотности, океанических впадин. Гравитационные аномалии либо притягивают к себе ступень добавочным притяжением, либо, наоборот, слегка отпускают ее от Земли.
В таких неоднородностях, сложной ряби местного гравитационного поля, ступень разведения должна расставить боеголовки с прецизионной точностью. Для этого пришлось создать более детальную карту гравитационного поля Земли. «Излагать» особенности реального поля лучше в системах дифференциальных уравнений, описывающих точное баллистическое движение. Это большие, емкие (для включения подробностей) системы из нескольких тысяч дифференциальных уравнений, с несколькими десятками тысяч чисел-констант. А само гравитационное поле на низких высотах, в непосредственной околоземной области, рассматривают как совместное притяжение нескольких сотен точечных масс разного «веса», расположенных около центра Земли в определенном порядке. Так достигается более точное моделирование реального поля тяготения Земли на трассе полета ракеты. И более точная работа с ним системы управления полетом. А еще. но полно! — не будем заглядывать дальше и закроем дверь; нам вполне хватит и сказанного.
Полет без боеголовок
Ступень разведения, разогнанная ракетой в сторону того же географического района, куда должны упасть боеголовки, продолжает свой полет вместе с ними. Ведь отстать она не может, да и зачем? После разведения боеголовок ступень срочно занимается другими делами. Она отходит в сторону от боеголовок, заранее зная, что будет лететь немного не так, как боеголовки, и не желая их потревожить. Все свои дальнейшие действия ступень разведения тоже посвящает боеголовкам. Это материнское желание всячески оберегать полет своих «деток» продолжается всю ее оставшуюся недолгую жизнь. Недолгую, но насыщенную.
После отделенных боеголовок наступает черед других подопечных. В стороны от ступени начинают разлетаться самые забавные штуковины. Словно фокусник, выпускает она в пространство множество надувающихся воздушных шариков, какие-то металлические штучки, напоминающие раскрытые ножницы, и предметы всяких прочих форм. Прочные воздушные шарики ярко сверкают в космическом солнце ртутным блеском металлизированной поверхности. Они довольно большие, некоторые по форме напоминают боеголовки, летящие неподалеку. Их поверхность, покрытая алюминиевым напылением, отражает радиосигнал радара издали почти так же, как и корпус боеголовки. Наземные радары противника воспримут эти надувные боеголовки наравне с реальными. Разумеется, в первые же мгновения входа в атмосферу эти шарики отстанут и немедленно лопнут. Но до этого они будут отвлекать на себя и загружать вычислительные мощности наземных радаров — и дальнего обнаружения, и наведения противоракетных комплексов. На языке перехватчиков баллистических ракет это называется «осложнять текущую баллистическую обстановку». А всё небесное воинство, неумолимо движущееся к району падения, включая боевые блоки настоящие и ложные, надувные шарики, дипольные и уголковые отражатели, вся эта разношерстная стая называется «множественные баллистические цели в осложненной баллистической обстановке».
Металлические ножницы раскрываются и становятся электрическими дипольными отражателями — их множество, и они хорошо отражают радиосигнал ощупывающего их луча радара дальнего противоракетного обнаружения. Вместо десяти искомых жирных уток радар видит огромную размытую стаю маленьких воробьев, в которой трудно что-то разобрать. Устройства всяких форм и размеров отражают разные длины волн.Кроме всей этой мишуры, ступень теоретически может сама испускать радиосигналы, которые мешают наводиться противоракетам противника. Или отвлекать их на себя. В конце концов, мало ли чем она может быть занята — ведь летит целая ступень, большая и сложная, почему бы не нагрузить ее хорошей сольной программой?
Последний отрезок
Однако с точки зрения аэродинамики ступень не боеголовка. Если та — маленькая и тяжеленькая узкая морковка, то ступень — пустое обширное ведро, с гулкими опустевшими топливными баками, большим необтекаемым корпусом и отсутствием ориентации в начинающем набегать потоке. Своим широким телом с приличной парусностью ступень гораздо раньше отзывается на первые дуновения встречного потока. Боеголовки к тому же разворачиваются вдоль потока, с наименьшим аэродинамическим сопротивлением пробивая атмосферу. Ступень же наваливается на воздух своими обширными боками и днищами как придется. Бороться с тормозящей силой потока она не может. Ее баллистический коэффициент — «сплав» массивности и компактности — гораздо хуже боеголовочного. Сразу и сильно начинает она замедляться и отставать от боеголовок. Но силы потока нарастают неумолимо, одновременно и температура прогревает тонкий незащищенный металл, лишая его прочности. Остатки топлива весело кипят в раскаляющихся баках. Наконец, происходит потеря устойчивости конструкции корпуса под обжавшей ее аэродинамической нагрузкой. Перегрузка помогает крушить переборки внутри. Крак! Хрясь! Смявшееся тело тут же охватывают гиперзвуковые ударные волны, разрывая ступень на части и разбрасывая их. Пролетев немного в уплотняющемся воздухе, куски снова разламываются на более мелкие фрагменты. Остатки топлива реагируют мгновенно. Разлетающиеся осколки конструктивных элементов из магниевых сплавов зажигаются раскаленным воздухом и мгновенно сгорают с ослепительной вспышкой, похожей на вспышку фотоаппарата — недаром в первых фотовспышках поджигали магний!
Баллистическая ракета
Баллистические ракеты могут запускаться с разнообразных пусковых установок: стационарных — шахтных или открытых, мобильных — на базе колёсного или гусеничного шасси, самолётов, кораблей и подводных лодок.
По области применения баллистические ракеты делятся на стратегические и тактические. Часто можно встретить разделение ракет по дальности полёта, хотя никакой общепринятой стандартной классификации ракет по дальности нет. Различные государства и неправительственные эксперты применяют разные классификации дальностей ракет. Здесь приводится классификация, принятая в договоре о ликвидации ракет средней и малой дальности:
* Баллистические ракеты малой дальности (от 500 до 1000 километров).
* Баллистические ракеты средней дальности (от 1000 до 5500 километров).
Межконтинентальные баллистические ракеты (свыше 5500 километров).Межконтинентальные ракеты и ракеты средней дальности часто используют в качестве стратегических, их оснащают ядерными боеголовками. Их преимуществом перед самолётами является малое время подлёта (менее получаса при межконтинентальной дальности) и бо́льшая скорость головной части, что сильно затрудняет их перехват даже современной системой ПРО.
БАЛЛИСТИ́ЧЕСКАЯ РАКЕ́ТА
В книжной версии
Том 2. Москва, 2005, стр. 716
Скопировать библиографическую ссылку:
БАЛЛИСТИ́ЧЕСКАЯ РАКЕ́ТА, ракета, которая после выключения двигателей летит по баллистич. траектории так, как движется снаряд или пуля после выстрела. По функциональному назначению различают Б. р.: морского базирования с запуском из подводной лодки; наземного базирования с запуском из шахтной установки; наземного базирования с запуском с мобильного комплекса. Б. р. наземного базирования бывают: малой (500–1000 км), средней (1000–5500 км) дальности, межконтинентальные (свыше 5500 км). Под рук. С. П. Королёва в 1955 с подводной лодки был проведён запуск первой в мире морской Б. р. Р-11ФМ. Б. р. не имеют развитых несущих поверхностей, как крылатые ракеты ; в некоторых случаях на них устанавливают стабилизаторы для обеспечения аэродинамич. устойчивости в полёте. Траектория полёта Б. р. содержит активный участок, на котором двигатели ракеты сообщают ей необходимые скорость и направление движения, и пассивный участок, где полёт продолжается по баллистич. траектории. К Б. р. относятся ракеты-носители и разгонные ступени для выведения космич. аппаратов на заданную орбиту, а также боевые ракеты, включая межконтинентальные. На Б. р. устанавливают жидкостные (ЖРД) и твердотопливные (РДТТ) ракетные двигатели. Отличительной особенностью Б. р. со значит. стартовой массой является вертикальный старт со спец. устройства. Существующие в России межконтинентальные Б. р. наземного базирования «Тополь-М» и Б. р. на подводных лодках оснащены элементами преодоления противоракетной обороны, не имеющими аналогов в мире.
Чем отличаются крылатые и баллистические ракеты и какие они ещё бывают?
Ввиду неспокойной политической обстановки в мире, новостные сводки все чаще пестрят такими словами, как ”ракета”, ”ракетный удар”, ”баллистическая ракета”, ”крылатая ракета” и многими другим словами, связанными с артиллерией и, собственно, самими ракетами. Проблема в том, что не все понимают, что кроется за столь знакомыми словами. Мы привыкли, что есть ракета, которая ”увозит” человека в космос и есть ракета для уничтожения целей. Давайте разберемся в этом многогранном мире и поймем, чем отличается крылатая от твердотопливной, а криогенная от гиперзвуковой.
Ракета в воздухе выглядит очень красиво. Вот только эта красота не сулит ничего хорошего.
В свою очередь определение самой ракеты в данном контексте звучит следующим образом:
РАКЕ́ТА (от итал. rocchetta – маленькое веретено), летательный аппарат, движущийся под действием реактивной силы (тяги), возникающей при отбрасывании массы сгорающего ракетного топлива (рабочего тела), являющегося частью собственной массы
В военной терминологии можно встретить следующее определение:
Так выглядела прабабушка современной ракеты.
По-настоящему широкое распространение ракетное вооружение получило после Второй мировой войны. Так, например, в 1948 году дальность полета советских ракет Р-1 составляла 270 км, а спустя всего 11 лет были созданы ракеты Р-7А с дальностью до 13 000 км. Как говорится, ”разница на лицо”.
Чем отличаются ракеты
Теперь можно поговорить о том, чем между собой отличаются ракеты. Как правило, обыватели слышат упоминания о крылатых и баллистических ракетах. Это действительно два основных типа, но есть и некоторые другие. Разберем главные из них, но сначала приведу классификацию типов ракет.
Ракеты делятся по типам в зависимости от:
Бесчисленное множество типов ракет.
Теперь остановимся более подробно на основных пунктах, которые могут показаться непонятными.
Отличие ракет по классу
Класс ракет говорит сам за себя. Ракета класса ”воздух-воздух” предназначена для поражения воздушных целей при запуске в воздухе. Такие ракеты запускаются с летательных аппаратов, таких, как самолеты, вертолеты и многочисленные типы беспилотников (БЛА).
Ракеты класса ”земля-воздух” предназначены для поражения воздушных целей с земли. Они могут базироваться как на стационарных пусковых установках, так и на переносных. Самыми известными переносными зенитными ракетными комплексами (ПЗРК) являются Советско-российские ”Игла” и ”Стрела”, а также Американский ”Stinger”. Примечательно, что почти все ПЗРК, применяемые в современных военных конфликтах, создавались еще в восьмидесятые годы прошлого века. Так, например, первая модификация ”Stinger” под номером FIM-92А была создана в 1981 году. Примерно в это же время появились и ”Стрела”, и ”Игла”, и французские ”Mistrale”.
Ракетный комплекс Stinger.
Как видим, класс ракет говорит сам за себя. Особняком стоит только класс ”воздух-поверхность”, который включает в себя ракеты, как для поражения наземных, так и водных целей.
Ракеты наземного базирования в зависимости от их предназначения, размера, дальности и других параметром могут размещаться в шахтных пусковых установках, на специальных наземных площадках и на специальном гусеничном или колесном транспорте. Так же они могут запускаться с кораблей и подводных лодок. Именно поражение наземных целей такими ракетами особенно оправдано, так как можно запускать их в непосредственной близости от территории противника.
Подводные лодки, способные нести мощные ракеты, являются настоящей головной болью военных всего мира. Стоит не заметить ее и в случае удара ракета полетит не с расстояния в несколько тысяч километров, а с нескольких сотен километров. В итоге, на реагирование почти не останется времени.
Ракета с ядерной боеголовкой
Межконтинентальные ракеты
Несмотря на это, ядерным зарядом могут оснащаться даже ракеты малой дальности. Правда, на практике это не имеет большого смысла, так как применяются такие ракеты, как правило, в региональных конфликтах.
Полет межконтинентальной ракеты.
По дальности полета ракеты делятся на ”ракеты малой дальности”, предназначенные для поражения целей на расстоянии 500-1000 км, ”ракеты средней дальности”, способные нести свой смертоносный груз на расстояние 1000-5500 км и ”межконтинентальные ракеты”, которые могут и через океан перелететь.
Какое топливо используется в ракете
При выборе типа ракетного топлива больше всего всего внимания уделяется особенностям использования ракеты и тому, каким двигателем ее планируется оснастить. Грубо можно сказать, что все типы топлива делятся в основном по форме выпуска, удельной температуре сгорания и КПД. Среди основных типов двигателей выделяется твердотопливные, жидкостные, комбинированные и прямоточные воздушно-реактивные.
Для боевых ракет твердое топливо производится по иной технологии. Обычно им является алюминиевый порошок. Главным плюсом таких ракет является легкость их хранения и возможность работы с ними, когда они заправлены. Кроме этого, такое топливо стоит относительно недорого.
Минусом твердотопливных двигателей является слабый потенциал отклонения вектора тяги. Поэтому для управления в таких ракетах часто используются дополнительные небольшие двигатели на жидком углеводородном топливе. Такая гибридная связка позволяет более полно использовать потенциал каждого источника энергии.
Использование именно комбинированных систем хорошо тем, что позволяет уйти от сложной системы заправки ракеты непосредственно перед запуском и необходимости откачки большого количества топлива в случае его отмены.
Отдельно стоит отметить даже не криогенный двигатель (заправляется сжиженными газами при очень низкой температуре) и не атомный, про который много говорят в последнее время, а прямоточный воздушно-реактивный. Такая система работает за счет создания давления воздуха в двигателе при движении ракеты на большой скорости. В самом двигателе производится впрыск топлива в камеру сгорания и смесь поджигается, создавая давление больше, чем на входе. Такие ракеты способны летать со скоростью, которая в несколько раз превышает скорость звука, но для запуска двигателя нужно давление, которое создается на скорости чуть выше одной скорости звука. Именно поэтому для запуска должны быть использованы вспомогательные средства.
