Наиболее значимыми для человеческого организма являются гипофиз, гипоталамус, щитовидные и околощитовидные железы, надпочечники, половые железы и поджелудочная железа. Существует также масса других желез, однако их строение и действие изучено не до конца.
Центральным звеном эндокринной системы является гипоталамус и гипофиз. Гипоталамус в ответ на нервные импульсы оказывает стимулирующее или тормозящее действие на переднюю долю гипофиза. Через гипофизарные гормоны гипоталамус регулирует функцию периферических желез внутренней секреции.
Гипофиз считают одной из основных эндокринных желез в организме человека. Располагается в специальном углублении клиновидной кости мозгового черепа. Основные гормоны гипофиза: соматотропный (гормон роста),тиреотропный, лютеинизирующий, адренокортикотропный, лактогенный (пролактин). От нормальной работы гипофиза зависят рост и размножение; основной, углеводный, минеральный, жировой и белковый обмены.
Щитовидная железа расположена на передней поверхности шее. Гормоны, которые вырабатывает щитовидная железа (тироксин и трийодтиронин), обеспечивают рост, умственное и физическое развитие, регулируют скорость течения обменных процессов.
Паращитовидная железа вырабатывает паратиреоидный гормон (паратгормон), который участвует в регуляции обмена кальция и фосфора в организме.
Нарушение работы поджелудочной железы и провоцирует возникновение такого распространенного заболевания, как сахарный диабет. Она вырабатывает глюкагон и инсулин, которые отвечают за обмен и усвоение углеводов.
Надпочечники являются двумя небольшими железами, которые расположены в надпочечной области. Основу надпочечника составляет мозговое вещество, которое вырабатывает такие важнейшие гормоны, как адреналин и норадреналин. Они оказывают влияние на состояние кровеносных сосудов, причем норадреналин суживает сосуды всех отделов, за исключением головного мозга, а адреналин часть сосудов суживает, а часть расширяет. Адреналин усиливает и учащает сердечные сокращения, а норадреналин, наоборот, может их понижать. Кора надпочечников вырабатывает три вида кортикостероидных гормонов (альдостерон, кортизол, андрогены), влияющих на метаболизм углеводов, электролитов и половых желез.
Половые железы отвечают за репродукцию человека. В мужских половых железах (яичках) вырабатывается мужской половой гормон тестостерон, а в женских (яичниках) – эстроген и прогестерон, которые контролируют все изменения, происходящие в матке на протяжении менструального цикла и беременности.
Выпадение каждого из компонентов гормональной регуляции из общей системы нарушает единую цепь регуляции функций организма и приводит к развитию различных патологических состояний.
Патология эндокринной системы выражается заболеваниями и патологическими состояниями, в основе которых лежат гиперфункция, гипофункция или дисфункция желез внутренней секреции.
Среди наиболее распространенных эндокринных заболеваний и патологических состояний следует отметить диабет сахарный и несахарный, зоб диффузный токсический (тиреотоксикоз), гипотиреоз, надпочечниковая недостаточность, нарушения функции половых желез и другие.
В человеческом организме ежесекундно протекает масса самых разных биохимических превращений, от которых зависит функционирование не только отдельных органов и систем, но и организма в целом. Они необходимы для правильного протекания абсолютно всех физиологических процессов, начиная от синтеза необходимых веществ, изменения настроения и заканчивая зарождением новой жизни. Все это находится под контролем эндокринной системы, основными «агентами» которой являются гормоны.
Эндокринная система и гормоны: что это
Эндокринная система представляет собой целый комплекс взаимосвязанных между собой органов и эндокринных желез, синтезирующих гормоны. Они под руководством нервной системы регулируют течение огромного количества протекающих в организме биохимических превращений и работу внутренних органов посредством тех же гормонов.
Гормоны – биологически активные вещества, синтезирующиеся организмом в незначительных количествах и отвечающие за передачу информации другим органам, не меняя своей природы и не вступая напрямую в различные биохимические превращения.
Элементами эндокринной системы являются как непосредственно железы внутренней секреции (поджелудочная, щитовидная, паращитовидные железы), так и отдельные органы, а также части головного мозга, включая гипофиз, гипоталамус, эпифиз, тимус, надпочечники, гонады (яички у мужчин и яичники у женщин). Даже жировая ткань является гормонпродуцирующим органом. Кроме того, эндокринные клетки есть и в ряде других органов, включая сердце, почки и пр.
Каждый из них ответственен за продукцию конкретного гормона, который выделяется в кровь и с