Системы наведения ракет
В наше время почти все ракеты имеют систему наведения. Думаю, не стоит объяснять, что попасть по цели, которая находится на расстоянии сотен или тысяч километров, без точной системы наведения просто невозможно.
Систем наведения и их комбинаций очень много. Только среди основных можно отметить систему командного наведения, электродистанционное наведение, наведение по наземным ориентирам, геофизическое наведение, наведение по лучу, спутниковое наведение, а также некоторые другие системы и их сочетание.
Ракета с системой наведения под крылом самолета.
Система электродистанционного наведения имеет много общего с системой на радиоуправлении, но она обладает более высокой устойчивостью к помехам, в том числе, намеренно создаваемым противником. В случае такого управления команды передаются по проводу, который направляет в ракету все данные, необходимые для поражения цели. Передача таким способом возможна только до момента запуска.
Система наведения по наземным ориентирам состоит из высокочувствительных высотомеров, позволяющих отслеживать положение ракеты на местности и ее рельеф. Такая система применяется исключительно в крылатых ракетах ввиду их особенностей, о которых мы поговорим чуть ниже.
Система геофизического наведения основана на постоянном сопоставлении угла положения ракеты относительно горизонта и звезд с эталонными значениями, заложенными в нее перед стартом. Внутренняя система управления при малейшем отклонении возвращает ракету на курс.
При наведении по лучу ракете нужен вспомогательный источник целеуказания. Как правило, им является корабль или самолет. Внешний радар определяет цель и производит ее отслеживание, если она движется. Ракета ориентируется на этот сигнал и сама наводится на него.
Название системы спутникового наведения говорит само за себя. Наведение на цель производится по координатам системы глобального позиционирования. В основном такая система широко используется в тяжелых межконтинентальных ракетах, которые наводятся на статичные наземные цели.
Что такое баллистическая ракета
Много вопросов возникает в отношении отличий баллистических и крылатых ракет. Отвечая на эти вопросы, можно сказать, что отличия сводятся к траектории полета.
Как это часто бывает, особенности кроются в названии. Так и название крылатой ракеты говорит само за себя. Большую часть пути крылатая ракета держится в воздухе за счет крыльев, представляя из себя по сути самолет. Наличие крыльев обеспечивает ей очень высокую маневренность, позволяющую не только менять траекторию движения, отклоняясь от средств ПВО, но даже лететь на высоте нескольких метров от земли, огибая рельеф. Так ракета и вовсе сможет остаться незамеченной для ПВО.
Это не самолет, а крылатая ракета.
Этот тип ракет имеет меньшую, в сравнении с баллистических, скорость, которая обусловлена, в том числе, более высоким лобовым сопротивлением. Тем не менее, они подразделяются на дозвуковые, сверхзвуковые и гиперзвуковые.
Первые развивают скорость, близкую к скорости звука, но не превышают ее. Примером таких ракет может быть знаменитая американская крылатая ракета ”Томагавк”. Сверхзвуковые ракеты могут развивать скорость до 2,5-3 скоростей звука, а гиперзвуковые, над которыми сейчас работает очень много стран, должны набирать 5-6 скоростей звука.
Еще один пример крылатой ракеты.
Баллистические ракеты летают немного иначе. Они имеют баллистическую траекторию и большую часть своего пути находятся в неуправляемом полете. Грубо говоря, это похоже на то, что ракету просто бросили в противника, как камень. Конечно, есть точный расчет и системы наведения, но именно такой относительно простой способ позволяет нести очень большой заряд, размер и вес которого существенно превышают то, что возьмет ”на борт” крылатая ракета.
Первые научные труды и теоретические работы, связанные с баллистическими ракетами, описаны еще в 1896 году К.Э. Циолковским. Он описал такой тип летательных аппаратов и вывел зависимость между многими компонентами ракеты и ее полета. Формула Циолковского до сих пор составляет важную часть математического аппарата, используемого при проектировании ракет.
Во многом именно этому человеку мы обязаны не только военными, но и мирными ракетами. К.Э. Циолковский.
С какой скоростью летают ракеты?
Прежде, чем ответить на этот вопрос, давайте поймем в чем ее измеряют. Ракеты летают чертовски быстро и говорить о привычных км/ч или м/сек не приходится. Скорость многих современных летательных аппаратов измеряют в Махах.
Непривычная величина измерения скорости появилась не просто так. Название “число Маха” и обозначение “М” предложил в 1929 году Якоб Аккерет. Оно выражается как отношение скорости движения потока или тела к скорости распространения звука в среде, в которой происходит движение. Если учесть, что скорость распространения звуковой волны у поверхности земли примерно равна 331 м/сек (около 1200 км/ч), не трудно догадаться, что единицу можно получить только если поделить 331 на 331. То есть, скорость один Мах (М) у поверхности земли составляет примерно 1200 км/ч. С набором высоты скорость распространения звуковой волны падает из-за уменьшения плотности воздуха.
Таким образом, один Мах у поверхности земли и на высоте 20 000 метров отличается примерно на 10 процентов. Стало быть и скорость тела, которую оно должно развить, чтобы получить число Маха, уменьшается. Упрощенно среди обывателей принято называть число Маха скоростью звука. Если такое упрощение не применяется в точных расчетах, его вполне можно допустить и считать примерно равным величине у поверхности земли.
Ракеты могут запускаться с самолета.
Такую скорость не так легко представить, но крылатые ракеты могут летать на скорости до 5 Махов (примерно 7 000 км/ч в зависимости от высоты). Баллистические ракеты и вовсе способны развивать скорость до 23 Махов. Именно такую скорость на испытаниях показал ракетный комплекс Авангард. Получается, что на высоте 20 000 метров, это будет около 25 000 км/ч.
Конечно, такая скорость достигается на заключительной стадии полета при спуске, но представить, что рукотворный объект может перемещаться с такой скоростью, все равно сложно.
Авторский проект Романа Гвоздикова
Всякое моё и не только
Что такое «баллистическая ракета»
Недавно задали вопрос: что такое баллистическая ракета? Попробую объяснить на пальцах.
Для начала так: баллистическая ракета – это ракета, которая летит по баллистической траектории. Баллистическая траектория – это линия в пространстве, по которой движется ракета. На начальном этапе ей придает ускорение работающий двигатель, но в некоторый момент он отключается и дальше ракета летит как свободно брошенное тело. Траектория её после выключения двигателя зависит только от силы тяжести и аэродинамических сил, и представляет собой так называемую «баллистическую кривую». Более простым языком — баллистическая ракета — неуправляемая ракета, она летит как брошенный камень. Собственно, даже само название «баллистическая» произошло от древней камнемётной машины — «баллисты». Ещё можно сравнить такой способ запуска с рогаткой — резинка распрямилась, камень вылетел — и дальше им управлять невозможно. Только у ракеты не резинка, а двигатель.
Соответственно, для того, чтобы ракета пролетела как можно дальше, тысячи километров, необходимо минимизировать сопротивление воздуха и силу тяжести, ну и сообщить ей очень большую скорость. С этой целью баллистические ракеты проходят большую часть траектории на огромной высоте, практически в космосе, где отсутствует воздух и практически отсутствует сила тяжести.
Для сокращения времени лёта в воздухе ракету запускают практически вертикально, или очень близко к этому. Она под действием реактивной струи двигателя выходит в космос на очень высокой скорости, ложится на наклонную траекторию – к цели – и дальше сама, как камень.
Таким образом, траектория обычной баллистической ракеты состоит из двух участков: активный — от взлета до прекращения работы двигателей и пассивный — от прекращения работы двигателей до удара по цели.
Если у ракеты обычная разделяющаяся боеголовка, то до момента выключения двигателя управляющий контур отстреливает боеголовки, и по нисходящей траектории к земле несётся не одна ракета, а несколько боеголовок.
Но это уже прошлый век. Дело в том, что предсказать местонахождение обычной баллистической ракеты или даже боеголовки достаточно просто, а, следовательно, их можно перехватить и сбить. Конечно, проще и надежнее всего сбивать ракеты на взлёте, когда они медленные и ещё не разделённые. Именно поэтому наши «партнеры» стремятся окружить Россию кольцом баз противоракетной обороны (ПРО), чтобы в случае нападения на нас сбивать ответные ракеты на взлёте. Но и в пассивном участке это тоже можно сделать, если уверенно отслеживать летящие про простой баллистической траектории ракеты или боеголовки. Поэтому конструкторами были придуманы методы противостояния ПРО – аэродинамические и, собственно, реактивные.
Аэродинамические – у боеголовки при входе в атмосферу появляются крылья, и из простой болванки она превращается в управляемую, которая может непредсказуемо менять траекторию полёта. В таком случае сбить её становится несоизмеримо сложнее, а, скорее, невозможно.
Реактивные – большую часть ракета или боеголовка пролетает по баллистической траектории, а при подлёте к цели включается дополнительный реактивный двигатель, которые позволяет или ускорить боеголовку до гиперскоростей, или варьировать скорость в зависимости от ситуации.
Ну а самым современным вариантом является сочетание обоих методов. Просто представьте – ракета взлетела, прошла активный участок, и перед влётом в атмосферу разделилась, на, скажем, 18 боеголовок, каждая из которых умеет и скорость менять, и направление. А чтобы жизнь у атакуемой стороны вообще мёдом не казалась, ещё и добавила штук 40 ложных целей, определяемых радарами врага как боевых. А если таких ракет 100?
Вот и получается, что никакое ПРО неспособно бороться с такими ракетами. Вот и вьются «партнёры» у наших границ, понимая, что если не сбить ракету на взлёте – её не сбить уже никогда.
Что такое баллистическая ракета
Глава 3. Межконтинентальные баллистические ракеты
К середине 50-х годов почти одновременно военные руководители Советского Союза и США поставили своим конструкторам-ракетчикам задачу создать баллистическую ракету, способную поражать цели, расположенные на другом континенте. Проблема была из не простых. Предстояло решить массу сложных технических вопросов, связанных с обеспечением доставки ядерного заряда на дальность свыше 9000 км. И решать их пришлось методом проб и ошибок.
Пришедший к власти в СССР Н. С. Хрущев, сознавая уязвимость самолетов стратегической авиации, решил подыскать им достойную замену. Ставку он сделал на ракеты. 20 мая 1954 года выходит совместное постановление правительства и ЦК КПСС о создании баллистической ракеты межконтинентальной дальности. Работы поручили ЦКБ-1. Возглавлявший его С. П. Королев получил широкие полномочия на задействование не только специалистов различных областей промышленности, но и на использование материальных ресурсов. Для проведения летных испытаний межконтинентальных ракет была необходима новая испытательная база, так как полигон Капустин Яр не мог обеспечить требуемые условия. Постановлением правительства от 12 февраля 1955 года положено начало созданию нового полигона (ныне известного как космодром Байконур) для отработки тактико- технических характеристик МБР, запусков ИСЗ, выполнения научно-исследовательских и экспериментальных работ по тематике ракетно-космической техники. Чуть позже в районе станции Плесецк Архангельской области, развернулось строительство объекта под условным названием «Ангара», который должен был стать базой первого соединения, вооруженного новыми ракетами (позднее его стали использовать как полигон и космодром). В трудных условиях пришлось строить стартовые комплексы, технические позиции, измерительные пункты, подъездные пути, жилые и рабочие помещения. Основная тяжесть работ легла на военнослужащих строительных батальонов. Строительство велось ударными темпами и за два года были созданы необходимые условия для проведения испытаний.
К этому времени коллектив ЦКБ-1 создал ракету, получившую обозначение Р-7 (8К71). Первый испытательный пуск был назначен на 15 мая 1957 года в 19.00 по московскому времени. Как и следовало ожидать, он вызвал большой интерес. Прибыли все главные конструкторы ракеты и стартового комплекса, руководители программы от Министерства обороны и ряда других организаций. Все, конечно, надеялись на успех. Однако почти сразу после прохождения команды на запуск двигательной установки, в хвостовом отсеке одного из боковых блоков возник пожар. Ракета взорвалась. Намеченный на 11 июня следующий запуск «семерки» не состоялся по причине неисправности ДУ центрального блока. Конструкторам потребовался месяц упорной и кропотливой работы, чтобы устранить причины выявленных неполадок. И вот 12 июля ракета, наконец, взлетела. Казалось все идет хорошо, но прошло всего несколько десятков секунд полета, и ракета стала отклоняться от заданной траектории. Чуть позже ее пришлось ликвидировать. Как потом удалось выяснить, причиной послужило нарушение управления полетом ракеты по каналам вращения.
МБР Р-7А (СССР) 1960 г.
Первые пуски показали наличие серьезных недостатков в конструкции Р-7.
При анализе данных телеметрии было установлено, что в определенный момент при опорожнении баков горючего возникали колебания давления в расходных магистралях, которые приводили к повышенным динамическим нагрузкам и к разрушению конструкции. К чести конструкторов с этим дефектом они быстро справились.
Долгожданный успех пришел 21 августа 1957 года, когда стартовавшая ракета полностью выполнила намеченный план полета. А 27 августа в советских газетах появилось сообщение ТАСС: «На днях осуществлен запуск новой сверхдальней многоступенчатой баллистической ракеты. Испытания прошли успешно. Они полностью подтвердили правильность расчетов и выбранной конструкции… Полученные результаты показывают, что имеется возможность пуска ракет в любой район земного шара». Это заявление, естественно, не осталось без внимания за рубежом и произвело должный эффект.
Этот успех открывал широкие перспективы не только в военной области. Еще в конце мая 1954 года С. П. Королев направил в ЦК КПСС и Совет Министров СССР письмо с предложением осуществить практическую разработку искусственного спутника Земли. Н. С. Хрущев одобрил эту идею и с февраля 1956 года началась практическая работа по подготовке первого ИСЗ и наземного комплекса измерений и управления. 4 октября 1957 года в 22.28 по московскому времени ракета Р-7 с первым искусственным спутником на борту стартовала и успешно вывела его на орбиту. 3 ноября был осуществлен запуск первого в мире биологического спутника, в кабине которого находилось подопытное животное- собака Лайка. Эти события имели мировое значение и по праву закрепили за Советским Союзом приоритет в области освоения космоса.
12 июля 1958 года было утверждено задание на разработку более совершенной ракеты — Р-7А. Одновременно велась доводка «семерки». В январе 1960 года ее приняли на вооружение только что созданного вида Вооруженных Сил — Ракетных войск стратегического назначения.
Двухступенчатая ракета Р-7 выполнена по «пакетной» схеме. Ее первая ступень представляла собой четыре боковых блока, каждый длиной 19 м и наибольшим диаметром 3 м, расположенные симметрично вокруг центрального блока (вторая ступень ракеты) и соединенные с ним верхним и нижним поясами силовых связей. Конструкция всех блоков одинакова: хвостовой отсек, силовое кольцо, отсек торовых баков для хранения перекиси водорода, используемой в качестве рабочего тела ТНА, бака горючего, бака окислителя и переднего отсека.
На первой ступени, в каждом блоке, устанавливались ЖРД РД-107 конструкции ГДЛ-ОКБ с насосной подачей компонентов топлива. Он имел шесть камер сгорания. Две из них использовались как рулевые. ЖРД развивал тягу у земли 78 т и обеспечивал работу на номинальном режиме в течение 140 секунд.
На второй ступени устанавливался ЖРД РД-108, аналогичный по конструкции с РД-107, но отличавшийся в основном большим числом рулевых камер — 4. Он развивал тягу у земли до 71 т и мог работать на режиме главной ступени 320 секунд.
Топливо для всех двигателей использовалось двухкомпонентное: окислитель- жидкий кислород, горючее — керосин. Зажигание топлива при запуске осуществлялось от пиротехнических устройств. Чтобы достичь заданной дальности полета, конструкторы установили автоматическую систему регулирования режимов работы двигателей и систему одновременного опорожнения баков (СОБ), что позволило сократить гарантированный запас топлива. Ранее такие системы на ракетах не применялись.
«Семерка» оснащалась комбинированной системой управления. Ее автономная подсистема обеспечивала угловую стабилизацию и стабилизацию центра масс на активном участке траектории. Радиотехническая подсистема осуществляла коррекцию бокового движения центра масс и выдачу команды на выключение двигателей, что повышало точностные характеристики ракеты. КВО составило 2,5 км при стрельбе на дальность 8500 км.
Р-7 несла моноблочную ядерную головную часть мощностью 5 Мт. Перед стартом ракету устанавливали на пусковое устройство. Подгоняли емкости с керосином и кислородом и начинался процесс заправки, продолжавшийся почти 2 часа. После прохождения пусковой команды одновременно запускались двигатели первой и второй ступеней. Помехозащищенные радиокоманды управления передавались на борт ракеты со специальных пунктов радиоуправления.
Ракетный комплекс получился громоздким, уязвимым и очень дорогим в эксплуатации. К тому же в заправленном состоянии ракета могла находиться не более 30 суток. Для создания и пополнения необходимого запаса жидкого кислорода для развернутых ракет нужен был целый завод. Очень скоро стало ясно, что Р-7 и ее модификации не могут быть поставлены на боевое дежурство в массовом количестве. Так все и случилось. К моменту возникновения Карибского кризиса Советский Союз располагал всего несколькими десятками таких ракет.
12 сентября 1960 года на вооружение была принята модифицированная ракета Р-7А (8К74). Она имела несколько большую по размерам вторую ступень, что позволило увеличить на 500 км дальность полета, более легкую головную часть и инерциальную систему управления. Но, как и следовало ожидать, добиться заметного улучшения боевых и эксплуатационных характеристик не удалось.
К середине 60-х годов оба ракетных комплекса сняли с вооружения и бывшая МБР Р-7А стала широко использоваться для запуска космических аппаратов в качестве ракеты-носителя. Так, космические корабли серий «Восток» и «Восход» выводились на орбиту трехступенчатой доработанной модификацией «семерки», состоящей из шести блоков: центрального, четырех боковых и блока третьей ступени. Позднее она же стала ракетой-носителем космических кораблей «Союз». За долгие годы космической службы совершенствовались различные системы ракеты, но принципиальных изменений не произошло.
МБР «Атлас-D» (США) 1958 г.
МБР «Атлас-Е» (США) 1962 г.
В 1953 году командование ВВС США после проведения очередного учения по ядерной бомбардировке объектов, расположенных на территории СССР, и подсчета вероятных потерь своей авиации окончательно склонилось к мнению о необходимости создания МБР. Тактико-технические требования к такой ракете были сформулированы быстро и в начале следующего года фирма «Конвэр» получила заказ на ее разработку.
В 1957 году представители фирмы передали на испытания упрощенный вариант МБР, получившей обозначение HGM-16 и название «Атлас-А». Было построено восемь ракет без головной части и двигателя второй ступени (его пока не смогли довести до полной готовности). Как показали первые пуски, закончившиеся взрывами и отказами, и системы первой ступени были далеки от требуемых кондиций. А тут еще подлило масла» в огонь известие из Советского Союза об успешном испытании межконтинентальной ракеты. В результате генерал Шривер, являвшийся в то время начальником Управления баллистических ракет ВВС США, чуть не потерял свое место и был вынужден давать официальные объяснения по поводу неудач во многих государственных комиссиях.
Годом позже на испытание передали ракету «Атлас-В», выполненную в полной комплектации. В течение всего года проводились пуски на различную дальность. Разработчикам удалось добиться заметного прогресса. 28 ноября 1958 года при очередном запуске ракета пролетела 9650 км и всем стало ясно, что МБР «Атлас» состоялась. Данная модификация предназначалась для отработки головной части и методики боевого применения. Все пуски ракет этой серии завершились успешно (первый — 23 декабря 1958 года). По итогам последних испытаний была заказана партия ракет, получивших обозначение «Атлас-D», для передачи в подразделения САК ВВС. Первый же контрольный пуск МБР из этой серии, состоявшийся 14 апреля 1959 года, завершился аварией. Но это была случайность, что и подтвердилось впоследствии.
На этом работы над ракетой не закончились. Были созданы и приняты на вооружение в 1962 году еще две модификации — Е и F. Называть их принципиально новыми нет оснований. Изменения коснулись аппаратуры системы управления (была ликвидирована система радиоуправления), изменилась конструкция носовой части корпуса ракеты.
Наиболее совершенной считалась модификация «Атлас-F». Она имела смешанную конструкцию. При запуске все двигатели начинали работать одновременно, представляя таким образом одноступенчатую ракету. После достижения определенной скорости производилось отделение хвостовой части корпуса совместно с так называемыми двигателями-ускорителями. Корпус собирался из листовой стали. Внутри размещался единый топливный бак длиной 18,2 м и диаметром 3 м. Его внутренняя полость делилась перегородкой на две части: для окислителя и горючего. Для гашения колебаний топлива внутренние стенки бака имели «вафельную» конструкцию. С этой же целью после первых аварий пришлось установить систему перегородок. К нижнему днищу бака на шпангоуте с помощью разрывных болтов крепилась сбрасываемая в полете хвостовая часть корпуса (юбка), выполненная из стекловолокна.
МБР «Атлас-F» (США) 1962 г.
Двигательная установка, состоявшая из маршевого двигателя LR-105, двух стартовых ускорителей LR-89 и двух рулевых двигателей LR-101, размещалась в нижней части ракеты. Все двигатели разработаны в 1954–1958 годах фирмой «Рокетдайн».
Маршевый ЖРД имел время работы до 300 секунд и мог развить тягу на земле 27,2 т. ЖРД LR-89 развивал тягу 75 т, но мог работать всего 145 секунд. Чтобы обеспечить управление полетом по тангажу и крену, его камера сгорания имела возможность отклоняться на угол 5 градусов. Многие элементы этого двигателя были идентичны ЖРД ракеты «Тор». С целью упрощения конструкции для двух ускорителей разработчики предусмотрели общие элементы пусковой системы и газогенератор. Отработанные газы от ТНА использовались для подогрева газообразного гелия, поступающего на наддув топливного бака. Рулевые ЖРД имели тягу 450 кг, время работы 360 секунд и могли отклоняться на угол 70 градусов.
В качестве компонентов топлива употреблялись керосин и переохлажденный жидкий кислород. Горючее использовалось и для охлаждения камер сгорания ЖРД. Для запуска всех трех ТНА применялись пороховые аккумуляторы давления. Расход компонентов регулировался дискретной системой регулирования подачи топлива, специальными датчиками и счетно-решающим устройством. После того как ускорители отрабатывали заданную программу, их сбрасывали вместе с баллонами гелия и юбкой.
На ракете устанавливалась система управления инерциального типа фирмы «Бош Арма» со счетно-решающим устройством дискретного типа и электронным контрольным устройством. Запоминающие элементы были выполнены на ферритовых сердечниках. Программа полета, записанная на магнитную ленту или магнитный барабан, хранилась в шахте для ракеты. Если возникла необходимость заменить программу, то с ракетной базы на вертолетах доставляли новую ленту или барабан. Система управления обеспечивала КВО точек падения боевого блока в радиусе 3,2 км при стрельбе на дальность около 16000 км.
Ракеты «Атлас» базировались в шахтах с подъемными пусковыми столами и имели готовность к пуску около 15 минут. Всего американцы развернули 129 пусковых установок с этими ракетами и на вооружении они состояли до конца 1964 года.
Еще до того, как их сняли с боевого дежурства, «Атласы» стали использовать для космических целей. Ракета «Атлас-D» вывела 20 февраля 1962 года на орбиту космический корабль «Меркурий» с космонавтом на борту. Она же служила первой ступенью трехступенчатой ракеты-носителя «Атлас-Эйбл». Однако все три пуска этой ракеты в 1959–1960 годах с мыса Канаверал закончились неудачно. «Атлас-F» использовалась для вывода на орбиты ИСЗ различного назначения, в том числе «Навстар». Впоследствии «Атласы» использовались в качестве первой ступени составных ракет-носителей «Атлас-Аджена», «Атлас-Бернер-2» и «Атлас-Центавр».
МБР «Титан-1» (США) 1961 г.
Старт МБР «Титан-1»
29 сентября был произведен запуск ракеты «Титан-1» (такое название присвоили к тому времени новой МБР) на максимальную дальность с эквивалентом головной части 550 кг, размещенном в специальном экспериментальном корпусе. Ракета, запущенная с полигона Канаверал, пролетела 16000 км и упала в океан в 1600 км к юго-востоку от о. Мадагаскар. Отделившийся от ГЧ на высоте 3 км контейнер с приборами был обнаружен и выловлен поисковой группой. Всего за весь цикл летных испытаний, а он длился до 6 октября 1961 года, был произведен 41 экспериментальный запуск ракет «Титан-1», из которых 31 был признан успешным или частично успешным.
Двухступенчатая МБР «Титан-1» выполнена по схеме «тандем». Каждая ступень имела по два несущих топливных бака из высокопрочного алюминиевого сплава. Силовой набор и обшивка хвостовых и приборных отсеков изготавливались из магниево-ториевого сплава. Несмотря на солидные размеры, сухая масса ракеты не превышала 9 т. Для торможения первой ступени в момент разделения, остаток окислителя из бака выпускался через две реактивных насадки, расположенных на верхнем кольце бака. Одновременно включался маршевый двигатель второй ступени.
В момент старта на земле включался двухкамерный ЖРД LR-87, сконструированный фирмой «Аэроджет дженерал корпорейшн», развивавший тягу 136 т. Запас топлива позволял ему работать в течение 145 секунд. Запуск ТНА, работавшего на основных компонентах топлива, производился сжатым азотом. Охлаждение трубчатых камер сгорания обеспечивалось горючим. Камеры сгорания устанавливались в шарнирных подвесах, что давало возможность создавать управляющие усилия в полете по углам тангажа и рыскания.
Управление по крену реализовывалось за счет установки сопловых насадок, в которые подавались выходящие из ТНА выхлопные газы.
Вторая ступень оснащена однокамерным ЖРД LR-91, развивавшим тягу в вакууме 36,3 т. Время его работы — 180 секунд. Камера сгорания крепилась на кардановом подвесе и имеет трубчатую конструкцию. Часть сопла охлаждалась. Остальная его часть представляла собой двухслойную насадку с внутренним слоем из фенольной пластмассы, усиленной асбестом. Отработанные газы после турбины турбонасосного агрегата выбрасывались через сопло, обеспечивавшее создание усилий по углу крена. Топливо для всех ЖРД двухкомпонентное: горючее — керосин, окислитель — жидкий кислород.
На ракете устанавливалась инерциальная система управления с радиокоррекцией на активном участке траектории с использованием наземной ЭВМ. В ее состав входили РЛС слежения, специальная ЭВМ «Афина» для вычисления действительной траектории, определения момента выключения двигательной установки второй ступени и выработки команд управления. Инерциальное устройство на борту ракеты функционировало всего две минуты и играло вспомогательную роль. СУ обеспечивала точность стрельбы в 1,7 км. МБР «Титан-1» несла отделяемую в полете моноблочную головную часть Мк4 мощностью 4–7 Мт.
Ракета базировалась в защищенных шахтных пусковых установках и имела оперативную готовность к пуску около 15 минут. Ракетный комплекс получился очень дорогим и уязвимым, особенно РЛС слежения и управления. Поэтому первоначально планируемое количество развертываемых ракет этого типа (108) сократили в 2 раза. Им была суждена короткая жизнь. На боевом дежурстве они находились всего три года и в конце 1964 последний отряд МБР «Титан-1» вывели из состава САК.
Обилие недостатков и прежде всего низкая живучесть ракетных комплексов с ракетами «Атлас», «Титан-1» и Р-7 предопределило неминуемую их замену в ближайшем будущем. Еще в период проведения летных испытаний этих ракет советским и американским военным специалистам стало ясно, что нужно создавать новые ракетные комплексы.
13 мая 1959 года специальным постановлением ЦК КПСС и правительства КБ академика Янгеля поручили разработать МБР на высококипящих компонентах топлива. Впоследствии она получила обозначение Р-16 (8К64). Для разработки двигателей и систем ракеты, а также на земной и шахтной стартовых позиций были привлечены конструкторские коллективы, возглавляемые В. Глушко, В. Кузнецовым, Б. Коноплевым и др.
МБР Р-16 (СССР) 1961 г.
Первоначально Р-16 предполагалось запускать только с наземных пусковых установок. На ее проектирование и проведение летных испытаний отводились крайне сжатые сроки.
МБР Р-16 на параде
Второй пуск ракеты Р-16 состоялся 2 февраля 1961 года. Несмотря на то, что ракета упала на трассе полета из-за потери устойчивости, разработчики убедились, что принятая схема жизнеспособна. После анализа результатов и устранения недостатков испытания были продолжены. Напряженная работа позволила закончить летные испытания Р-16 с наземных пусковых установок к концу 1961 года и в этом же году поставить на боевое дежурство первый ракетный полк.
Ракета была выполнена по схеме «тандем» с последовательным разделением ступеней. Первая, разгонная ступень состояла из хвостового отсека, бака горючего, приборного отсека, бака окислителя и переходника. Баки несущей конструкции с наддувом в полете: бак окислителя наддувался встречным потоком воздуха, а бак горючего — сжатым воздухом из баллонов, размещенных в приборном отсеке.
Двигательная установка состояла из маршевого и рулевого двигателей. Маршевый ЖРД собран из трех одинаковых двухкамерных блоков. Каждый из них включал две камеры сгорания, ТНА, газогенератор и систему питания топливом. Суммарная тяга всех блоков на земле — 227 т, время работы — 90 секунд. Рулевой ЖРД имел четыре поворотные камеры сгорания с одним турбонасосным агрегатом. Разделение ступеней обеспечивалось пироболтами. Одновременно с их срабатыванием включались четырех тормозных пороховых двигателя, размещенных на первой ступени.
Вторая ступень, служившая для разгона ракеты до скорости, соответствовавшей заданной дальности полета, имела аналогичную конструкцию, что и первая, но была выполнена короче и меньшего диаметра. Оба бака наддувались сжатым воздухом.
Двигательная установка во многом была заимствована от первой ступени, что удешевляло и упрощало производство, но в качестве маршевого двигателя устанавливался только один блок. Он развивал тягу в вакууме 90 т и работал в течение 125 секунд. Конструкторам удалось успешно решить задачу надежного запуска ЖРД в условиях разряженной атмосферы и маршевый двигатель включался после увода отделившейся ступени.
Установка МБР Р-16 на стартовый стол
Все ракетные двигатели работали на самовоспламеняющихся при контакте компонентах топлива. Для заправки ракеты компонентами топлива, подачи его к камерам сгорания, хранения сжатого воздуха и его выдачи потребителям ракета оборудовалась пневмогидросистемой.
Р-16 имела защищенную автономную систему управления. Она включала автомат стабилизации, систему РКС, СОБ, автомат управления дальностью. В качестве чувствительного элемента системы управления впервые на советских ракетах была применена гиростабилизированная платформа на шарикоподшипниковом подвесе. Точность стрельбы (КВО) составила 2,7 км при полете на максимальную дальность. При подготовке к старту ракета устанавливалась на пусковое устройство так, чтобы плоскость стабилизации находилась в плоскости стрельбы. После этого проводилась заправка баков компонентами топлива. МБР Р-16 оснащалась отделяемой моноблочной головной частью нескольких типов. Так называемая легкая ГЧ имела мощность 3 Мт, а тяжелая — 6 Мт.
Р-16 стала базовой ракетой для создания группировки межконтинентальных ракет РВСН. Р-16У развернули в меньших количествах, так как на строительство шахтных комплексов требовалось больше времени, чем для ввода в строй комплексов с наземными ПУ. К тому же в 1964 году стало ясно, что эта ракета морально устарела. Как и все ракеты первого поколения, эти МБР не могли долго находиться в заправленном состоянии. В постоянной готовности они хранились в укрытиях или шахтах с пустыми баками и требовалось значительное время для подготовки к пуску. Невысока была и живучесть ракетных комплексов. И все же для своего времени Р-16 была вполне надежной и достаточно совершенной ракетой.
Вернемся в 1958 год, в США. И не случайно. Первые испытания МБР с ЖРД внушали тревогу руководителям ракетной программы относительно возможностей завершения испытаний в ближайшее время, да и вызывали сомнения перспективы таких ракет. В этих условиях обратили внимание на твердое топливо. Еще в 1956 году некоторые промышленные фирмы США начали активные работы по созданию относительно больших твердотопливных двигателей. В связи с этим в научно-исследовательском отделе Управления ракет в Рэймо-Вулдриже была собрана группа специалистов, в обязанности которым вменялись сбор и анализ данных по ходу исследований в области двигателей на твердом топливе. В эту группу направили полковника Эдварда Холла, бывшего руководителя ракетной программы «Тор», снятого с должности, как известно, по причине целого ряда неудач на испытаниях этой ракеты. Деятельный полковник, желая реабилитироваться, после глубокого изучения материалов подготовил проект новой ракетной системы, суливший заманчивые перспективы в случае реализации. Проект генералу Шриверу понравился и он запросил у руководства 150 млн. долларов на его разработку. Предлагаемая ракетная система получила шифр WS-133A и название «Минитмен». Но министерство ВВС санкционировало выделение только 50 млн. для финансирования первого этапа, предусматривавшего в основном теоретические исследования. В этом нет ничего удивительного. В то время в США среди военных руководителей высокого ранга и политиков было много сомневающихся относительно возможности быстрой реализации такого проекта, который больше базировался на оптимистических идеях, еще не проверенных на практике.
Получив отказ в полновесных ассигнованиях, Шривер развил бурную деятельность и в конце концов добился выделения в 1959 году круглой суммы — 184 млн. долларов. Шривер не собирался рисковать с новой ракетой, как это было ранее, и сделал все, чтобы не повторить печального опыта. По его настоянию руководителем проекта «Минитмен» назначили полковника Отто Глазера, зарекомендовавшего себя к тому времени способным организатором, вхожим в научную среду и влиятельные круги военно-промышленного комплекса. Такой человек был очень необходим, так как одобрив создание новой ракетной системы, руководство Министерства обороны США поставило жесткие требования — выйти на летные испытания в конце 1960 года и обеспечить принятие на вооружение системы в 1963 году.
Работы развернулись широким фронтом. Уже в июле 1958 года утвердили состав фирм-разработчиков, а в октябре фирма «Боинг» была назначена головной по сборке, монтажу и испытаниям. В апреле-мае следующего года были осуществлены первые натурные испытания ступеней ракеты. Чтобы ускорить их разработку, было принято решение привлечь несколько фирм: фирма «Тиокол кемикэл корпорейшн» разработала первую ступень, «Аэроджет дженерал корпорейшн» — вторую ступень, «Геркулес Паудер корпорейшн» — третью ступень. Все испытания ступеней прошли успешно.
В начале сентября этого же года сенат объявил программу создания ракетной системы «Минитмен» наивысшим национальным приоритетом, что повлекло дополнительное выделение на ее осуществление 899,7 млн. долларов. Но несмотря на все меры, начать летные испытания в конце 1960 года не удалось. Первый испытательный пуск МБР «Минитмен-1А» состоялся 1 февраля 1961 года. И сразу удача. По тем временам для американского ракетостроения этот факт был «фантастическим успехом». По этому поводу поднялась громкая шумиха. Газеты преподносили ракетную систему «Минитмен» как воплощение технического превосходства США. Утечка информации не была случайной. Ее использовали как средство устрашения Советского Союза, отношения с которым у Соединенных Штатов Америки резко обострились прежде всего, из-за Кубы.
Однако реальные дела обстояли не так радужно. Еще в 1960 году, до начала летных испытаний, стало ясно, что «Минитмен-1 А» не сможет летать на дальность свыше 9500 км. Впоследствии испытания подтвердили это предположение. В октябре 1961 года разработчики приступили к работам по усовершенствованию ракеты с целью повышения дальности полета и мощности головной части. Позже эта модификация получила обозначение «Минитмен-1В». Но отказываться от развертывания ракет серии А тоже не собирались. В конце 1962 года было принято решение об их постановке на боевое дежурство в количестве 150 штук на ракетной базе ВВС Мальстром, штат Монтана.
МБР «Минитмен-1В» и установщик ракеты
В начале 1963 года закончились испытания МБР «Минитмен-1В» и в конце этого года она стала поступать на вооружение. К июлю 1965 года создание группировки из 650 ракет этого типа закончилось. Испытания ракеты «Минитмен-1» проводились на Западном ракетном полигоне (авиабаза Ванденберг). Всего с учетом учебно-боевых пусков было запущено 54 ракеты обоих модификаций.
Для своего времени МБР LGM-30A «Минитмен-1» была весьма совершенной. И что очень важно, она имела, как заявил представитель фирмы «Боинг», «…неограниченные возможности для совершенствования». Это была не пустая бравада и ниже читатель в этом сможет убедиться. Трехступенчатая, с последовательным разделением ступеней, ракета была выполнена из современных для того времени материалов.
Корпус двигателя первой ступени изготавливался из специальной стали с высокой чистотой и прочностью. На его внутреннюю поверхность наносилось покрытие, обеспечивавшее связь корпуса с топливным зарядом. Оно же служило теплозащитой, позволявшей компенсировать изменение объема топлива при колебаниях температуры заряда. РДТТ М-55 имел четыре поворотных сопла. Развивал тягу на земле в 76 т. Время его работы — 60 секунд. Топливо смесевое, состоящие из перхлората аммония, сополимера полибутадиена, акриловой кислоты, эпоксидной смолы и порошкообразного алюминия. Заливка заряда в корпус контролировалась специальной ЭВМ.
МБР Р-9А (СССР) 1965 г.
Двигатель второй ступени имел корпус из титанового сплава. Заряд смесевого топлива на основе полиуретана заливался в корпус. Аналогичная ступень ракеты «Минитмен-1В» имела заряд несколько большей массы. Четыре поворотных сопла обеспечивали управление полетом. РДТТ М-56 развивал тягу в вакууме 27 т.
Двигатель третьей ступени имел корпус из стеклопластика. Он развивал тягу в 18,7 т. Продолжительность его работы составляла около 65 секунд. Заряд топлива по составу был схож с зарядом РДТТ второй ступени. Четыре поворотных сопла обеспечивали управление по все углам.
Инерциальная система управления, построенная на базе ЭВМ последовательного типа, обеспечивала управление полетом ракеты на активном участке траектории и точность стрельбы (КВО) 1,6 км. «Минитмен-1 А» несла моноблочную ядерную головную часть Мк5 мощностью 0,5 Мт, которая нацеливалась на заранее определенную цель. «Минитмен-1 В» оснащалась моноблочной ядерной ГЧ Мк11 мощностью 1 Мт. Перед стартом она могла быть нацелена на один из двух возможных объектов поражения. Ракеты хранились в шахтных пусковых установках и могли быть запущены через минуту после поступления пусковой команды с пункта управления отряда. Маршевый двигатель первой ступени запускался непосредственно в шахте, и чтобы снизить нагрев корпуса горячими газами он покрывался с внешней стороны специальной защитной краской.
Наличие на вооружении такой ракетной системы значительно повышало потенциал ядерных сил США, а также создавало условия для нанесения внезапного ядерного удара по противнику. Ее появление вызвало большую озабоченность у советского руководства, так как МБР Р-16 при всех ее достоинствах явно уступала американской ракете по живучести и боеготовности, а разрабатываемая в ОКБ-1 МБР Р-9А (8К75) еще не прошла летные испытания. Она создавалась в соответствии с постановлением правительства от 13 мая 1959 года, хотя отдельные работы по проектированию подобной ракеты начались гораздо раньше.
Начало летно-конструкторских испытаний Р-9 (на первом старте 9 апреля 1961 года присутствовал С. П. Королев) полностью удачными не назовешь. Сказалась недоведенность ЖРД первой ступени-подвели сильные пульсации давления в камере сгорания. Его поставили на ракету под нажимом В. Глушко. Хотя двигательные установки для этой ракеты решено было создавать на конкурсной основе руководитель ГДЛ-ОКБ не мог уронить престиж своего коллектива, считавшегося головным в двигателестроении.
Это и стало причиной взрывов при первых пусках. В конкурсе также приняли участие конструкторские коллективы под руководством А. Исаева и Н. Кузнецова. ОКБ последнего в результате свертывания программы строительства двигателей для самолетов осталось практически без заказов. ЖРД Кузнецова был построен по более совершенной замкнутой схеме с дожиганием отработанного турбогаза в основной камере сгорания. В ЖРД же Глушко и Исаева, создаваемых по открытой схеме, отработанный в турбонасосном агрегате газ сбрасывался через выхлопной патрубок в атмосферу. Работы всех трех ОКБ дошли до стадии стендовых испытаний, но конкурсного отбора не получилось. Верх все равно взял «лоббистский» подход ОКБ Глушко.
В конце концов, неполадки в двигателях устранили. Однако испытания затянулись, так как от первоначального способа старта с наземной ПУ отказались в пользу шахтного варианта. Одновременно с увеличением надежности ракеты специалистам ОКБ-1 пришлось решать проблему, от которой зависела сама возможность нахождения «девятки» на боевом дежурстве. Речь идет о способах длительного хранения больших количеств жидкого кислорода для заправки баков ракеты. В результате была создана система, обеспечивавшая потери кислорода не более 2–3 % в год.
Летные испытания завершились в феврале 1964 года, а 21 июля 1965-го ракета под индексом Р-9А была принята на вооружение и состояла на боевом дежурстве до второй половины 70-х годов.
Конструктивно Р-9А делилась на первую ступень, состоявшую из хвостового отсека двигательной установки с обтекателями сопел и короткими стабилизаторами, несущих топливных баков горючего и окислителя цилиндрической формы и ферменного переходника. В обечайку межбакового отсека были «врезаны» приборы системы управления.
«Девятка» отличалась сравнительно коротким участком работы первой ступени, вследствие чего разделение ступеней происходило на высоте, где влияние скоростного напора на ракету еще значительно. На ракете был реализован так называемый «горячий» способ разделения ступеней, при котором двигатель второй ступени запускался в конце работы маршевого двигателя первой ступени. При этом горячие газы истекают через ферменную конструкцию переходника. Из-за того, что в момент разделения ЖРД второй ступени работал только на 50 % номинальной тяги и короткая вторая ступень была аэродинамически неустойчива, рулевые сопла не могли справиться с возмущающими моментами. Для устранения этого недостатка конструкторы установили специальные аэродинамические щитки на внешней поверхности сбрасываемого хвостового отсека, раскрытие которых при разделении ступеней смещало центр давления и повышало устойчивость ракеты. После выхода ЖРД на рабочий режим тяги обтекатель хвостового отсека вместе с этими щитками сбрасывался.
МБР Р-9А(СССР) 1965 г.
С появлением у США систем засечки пусков МБР по мощному факелу двигателей, короткий участок работы первой ступени стал достоинством «девятки». Ведь чем меньше время существования факела, тем сложнее системам ПРО реагировать на такую ракету. На Р-9А были установлены двигатели на кислородно-керосиновом топливе. Именно такому топливу С. Королев уделял особое внимание, как нетоксичному, высокоэнергетичному и дешевому в производстве.
На первой ступени стоял четырехкамерный РД-111 с выхлопом отработанного парогаза из ТНА через неподвижное сопло между камерами. Чтобы обеспечить управление ракетой, камеры были выполнены качающимися. Двигатель развивал тягу в 141 т и работал в течение 105 секунд.
На второй ступени установили четырехкамерный ЖРД с рулевыми соплами РД-461 конструкции С. Косберга. Он обладал рекордным по тому времени удельным импульсом среди кислородно-керосиновых двигателей и развивал тягу в вакууме 31 т. Максимальное время работы — 165 секунд. Для быстрого вывода двигательных установок на номинальный режим и воспламенения компонентов топлива служила специальная система запуска с пирозажигательными устройствами.
На ракете устанавливалась комбинированная система управления, обеспечивавшая точность стрельбы (КВО) на дальностях свыше 12000 км не более 1,6 км. На Р-9А от радиотехнического канала со временем отказались.
Для МБР Р-9А были разработаны два варианта моноблочных ядерных головных частей: штатная и тяжелая, массой 2,2 т. Первая имела мощность 3 Мт и могла быть доставлена на дальность свыше 13500 км, вторая — 4 Мт. С ней дальность полета ракеты достигала 12500 км.
В результате введения ряда технических новшеств ракета получилась компактной, пригодной для запуска как с наземных, так и из шахтных пусковых установок. Ракета, запускавшаяся с наземного пускового устройства, дополнительно имела переходную раму, которая крепилась к хвостовому отсеку первой ступени.
Первыми к этим работам приступили американцы. Создавать совершенно новую ракету им не потребовалось. Еще в период работы над ракетой «Титан-1» стало ясно, что характеристики ее можно улучшить за счет внедрения новых технологий в производство. В начале 1960 года конструкторы фирмы «Мартин» взялись за модернизацию ракеты, а заодно и за создание нового стартового комплекса.
Начавшиеся в марте 1962 года летно- конструкторские испытания подтвердили правильность выбранной технической стратегии. Во многом быстрому продвижению работ способствовало то, что новая МБР унаследовала многое от своей предшественницы. В июне следующего года ракету «Титан-2» приняли на вооружение СЯС, хотя контрольные и учебно- боевые пуски еще продолжались. Всего с начала испытаний по апрель 1964 года с Западного ракетного полигона провели 30 запусков ракет этого типа на различную дальность. Ракета «Титан-2» предназначалась для поражения важнейших стратегических объектов. Первоначально планировалось поставить на дежурство 108 единиц, заменив все «Титан-1». Но планы менялись, и в результате ограничились 54 ракетами.
Несмотря на близкое родство, МБР «Титан-2» имела много отличий от своей предшественницы. Изменился способ наддува топливных баков. Бак окислителя на первой ступени наддувался газообразной четырехокисью азота, баки горючего обеих ступеней — охлажденным генераторным газом, бак окислителя второй ступени вообще не имел наддува. При работе двигателя этой ступени постоянство тяги обеспечивалось за счет поддержания неизменного соотношения компонентов топлива в газогенераторе с помощью сопел Вентури, установленных в магистралях топливопитания. Было заменено и топливо. Для питания всех ЖРД применили стабильные аэрозин-50 и четырехокись азота.
МБР «Титан-2» в полете
МБР «Минитмен-2» в ШПУ
На первой ступени установили модернизированный двухкамерный ракетный двигатель LR-87 с тягой на земле 195 т. Его турбонасосный агрегат раскручивался при помощи порохового стартера. Подвергся модернизации и маршевый ЖРД второй ступени LR-91. Увеличилась не только его тяга (до 46 т), но и степень расширения сопла. Кроме того, в хвостовой части установили два рулевых РДТТ.
На ракете применили огневое разделение ступеней. Маршевый двигатель второй ступени включался при падении давления в камерах сгорания ЖРД до 0,75 номинала, что давало эффект торможения. В момент разделения включались два тормозных двигателя. При отделении головной части от второй ступени последняя тормозилась тремя тормозными РДТТ и уводилась в сторону.
Полетом ракеты управляла инерциальная система управления с малогабаритной ГСП и ЦВМ, выполнявшей 6000 операций в секунду. В качестве запоминающего устройства применили облегченный магнитный барабан емкостью 100000 единиц информации, что позволило хранить в памяти несколько полетных заданий для одной ракеты. Система управления обеспечивала точность стрельбы (КВО) 1,5 км и автоматическое проведение, по команде с пункта управления, цикла предстартовой подготовки и пуска ракеты.
Благодаря увеличению забрасываемого веса, на «Титан-2» установили более тяжелую моноблочную головную часть Мкб мощностью 10–15 Мт. Кроме того, она несла комплекс пассивных средств преодоления ПРО.
За счет размещения МБР в одиночных шахтных пусковых установках удалось значительно повысить их живучесть. Так как ракета находилась в шахте в заправленном состоянии, возросла оперативная готовность к старту. Требовалось чуть более минуты для того, чтобы ракета после получения приказа устремилась к выбранной цели.
До появления советской ракеты Р-36 межконтинентальная баллистическая ракета «Титан-2» была самой мощной в мире. На боевом дежурстве она стояла до 1987 года. Модифицированная ракета «Титан-2» применялась и в мирных целях для вывода на орбиту космических аппаратов различного назначения, в том числе космических кораблей «Джемини». На ее основе были созданы различные варианты ракет-носителей «Титан-3».
Получила свое дальнейшее развитие и ракетная система «Минитмен». Этому решению предшествовала работа специальной сенатской комиссии, в задачу которой вменялось определить дальнейший и по возможности более экономный путь развития стратегических вооружений для США. В выводах комиссии значилось, что необходимо развивать наземный компонент американских СЯС на базе ракеты «Минитмен».
МБР «Титан-2» (США) 1963 г.
В июле 1962 года фирма «Боинг» получила заказ на разработку ракеты LGM-30F «Минитмен-2». Чтобы выполнить требования заказчика, конструкторам понадобилось создать новые вторую ступень и систему управления. Но ракетный комплекс — это не только ракета. Потребовалось значительно модернизировать наземное технологическое и техническое оборудование, системы командных пунктов и пусковых установок. В конце лета 1964 года новая МБР была готова к летным испытаниям. 24 сентября с Западного ракетного полигона был осуществлен первый пуск МБР «Минитмен-2». Весь комплекс испытаний удалось завершить за год и в декабре 1965 года началось развертывание этих ракет на базе ВВС Гранд- Форкс, штат Северная Дакота. Всего с учетом учебно-боевых пусков, проводившихся штатными расчетами для приобретения опыта боевого применения, за период с сентября 1964 по конец 1967 года с базы Ванденберг состоялось 46 запусков МБР этого типа.
На ракете «Минитмен-2» первая и третья ступени не отличались от аналогичных ступеней ракеты «Минитмен-1 В», но вторая была полностью новой. Фирма «Аэроджет дженерал корпорейшн» разработала РДТТ SR-19 с тягой в вакууме 27 т и временем работы до 65 секунд. Корпус двигателя изготавливался из титанового сплава. Применение топлива на основе полибутадиена позволило получить более высокий удельный импульс. Чтобы достичь заданной дальности стрельбы, пришлось на 1,5 т увеличить запас топлива. Так как ракетный двигатель теперь имел только одно фиксированное сопло, конструкторам пришлось разработать новые способы создания управляющих усилий.
Управление по углам тангажа и рыскания осуществлялось путем регулирования вектора тяги за счет впрыска фреона в закритическую часть сопла РДТТ через четыре отверстия, расположенных по окружности на равном расстоянии друг от друга. Управляющие усилия по углу крена реализовывались четырьмя небольшими реактивными соплами, которые были встроены в корпус двигателя. Их функционирование обеспечивал пороховой аккумулятор давления. Запас фреона хранился в тороидальном баке, надетом на верхнюю часть сопла.
На ракете установили инерциальную систему управления с универсальным цифровым счетно-решающим устройством, собранном на микросхемах. Все гироскопы чувствительных элементов ГСП находились в раскрученном состоянии, что позволяло поддерживать ракету в очень высокой готовности к пуску. Выделявшиеся при этом избытки тепла удалялись системой термостатирования. Гироблоки могли работать в таком режиме непрерывно в течение 1,5 лет, после чего их приходилось заменять. Запоминающее устройство на магнитном диске обеспечивало хранение восьми полетных заданий, рассчитанных для различных объектов поражения.
«Минитмен-2» оснащалась моноблочной ядерной головной частью Мк11 двух модификаций, отличавшихся мощностью заряда (2 и 4 Мт). На ракете удалось разместили средства преодоления противоракетной обороны.
К началу 1971 года вся группировка МБР «Минитмен-2» была полностью развернута. Первоначально планировалось поставить военно-воздушным силам 1000 ракет этого типа (модернизировать 800 ракет «Минитмен-1А(В)» и построить 200 новых). Но военному ведомству пришлось уменьшить запросы. В итоге на боевое дежурство поставили только половину (200 новых и 300 модернизированных) ракет.
После установки в пусковые шахты ракет «Минитмен-2» на первых же проверках выявились отказы бортовой системы управления. Поток таких отказов заметно возрастал и единственная ремонтная база в городе Ньюарк не могла справиться с объемом ремонтных работ из-за ограниченных производственных возможностей. Пришлось для этих целей задействовать мощность завода-изготовителя фирмы «Отонетикс», что сразу же сказалось на темпах производства новых ракет. Положение еще более осложнилось, когда на ракетных базах началась модернизация МБР «Минитмен-1В». Причиной же этого пренеприятного для американцев явления, повлекшего к тому же задержку в развертывании всей группировки ракет, являлось то, что еще на этапе разработки тактико-технических требований был заложен недостаточный уровень надежности системы управления. С заявками на ремонт удалось справиться только к октябрю 1967 года, что конечно потребовало дополнительных денежных расходов.
На начало 1993 года в боевом составе СЯС США числилось 450 развернутых МБР «Минитмен-2» и ололо 50 ракет в резерве. Естественно, что за долгий срок эксплуатации ракета модернизировалась с целью повышения ее боевых возможностей. Совершенствование некоторых элементов системы управления позволило повысить точность стрельбы до 600 м. Производилась замена топливных зарядов на первых и третьих ступенях. Необходимость таких работ была вызвана старением топлива, что сказывалось на надежности ракет. Повышалась защита пусковых установок и командных пунктов ракетных комплексов.
Со временем такое достоинство как многолетний срок эксплуатации, превратилось в недостаток. Все дело в том, что сложившаяся кооперация фирм, занятых производством ракет и комплектующих изделий для них на этапе разработки и развертывания, стала распадаться. Периодическое обновление различных систем ракет требовало изготовления изделий, которые давно не выпускались и расходы на поддержание группировки ракет в боеготовом состоянии неуклонно возрастали.
МБР УР-100 была выполнена по схеме «тандем» с последовательным разделением ступеней. Топливные баки несущей конструкции имели совмещенное днище. Первая ступень состояла из хвостового отсека, двигательной установки, баков горючего и окислителя. Двигательная установка включала четыре маршевых ЖРД с поворотными камерами сгорания, выполненных по замкнутой схеме. Двигатели имели высокий удельный импульс тяги, что позволило ограничить время работы первой ступени.
МБР PC-10 (СССР) 1971 г.
Вторая ступень по конструкции аналогична первой, но меньших размеров. Ее двигательная установка состояла из двух ЖРД: маршевого однокамерного и рулевого четырехкамерного.
Для повышения энергетических возможностей двигателей, обеспечения заправки и слива компонентов ракетного топлива ракета имела пневомогидравлическую систему. Ее элементы размещались на обеих ступенях. В качестве компонентов топлива применили самовоспламеняющиеся при взаимном контакте азотный тетроксид и несимметричный диметилгидразин.
На ракете установили инерциальную систему управления, которая обеспечивала точность стрельбы (КВО) 1,4 км. Ее составные подсистемы распределялись по всей ракете. УР-100 несла отделявшуюся в полете от второй ступени моноблочную головную часть с ядерным зарядом мощностью 1 Мт.
Большим достоинством было то, что ракета ампулизировалась (изолировалась от внешней среды) в специальном контейнере, в котором она транспортировалась и хранилась в шахтной пусковой установке в течение нескольких лет в постоянной готовности к пуску. Применение мембранных клапанов, отделяющих топливные баки с агрессивными компонентами от ракетных двигателей, позволило держать ракету постоянно заправленной. Стартовала ракета непосредственно из контейнера. Контроль технического состояния ракет одного боевого ракетного комплекса, а также предстартовая подготовка и пуск проводились дистанционно с единого командного пункта.
МБР УР-100 получила дальнейшее развитие в ряде модификаций. В 1970 году на вооружение стали поступать ракеты УР-100 УТТХ, имевшие более совершенную систему управления, более надежную головную часть и комплекс средств преодоления противоракетной обороны.
Еще раньше, 23 июля 1969 года на полигоне Байконур начались летные испытания другой модификации этой ракеты, получившей войсковое обозначение УР-100К(РС-10). Они завершились 15 марта 1971 года, после чего началась замена ракет УР-100.
Новая ракета превосходила своих предшественниц по точности стрельбы, надежности и эксплуатационным характеристикам. Были доработаны двигательные установки обеих ступеней. Повышен ресурс работы ЖРД, а также их надежность. Был разработан новый транспортно- пусковой контейнер. Его конструкция стала более рациональной и удобной, что позволило облегчить обслуживание ракеты и сократить в три раза время регламентных работ. Установка новой аппаратуры контроля дала возможность полностью автоматизировать цикл проверок технического состояния ракет и систем пусковых установок. Повысилась защищенность сооружений ракетного комплекса.
МБР УР-100 в ТПК на параде
МБР PC-10 в сборе без головной части (вне пускового контейнера)
Следующей МБР второго поколения, поступивший на оснащение РВСН, стала Р-36 (8К67) — родоначальница советских тяжелых ракет. Постановлением правительства от 12 мая 1962 года КБ академика Янгеля поручалось создать ракету, способную весомо подкрепить амбиции Н. С. Хрущева. Она предназначалась для поражения важнейших стратегических объектов противника, защищенных средствами ПРО. В техническом задании предусматривалось создание ракеты в двух вариантах, которые должны были отличаться способами базирования: с наземным стартом (по типу американского «Атласа») и с шахтным- по типу Р-16У. От бесперспективного первого варианта отказались быстро. И тем не менее, ракету разработали в двух вариантах. Но теперь они различались принципом построения системы управления. Первая ракета имела чисто инерциальную систему, а вторая — инерциальную с радиокоррекцией. При создании комплекса особое внимание обращалось на максимальное упрощение стартовых позиций, которые разрабатывало КБ под руководством Е. Г. Рудяка: повышалась их надежность, исключалась из пускового цикла заправка ракет, вводился дистанционный контроль основных параметров ракеты и систем в процессе боевого дежурства, подготовки к пуску и дистанционный пуск ракеты.
МБР Р-36 (СССР) 1967 г.
1 — верхняя часть кабельного короба; 2 — бак окислителя второй ступени; 3 — бак горючего второй ступени; 4 — датчик давления системы регулирования тяги; 5 — рама крепления двигателей к корпусу; 6 — турбонасосный агрегат; 7 — сопло ЖРД; 8 — рулевой ЖРД второй ступени; 9 — тормозной пороховой двигатель первой ступени; 10 — защитный обтекатель рулевого двигателя; 11 — заборное устройство; 12 — бак окислителя первой ступени; 13 — блок системы управления ракеты, расположенный на первой ступени; 14 — бак горючего первой ступени; 15 — защищенный трубопровод подачи окислителя; 16 — крепление рамы ЖРД к корпусу хвостового отсека первой ступени; 17 — камера сгорания ЖРД; 18 — рулевой двигатель первой ступени; 19 — дренажный патрубок; 20 — датчик давления в баке горючего; 21 — датчик давления в баке окислителя.
МБР Р-36 на параде
Испытания проводились на полигоне Байконур. 28 сентября 1963 года состоялся первый пуск, который завершился неудачно. Несмотря на первоначальные неполадки и отказы члены государственной комиссии под руководством генерал- лейтенанта М. Г. Григорьева признали ракету перспективной и в конечном успехе не сомневались. Принятая к тому времени система испытаний и отработки ракетного комплекса позволила одновременно с летными испытаниями развернуть серийное производство ракет, технологического оборудования, а также строительство стартовых позиций. В конце мая 1966 года весь цикл испытаний был завершен, а 21 июля следующего года БРК с МБР Р-36 приняли на вооружение.
Двухступенчатая Р-36 выполнена по схеме «тандем» из высокопрочных алюминиевых сплавов. Первая ступень обеспечивала разгон ракеты и состояла из хвостового отсека, двигательной установки и несущих топливных баков горючего и окислителя. Топливные баки наддувались в полете продуктами сгорания основных компонентов и имели устройства для гашения колебаний.
Двигательная установка состояла из шестикамерного маршевого и четырехкамерного рулевого жидкостных ракетных двигателей. Маршевый ЖРД собирался из трех одинаковых двухкамерных блоков, укрепленных на общей раме. Подачу компонентов топлива к камерам сгорания обеспечивали три ТНА, турбины которых раскручивались продуктами сгорания топлива в газогенераторе. Суммарная тяга двигателя у земли составляла 274 т. Рулевой ЖРД имел четыре поворотные камеры сгорания с одним общим турбонасосным агрегатом. Камеры устанавливались в «карманах» хвостового отсека.
Вторая ступень обеспечивала разгон до скорости, соответствующей заданной дальности стрельбы. Ее топливные баки несущей конструкции имели совмещенное днище. Размещенная в хвостовом отсеке двигательная установка состояла из двухкамерного маршевого и четырехкамерного рулевого жидкостных ракетных двигателей. Маршевый ЖРД РД-219 по конструкции во многом аналогичен двигательным блокам первой ступени. Основным отличием было то, что камеры сгорания были рассчитаны на большую степень расширения газа и их сопла также имели большую степень расширения. В состав двигателя входили две камеры сгорания, питающий их ТНА, газогенератор, агрегаты автоматики, двигательная рама и другие элементы. Он развивал тягу в вакууме 101 т и мог работать в течение 125 секунд. Рулевой двигатель по конструкции не отличался от двигателя, установленного на первой ступени.
МБР Р-36 на старте
Все ЖРД ракеты были разработаны конструкторами ГДЛ-ОКБ. Для их питания применялось двухкомпонентное самовоспламеняющиеся при контакте топливо: окислитель — смесь окислов азота с азотной кислотой, горючее — несимметричный диметилгидразин. Для заправки, слива и подачи компонентов топлива к ракетным двигателям на ракете устанавливалась пневмогидросистема.
Ступени отделялись друг от друга и головной части посредством срабатывания разрывных болтов. Для исключения соударений было предусмотрено торможение отделившейся ступени за счет срабатывания тормозных пороховых двигателей.
Для Р-36 разработали комбинированную систему управления. Автономная инерциальная система обеспечивала управление на активном участке траектории и включала автомат стабилизации, автомат дальности, систему СОБ, обеспечивающую одновременную выработку окислителя и горючего из баков, систему разворота ракеты после старта на назначенную цель. Система радиоуправления должна была корректировать движение ракеты в конце активного участка. Однако в процессе летных испытаний стало ясно, что автономная система обеспечивает заданную точность стрельбы (КВО около 1200 м) и от радиосистемы отказались. Это позволило значительно снизить финансовые затраты и упростить эксплуатацию ракетного комплекса.
МБР Р-36 оснащалась моноблочной термоядерной головной частью одного из двух типов: легкой — мощностью 18 Мт и тяжелой — мощностью 25 Мт. Для преодоления противоракетной обороны противника на ракете устанавливался надежный комплекс специальных средств. Кроме того, имелась система аварийного уничтожения боевого заряда, которая срабатывала при отклонениях параметров движения на активном участке траектории сверх допустимых.
Пуск ракеты производился автоматически из одиночной ШПУ, где она хранилась в заправленном состоянии в течение 5 лет. Длительный срок эксплуатации был достигнут путем герметизации ракеты и создания оптимального температурно-влажностного режима в шахте. БРК с Р-36 обладал уникальными боевыми возможностями и значительно превосходил американский комплекс аналогичного назначения с ракетой «Титан-2» прежде всего по мощности ядерного заряда, точности стрельбы и защищенности.
В процессе разработки ракетного комплекса пришлось решать сложные научно- технические и производственные проблемы. Так, были разработаны смесевые твердые топлива, крупногабаритные заряды двигателей и освоена технология их изготовления. Создана принципиально новая система управления. Был разработан новый тип пусковой установки, обеспечивающий старт ракеты на маршевом двигателе из глухого пускового стакана.
РС-12, вторая и третья ступени без ГЧ
МБР PC-12 (СССР) 1968 г.
Первый пуск ракеты РТ-2П состоялся 4 ноября 1966 года. Испытания проводились на полигоне Плесецк под руководством государственной комиссии. Потребовалось ровно два года, чтобы полностью рассеять все сомнения скептиков. 18 декабря 1968 года ракетный комплекс с этой ракетой был принят на вооружение частей РВСН.
Ракета РТ-2П имела три ступени. Для их соединения между собой применили соединительные отсеки ферменной конструкции, позволявшие свободно выходить газам маршевых двигателей. Двигатели второй и третьей ступени включались за несколько секунд до срабатывания пироболтов.
Ракетные двигатели первой, второй ступеней имели стальные корпуса и сопловые блоки, состоящие из четырех разрезных управляющих сопел. Ракетный двигатель третьей ступени отличался от них тем, что имел корпус смешанной конструкции. Все двигатели были выполнены в разных диаметрах. Сделано это было для того, чтобы обеспечить заданную дальность полета. Для запуска РДТТ использовались специальные воспламенители, укрепленные на передних днищах корпусов.
Система управления ракеты — автономная инерциальная. Она состояла из комплекса приборов и устройств, осуществлявших управление движением ракеты в полете с момента пуска и до перехода к неуправляемому полету головной части. В системе управления были применены счетно-решающие приборы и маятниковые акселерометры. Элементы СУ размещались в приборном отсеке, установленном между головной частью и третьей ступенью, а ее исполнительные органы — на всех ступенях в хвостовых отсеках. Точность стрельбы составила 1,9 км.
Появление у американцев систем ПРО потребовало модернизации ракеты применительно к новым условиям. Работы начались в 1968 году. 16 января 1970 года на полигоне Плесецк состоялся первый испытательный пуск модернизированной ракеты. Спустя два года ее приняли на вооружение.
Модернизированная РТ-2П отличалась от своей предшественницы более совершенной системой управления, головной частью, мощность ядерного заряда которой увеличили до 750 кт, и улучшенными эксплуатационными характеристиками. Точность стрельбы повысилась до 1,5 км. Ракету оснастили комплексом преодоления систем противоракетной обороны. Поступившие на оснащение ракетных частей в 1974 году модернизированные РТ-2П и доработанные до их технического уровня ранее выпущенные ракеты стояли на боевом дежурстве до середины 90-х годов.
РС-12, первая ступень
Очередной виток гонки ракетных вооружений был связан с созданием разделяющихся головных частей с боевыми блоками индивидуального наведения (РГЧ типа МИРВ). Их появление было вызвано стремлением с одной стороны иметь как можно большое число ядерных зарядов для поражения целей, а с другой — отсутствием возможности бесконечно увеличивать число ракет-носителей по целому ряду экономических и технических причин.
Более высокий уровень развития науки и техники на тот момент позволил американцам первыми приступить к работам по созданию РГЧ. Первоначально в специальном научном центре разрабатывались головные части рассеивающегося типа. Но они годились только для поражения площадных целей из-за невысокой точности наведения. Такой РГЧ оснастили БРПЛ «Поларис-АЗТ». Повысить точность наведения позволило внедрение мощных бортовых ЭВМ. В конце 60-х годов специалисты научного центра закончили разработку РГЧ индивидуального наведения Мк12 и Мк17. Их успешные испытания на армейском полигоне «Уайт- Сэндз» (там испытывались все американские головные части с ядерным зарядом) подтвердили возможность их применения на баллистических ракетах.
Носителем Мк12, конструкцию которой разработали представители фирмы «Дженерал электрик» стала МБР «Минитмен-3», к проектированию которой фирма «Боинг» приступила в конце 1966 года. Обладая высокой точностью стрельбы, она по замыслу американских стратегов должна была стать «грозой советских ракет». За основу взяли предыдущую модель. Значительных переделок не потребовалось и в августе 1968 года новую ракету передали на Западный ракетный полигон. Там по программе летно- конструкторских испытаний за период с 1968 по 1970 год было проведено 25 пусков из которых только шесть признаны неудачными. После завершения этой серии провели еще шесть демонстрационных пусков для высокого начальства и вечно сомневающихся политиков. Все они прошли успешно. Но и они не стали последними в истории этой МБР. За долгую ее службу было осуществлен 201 пуск как в целях испытаний, так и в учебных целях. Ракета показала высокую надежность. Только 14 из них закончились неудачно (7 % от общего числа).
С конца 1970 года «Минитмен-3» стала поступать на вооружение САК ВВС США для замены всех оставшихся на то время ракет серии «Минитмен-1В» и 50 ракет «Минитмен-2».
МБР «Минитмен-3» конструктивно состоит из трех последовательно расположенных маршевых РДТТ и пристыкованной к третьей ступени РГЧ с обтекателем. Двигатели первой и второй ступеней — М-55А1 и SR-19, унаследованные от предшественников. РДТТ SR-73 сконструирован фирмой «Юнайтед текнолоджиз» специально для третьей ступени этой ракеты. Он имеет скрепленный твердотопливный заряд и одно неподвижное сопло. При его работе управление по углам тангажа и рыскания осуществляется посредством впрыска жидкости в закритическую часть сопла, а по крену- с помощью автономной газогенераторной системы, установленной на юбке корпуса.
Новая система управления марки NS-20 разработана отделением «Отонетикс» фирмы «Рокуэлл интернэйшнл». Она предназначена для управления полетом на активном участке траектории; расчета параметров траектории в соответствии с записанным в запоминающие устройства трехканальной БЦВМ полетным заданием; расчета команд управления на приводы исполнительных механизмов ракеты; управления программой разведения боеголовок при наведении их на индивидуальные цели; осуществления самоконтроля и контроля функционирования бортовых и наземных систем в процессе боевого дежурства и предстартовой подготовки. Основная часть аппаратуры размещена в герметичном приборном отсеке. Гироблоки ГСП при несении боевого дежурства находятся в раскрученном состоянии. Выделяющееся тепло удаляется системой термостатирования. СУ обеспечивает точность стрельбы (КВО) 400 м.
МБР «Минитмен-3» (США) 1970 г.
На конструкции головной части Мк12 остановимся особо. Конструктивно РГЧ состоит из боевого отсека и ступени разведения. Кроме того, может устанавливаться комплекс средств преодоления ПРО, в котором используются дипольные отражатели. Масса головной части с обтекателем — чуть больше 1000 кг. Обтекатель первоначально имел оживальную форму, затем триконическую и изготавливался из титанового сплава. Корпус боеголовки двухслойный: внешний слой — теплозащитное покрытие, внутренний — силовая оболочка. Наверху устанавливается специальный наконечник.
В нижней части ступени разведения находится двигательная установка в состав которой входят двигатель осевой тяги, 10 двигателей ориентации и стабилизации и два топливных бака. Для питания двигательной установки используется двухкомпонентное жидкое топливо. Вытеснение компонентов из баков осуществляется давлением сжатого гелия, запас которого хранится в сферическом баллоне. Тяга двигателя осевой тяги- 143 кг. Продолжительность работы ДУ- около 400 секунд. Мощность ядерного заряда каждого боевого блока — 330 кт.
В сравнительно короткие сроки была развернута группировка из 550 ракет «Минитмен-3» на четырех ракетных базах. Ракеты находятся в ШПУ в 30-секундной готовности к пуску. Старт осуществлялся непосредственно из ствола шахты после выхода на рабочий режим РДТТ первой ступени.
Все ракеты «Минитмен-3» не раз подвергались модернизации. Заменялись заряды ракетных двигателей первой и второй ступеней. Повышались характеристики системы управления за счет учета погрешностей комплекса командных приборов и разработки новых алгоритмов. В результате точность стрельбы (КВО) составила 210 м. В 1971 году началось осуществление программы по повышению защищенности шахтных пусковых установок. Она предусматривала усиление конструкции шахты, установку новой системы подвески ракет и ряд других мероприятий. Все работы завершили в феврале 1980 года. Защищенность ШПУ удалось довести до значения 60–70 кг/см?.
МБР РС-20А с РГЧ (СССР) 1975 г.
30 августа 1979 года была завершена серия из 10 летных испытаний, проводившихся для отработки усовершенствованной РГЧ Мк12А. Ее установили взамен прежней на 300 ракетах «Минитмен-3». Мощность заряда каждого боевого блока довели до 0,5 Мт. Правда, несколько уменьшилась площадь разведения блоков и максимальная дальность полета. В целом эта МБР является надежной и способна поражать цели на всей территории бывшего Советского Союза. Специалисты считают, что она будет находиться на боевом дежурстве до начала следующего тысячелетия.
Появление на вооружении СЯС США ракет с РГЧ резко ухудшило положение СССР. Советские МБР сразу попали в разряд морально устаревших, так как они не могли решать целый ряд вновь возникших задач, и главное — значительно снизилась вероятность нанесения эффективного ответного удара. Можно было не сомневаться, что боеголовки ракет «Минитмен-3» в случае возникновения ядерной войны нанесут удары по шахтным пусковым установкам и командным пунктам РВСН. А вероятность такой войны в то время была весьма высока. К тому же во второй половине 60-х годов в США активизировались работы в области противоракетной обороны.
Днепропетровскому КБ, которое после смерти М. Янгеля возглавил академик В. Ф. Уткин, поручили создать тяжелую ракету. Там же параллельно развернулись опытно-конструкторские работы над ракетой с меньшей стартовой массой.
Тяжелая МБР РС-20А в свой первый испытательный полет отправилась 21 февраля 1973 года с полигона Байконур. Ввиду сложности решаемых технических задач, отработка всего комплекса затянулась на два с половиной года. В конце 1975 года, 30 декабря, новый БРК с этой ракетой был поставлен на боевое дежурство. Унаследовав от Р-36 все лучшее, новая МБР стала самой мощной ракетой в своем классе.
Ракета выполнена по схеме «тандем» с последовательным разделением ступеней и конструктивно включала первую, вторую и боевую ступенни. Топливные баки несущей конструкции изготавливались из металлических сплавов. Разделение ступеней обеспечивалось срабатыванием разрывных болтов.
МБР РС-20А с моноблочной ГЧ
Маршевый ЖРД первой ступени объединил четыре автономных двигательных блока в единую конструкцию. Управляющие усилия в полете создавались за счет отклонения сопловых блоков.
Двигательная установка второй ступени состояла из маршевого ЖРД, выполненного по замкнутой схеме и четырехкамерного рулевого двигателя, выполненного по открытой схеме. Все жидкостные ракетные двигатели работали на высококипящих самовоспламеняющихся при контакте компонентах жидкого топлива.
На ракету устанавливалась автономная инерциальная система управления, работу которой обеспечивал бортовой цифровой вычислительный комплекс. Для повышения надежности БЦВК все его основные элементы имели резервирование. В процессе боевого дежурства бортовая вычислительная машина обеспечивала обмен информацией с наземными устройствами. Наиболее важные параметры технического состояния ракеты контролировались системой управления. Применение БЦВК позволило добиться высокой точности стрельбы. КВО точек падения боевых блоков составило 430 м.
МБР этого типа несли особенно мощное боевое оснащение. Существовало два варианта головных частей: моноблочная, мощностью 24 Мт и РГЧ с 8-ю боевыми блоками индивидуального наведения мощностью по 900 кт каждый. На ракете установили усовершенствованный комплекс преодоления противоракетных оборонительных систем.
МБР РС-20Б (СССР) 1980 г.
На вооружении эта ракета состояла до середины 80-х годов, пока ее не заменили на РС-20Б. Своим появлением она, как впрочем и все ее современницы в РВСН, обязана разработке американцами нейтронных боеприпасов, новым достижениям в области электроники и машиностроения, возрастанием требований к боевым и эксплуатационным характеристикам ракетных комплексов стратегического назначения.
Изменилось и само боевое оснащение. Так как точность стрельбы возросла, появилась возможность уменьшить мощность ядерных зарядов. В результате дальность полета ракеты с моноблочной головной частью удалось довести до 16000 км.
Ракеты Р-36 нашли применение и в мирных целях. На их базе создана ракета-носитель для вывода на орбиту космических аппаратов серии «Космос» различного назначения.
Другим детищем КБ Уткина стала МБР PC-16А. Хотя она первой поступила на испытания (пуск на Байконуре состоялся 26 декабря 1972 года), на вооружение ее приняли в один день вместе с РС-20 и PC-18, рассказ о которых еще впереди.
Ракета РС-16А — двухступенчатая, с двигателями на жидком топливе, выполнена по схеме «тандем» с последовательным разделением ступеней в полете. Корпус ракеты имеет цилиндрическую форму с конической головной частью. Топливные баки несущей конструкции.
МБР РС-20В в полете
Космический ракетный комплекс «Циклон» на базе РС-20Б
Двигательная установка первой ступени состояла из маршевого жидкостного ракетного двигателя, выполненного по замкнутой схеме и рулевого четырехкамерного ЖРД, выполненного по открытой схеме с поворотными камерами сгорания.
На второй ступени устанавливался один маршевый однокамерный ЖРД, сконструированный по замкнутой схеме, с вдувом в закритическую часть сопла части истекающего газа для создания управляющих усилий в полете. Все ракетные двигатели работают на высококипящих, самовоспламеняющихся при контакте окислителе и горючем. Для обеспечения устойчивого режима работы двигателей топливные баки наддувались азотом. Заправка ракеты осуществлялась после установки в пусковую шахту.
МБР PC-16А (СССР) 1975 г.
Большим достоинством нового боевого ракетного комплекса было то, что ракеты устанавливались в шахтные пусковые установки, ранее построенные для баллистических ракет первого и второго поколений. Требовалось провести необходимый объем работ по усовершенствованию некоторых систем ШПУ и можно было загружать новые ракеты. Тем самым достигалась значительная экономия финансовых средств.
25 октября 1977 года состоялся первый пуск модернизированной ракеты, получившей обозначение РС-16Б. Летные испытания проводились на Байконуре до 15 сентября 1979 года. 17 декабря 1980 года БРК с модернизированной ракетой был принят на вооружение.
МБР РС-16А в сборе без ГЧ (вне пускового контейнера)
Третьей ракетой из поступивших на вооружение в этот период, стала PC-18, разработанная в КБ академика В. Челомея. Эта ракета должна была гармонично дополнить создаваемую систему стратегических вооружений. Ее первый полет состоялся 9 апреля 1973 года. Летно- конструкторские испытания проходили на полигоне Байконур до лета 1975 года, после чего Государственная комиссия сочла возможным принять БРК на вооружение.
Ракета PC-18 — двухступенчатая, выполненная по схеме «тандем» с последовательным разделением ступеней в полете. Конструктивно она состояла из первой, второй ступеней, соединительных отсеков, приборного отсека и агрегатно-приборного блока с разделяющейся головной частью.
Первая и вторая ступени составляли так называемый блок ускорителей. Все топливные баки — несущей конструкции. Двигательная установка первой ступени имела четыре маршевых жидкостных ракетных двигателя с поворотными соплами. Один из ЖРД использовался для поддержания режима работы двигательной установки в полете.
Двигательная установка второй ступени состояла из маршевого ЖРД и рулевого жидкостного двигателя, который имел четыре поворотных сопла. Для обеспечения устойчивой работы ракетных двигателей блока ускорителей в полете был предусмотрен наддув топливных баков.
Все ЖРД работали на самовоспламеняющихся стабильных компонентах ракетного топлива. Заправка топливом производилась в заводских условиях после установки ракеты в транспортно-пусковой контейнер. Однако конструкция пневмогидравлической системы ракеты и ТПК позволяла в случае необходимости провести операции по сливу и последующей заправке компонентов ракетного топлива. Величина давления во всех баках ракеты непрерывно контролировалась специальной системой.
На ракету установили автономную инерциальную систему управления на базе бортового цифрового вычислительного комплекса. При несении боевого дежурства СУ совместно с наземным ЦВК осуществляла контроль бортовых систем ракеты и смежных систем пусковой установки. Во все эксплуатационные и боевые режимы ракета проводилась дистанционно с командного пункта БРК. Высокие характеристики системы управления подтвердились при испытательных пусках. Точность стрельбы (КВО) составила 350 м. РС-18 несла РГЧ с шестью боевыми блоками индивидуального наведения с ядерным зарядом мощностью 550 кт и могла поражать высокозащищенные и прикрытие системами ПРО точечные цели противника.
Ракета «ампулизировалась» в транспортно- пусковом контейнере, который размещался в специально созданных для этого ракетного комплекса шахтных пусковых установках с высокой степенью защиты.
БРК с МБР PC-18 был значительным шагом вперед даже по сравнению с принятым в одно с ним время ракетным комплексом с ракетой РС-16А. Но как выяснилось, в процессе эксплуатации и он не был лишен недостатков. К тому же при проведении учебно-боевых пусков ракет, поставленных на боевое дежурство, выявился дефект ЖРД одной из ступеней. Дело приняло серьезный оборот. Как всегда нашлись и виноватые «стрелочники». Сняли с должности первого заместителя главнокомандующего Ракетными войсками стратегического назначения генерал-полковника М. Г. Григорьева, вина которого была лишь в том, что он был председателем Государственной комиссии на испытаниях ракетного комплекса с ракетой РС-18.
Эти неполадки ускорили принятие на вооружение модернизированной ракеты под тем же индексом РС-18 с улучшенными тактико-техническими характеристиками, летные испытания которой проводились с 26 октября 1977 года. В ноябре 1979 года новый БРК официально был принят для замены своего предшественника.
МБР РС-18 (СССР) 1975 г.
На усовершенствованной ракете устранили дефекты ракетных двигателей блока ускорителей, одновременно повысив их надежность, улучшили характеристики системы управления, установили новый агрегатно-приборный блок, что дало увеличение дальности полета до 10000 км, повысили эффективность боевого оснащения.
Значительным доработкам подвергся командный пункт ракетного комплекса. Ряд систем заменили на более совершенные и надежные. Увеличили степень защиты от поражающих факторов ядерного взрыва. Внесенные изменения значительно упростили эксплуатацию всего боевого ракетного комплекса, что сразу было отмечено в отзывах из войсковых частей.
Со второй половины 70-х годов в Советском Союзе началась сказываться нехватка финансовых средств для гармоничного развития экономики страны, что было вызвано не в последнюю очередь большими расходами на вооружения. В этих условиях модернизация всех трех ракетных комплексов проводилась с максимальной степенью экономии финансовых и материальных ресурсов. Усовершенствованные ракеты устанавливались на место старых, да и модернизация в большинстве случаев проводилась путем доведения уже существующих ракет до новых кондиций.
В эти годы на развитие МБР, как и БРПЛ, стал влиять новый фактор — процесс ограничения стратегических вооружений. 26 мая 1972 года в Москве в ходе встречи на высшем уровне было подписано Временное соглашение между Советским Союзом и Соединенными Штатами Америки о некоторых мерах в области ограничения стратегических наступательных вооружений, получившее название ОСВ-1. Оно было заключено сроком на пять лет и вступило в силу 3 октября 1972 года.
Временное соглашение устанавливало количественные и качественные ограничения на стационарные пусковые установки МБР, пусковые установки БРПЛ и подводные лодки с баллистическими ракетами. Запрещалось строительство дополнительных стационарных ПУ МБР наземного базирования, что фиксировало их количественный уровень по состоянию на 1 июля 1972 года для каждой из сторон.
Модернизация стратегических ракет и пусковых установок разрешалась при условии, что не будут переоборудованы ПУ легких МБР наземного базирования, а также баллистических ракет развернутых до 1964 года, в пусковые установки для тяжелых ракет.
В 1974–1976 годах в соответствии с Протоколом о процедурах, регулирующих замену, демонтаж и уничтожение СНВ, в РВСН были сняты с боевого дежурства и ликвидированы 210 ПУ МБР Р-16У и Р-9А с оборудованием и сооружениями стартовых позиций. Соединенным Штатам такие работы проводить не понадобилось.
19 июня 1979 года в Вене был подписан новый договор между СССР и США об ограничении стратегических вооружений, который получил название Договор ОСВ-2. В случае вступления его в силу каждая из сторон должна была с 1 января 1981 года ограничить уровень стратегических носителей 2250 единицами. Подпадали под ограничения носители, оснащенные РГЧ индивидуального наведения. В установленном суммарном пределе они не должны были превышать 1320 единиц. Из этого числа для ПУ МБР предел устанавливался в 820 единиц. Кроме того, накладывались жесткие ограничения на модернизацию стационарных пусковых установок стратегических межконтинентальных ракет — запрещалось создавать мобильные пусковые установки таких ракет. Допускалось проведение летных испытаний и развертывание только одного нового типа легких МБР с количеством боеголовок, не превышающим 10 штук.
Несмотря на то, что Договор ОСВ-2 справедливо и сбалансировано учитывал интересы обеих сторон, администрация США отказалась от его ратификации. И немудрено: американцы вдумчиво подходят к своим интересам. К тому моменту большая часть их ядерных боевых блоков находилась на БРПЛ, и чтобы вписаться в установленные рамки ограничений по носителям, пришлось бы ликвидировать 336 ракет. Ими должны были стать либо наземные «Минитмены-3», либо морские «Посейдоны», недавно принятые на вооружение современных ПЛАРБ. В то время только закончились испытания новой ПЛАРБ «Огайо» с ракетой «Трайдент-1», и интересы американского военно-промышленного комплекса могли серьезно пострадать. Словом, с финансовой стороны этот Договор правительство и ВПК США не устраивал. Впрочем, были и другие причины отказаться от его ратификации. Но хотя Договор ОСВ-2 так и не вступил в силу, стороны все же придерживались некоторых ограничений.
Летно-конструкторские испытания ракеты «Дун-3» проводились на ограниченную дальность — Китай не обладал подготовленными испытательными трассами значительной протяженности. Первый такой пуск был осуществлен с полигона Шуангэнцзы на дальность 800 км. Второй пуск провели с полигона Учжай на дальность около 2000 км. Испытания явно затягивались. Только в 1983 году МБР «Дун-3» (китайское обозначение — «Дунфэн-5») была принята на вооружение ядерных сил Народно-освободительной армии Китая.
По техническому уровню она соответствовала советским и американским МБР начала 60-х годов. Двухступенчатая ракета с последовательным разделением ступеней имела цельнометаллический корпус. Ступени стыковались между собой посредством переходного отсека ферменной конструкции. Из-за невысоких энергетических характеристик двигателей конструкторам пришлось увеличить запас топлива, чтобы достичь заданной дальности полета. Максимальный диаметр ракеты составил 3,35 м, что и поныне является рекордным показателем для МБР.
Традиционная для китайских ракет инерциальная система управления обеспечивала точность стрельбы (КВО) 3 км. «Дун-3» несла моноблочную ядерную головную часть мощностью 2 Мт.
Оставалась невысокой и живучесть комплекса в целом. Несмотря на то, что МБР поместили в шахтную пусковую установку, ее защищенность не превышала величины 10 кг/см? (по давлению во фронте ударной волны). Для 80-х годов это было явно мало. Китайская ракета значительно отставала от американских и советских образцов ракетной техники по всем важнейшим боевым показателям.
МБР «Дун-3» (Китай) 1983 г
Оснащение боевых частей этой ракетой велось медленно. К тому же на ее базе создали ракету-носитель для вывода космических аппаратов на околоземные орбиты, что не могло не сказаться на темпах производства боевых межконтинентальных ракет.
В начале 90-х годов китайцы модернизировали «Дун-3». Значительный скачок уровня экономики позволил поднять и уровень ракетостроения. «Дун-ЗМ» стала первой китайской МБР с РГЧ. Ее оснастили 4–5 боевыми блоками индивидуального наведения мощностью по 350 кт каждый. Улучшились характеристики системы управления ракеты, что сразу же сказалось на точности стрельбы (КВО составило 1,5 км). Но и после модернизации эта ракета в сравнении с зарубежными аналогами не может считаться современной.
Вернемся в США семидесятых годов. В 1972 году специальная правительственная комиссия занималась исследованием перспектив развития стратегических ядерных сил США до конца XX века. По результатам ее работы администрация президента Никсона выдала задание на разработку перспективной МБР, способной нести РГЧ с 10 боевыми блоками индивидуального наведения. Программа получила шифр MX. Этап перспективных исследований продолжался шесть лет. За это время было изучено полтора десятка проектов ракет со стартовой массой от 27 до 143 т, представленных различными фирмами. В итоге выбор пал на проект трехступенчатой ракеты с массой около 90 т, способной размещаться в ШПУ ракет «Минитмен».
В период с 1976 по 1979 год проводились интенсивные экспериментальные работы как по конструкции ракеты, так и по возможным ее базирования. В июне 1979 года президент Картер принял решение о полномасштабной разработке новой МБР. Головной фирмой стала «Мартин Мариэтта», которой поручили координацию всех работ.
В апреле 1982 года начались стендовые огневые испытания РДТТ ступеней, а спустя год — 17 июня 1983 года — ракета отправилась в свой первый испытательный полет на дальность 7600 км. Он был признан вполне успешным. Одновременно с летными испытаниями велись проработки вариантов базирования. Первоначально рассматривались три варианта: шахтный, мобильный и воздушный. Так, например, планировалось создать специальный самолет-носитель, который должен был нести боевое дежурство способом барражирования в установленных районах и по сигналу сбросить ракету, предварительно проведя ее прицеливание. После отделения от носителя должен был включаться маршевый двигатель первой ступени. Но этот, а также ряд других возможных вариантов, так и остались на бумаге. Американским военным очень хотелось получить новейшую ракету с высокой степенью живучести. К тому времени основным стал путь создания мобильных ракетных комплексов, местоположение пусковых установок которого могло изменяться в пространстве, что создавало трудности для нанесения прицельного ядерного удара по ним. Но принцип экономии средств взял верх. Так как заманчивый воздушный вариант был крайне дорогим, а мобильный наземный (предлагался и мобильный подземный) американцы отработать в полной мере не успели, решено было разместить 50 новых МБР в модернизированных шахтах ракет «Минитмен-3» на ракетной базе Уоррен, а также продолжить отработку мобильного железнодорожного комплекса.
В 1986 году ракета LGM-118A, получившая название «Пискипер», поступила на вооружение (в России она больше известна как MX). При ее создании разработчики использовали все новинки в области материаловедения, электроники и приборостроения. Большое внимание было уделено уменьшению массы конструкций и отдельных элементов ракеты.
MX включает три маршевые ступени и РГЧ. Все они имеют одинаковую конструкцию и состоят из корпуса, заряда твердого топлива, соплового блока и системы управления вектором тяги. РДТТ первой ступени создан фирмой «Тиокол». Его корпус намотан из волокон «Кевлар-49», имеющих высокую прочность и малую массу. Переднее и заднее днища выполнены из алюминиевого сплава. Сопловый блок — отклоняемый с гибкими опорами.
РДТТ второй ступени разработан фирмой «Аэроджет» и конструктивно отличается от двигателя фирмы «Тиокол» сопловым блоком. Отклоняемое сопло большой степени расширения имеет насадку телескопического типа для увеличения длины. В рабочее положение она выдвигается с помощью газогенераторного устройства после отделения ракетного двигателя предыдущей ступени. Для создания управляющих усилий по вращению на этапе работы первой и второй ступеней устанавливается специальная система, состоящая из газогенератора и управляющего клапана, перераспределяющего поток газов между двумя косо срезанными соплами. РДТТ третьей ступени фирмы «Геркулес» отличается от предшественников отсутствием системы отсечки тяги, а его сопло имеет две телескопические насадки. Заряды двухсмесевого топлива заливаются в готовые корпуса ракетных двигателей.
СПУ МБР РС-12М
Ступени соединяются между собой посредством переходников, выполненных из алюминия. Весь корпус ракеты с внешней стороны покрыт защитным покрытием, предохраняющим его от нагрева горячими газами при старте и от поражающих факторов ядерного взрыва.
Инерциальная система управления ракеты с БЦВК типа «Мека» расположена в отсеке двигательной установки РГЧ, что позволило добиться экономии общей длины МБР. Она обеспечивает управление полетом на активном участке траектории, на этапе разведения боевых блоков, а также задействуется в период нахождения ракеты на боевом дежурстве. Высокое качество приборов ГСП, учет погрешностей и применение новых алгоритмов обеспечили точность стрельбы (КВО) около 100 м. Для создания необходимого температурного режима система управления в полете охлаждается фреоном из специального резервуара. Управление по углам тангажа и рыскания осуществляется отклоняемыми соплами.
МБР MX оснащается разделяющейся головной частью Мк21, состоящей из отсека боевых блоков, закрытого обтекателем, и отсека двигательной установки. Первый отсек имеет максимальную вместимость на 12 боеголовок, аналогичных ББ ракеты «Минитмен-ЗУ». В настоящее время в нем размещены 10 боевых блоков индивидуального наведения мощностью по 600 кт каждый. Двигательная установка с ЖРД многократного включения. Она запускается на этапе работы третьей ступени и обеспечивает разведение всего боевого оснащения. Для РГЧ Мк21 разработан новый комплекс средств преодоления систем противоракетной обороны, включающий легкие и тяжелые ложные цели, различные постановщики помех.
Ракета помещена в контейнер, из которого она и запускается. Впервые американцы применили «минометный старт» для запуска МБР из шахтной пусковой установки. Твердотопливный газогенератор, размещенный в нижней части контейнера, при срабатывании выбрасывает ракету на высоту 30 м от уровня защитного устройства шахты, после чего включается маршевый двигатель первой ступени.
Первым из них в 1985 году приняли мобильный РК с ракетой РС-12М. Накопленный богатейший опыт эксплуатации мобильных грунтовых комплексов (для оперативно-тактических ракет и ракет средней дальности) позволил советским конструкторам в короткие сроки на базе межконтинентальной твердотопливной ракеты шахтного базирования создать практически новый мобильный комплекс. Модернизированную ракету разместили на самоходной пусковой установке, выполненной на шасси семиосного тягача МАЗ.
МБР РС-12М в полете
В 1986 году Государственная комиссия приняла на вооружение железнодорожный ракетный комплекс с МБР РТ-23УТТХ, а еще два года спустя на оснащение РВСН поступила РТ-23УТТХ, размещенная в ШПУ, ранее использовавшихся для ракет РС-18. После развала СССР 46 новейших ракет оказались на территории Украины и в настоящее время подлежат ликвидации.
Все эти ракеты выполнены трехступенчатыми, с двигателями на твердом топливе. Их инерциальная система управления обеспечивает высокую точность стрельбы. МБР РС-12М несет моноблочную ядерную ГЧ мощностью 550 кт, а обе модификации РС-22 — РГЧ индивидуального наведения с десятью боевыми блоками.
Тяжелая межконтинентальная ракета Рс-20В поступила на вооружение в 1988 году. Она по-прежнему остается самой мощной ракетой в мире и способна нести полезную нагрузку в 2 раза больше, чем американская MX.
С подписанием Договора СНВ-1 развитие межконтинентальных ракет в США и Советском Союзе приостановилось. На тот момент в каждой из стран разрабатывался комплекс с малогабаритной ракетой для замены устаревших МБР третьего поколения.
Американская программа «Миджитмен» была начала в апреле 1983 года в соответствии с рекомендациями комиссии Скаукрофта, назначенной президентом США для разработки предложений по развитию межконтинентальных ракет наземного базирования. Перед разработчиками поставили довольно жесткие требования: обеспечить дальность полета 11000 км, надежное поражение моноблочной ядерной головной частью малоразмерных целей. При этом ракета должна была иметь массу около 15 т и пригодна для размещения в ШПУ и на мобильных грунтовых установках. Первоначально эта программа получила статус наивысшего национального приоритета и работы пошли полным ходом. Очень быстро были разработаны два варианта трехступенчатой ракеты со стартовой массой 13,6 и 15 т. После конкурсного отбора решено было разрабатывать ракету с большей массой. В ее конструкции широко использовались стеклопластик и композиционные материалы. Одновременно велась разработка мобильной защищенной пусковой установки для этой ракеты.
Но с активизацией работ по СОИ наметилась тенденция замедления работ по программе «Миджетмен». В начале 1990 года президент Рейган дал указания свернуть работы по этому комплексу, который так и не удалось довести до полной готовности.
В отличие от американского, советский БРК подобного типа к моменту подписания Договора был почти готов к развертыванию. Полным ходом велись летные испытания ракеты и разрабатывались варианты его боевого применения.
Старт МБР РС-22Б
В настоящее время только Китай продолжает разработку МБР, стремясь создать ракету, способную конкурировать с американскими и российскими образцами. Идут работы над твердотопливной ракетой с РГЧ. Она будет иметь три маршевые ступени с ракетными двигателями на твердом топливе и стартовую массу около 50 т. Уровень развития электронной промышленности позволит (по некоторым оценкам) создать инерциальную систему управления, способную обеспечить точность стрельбы (КВО) не более 800 м. Предполагается, что базироваться новая МБР будет в шахтных пусковых установках.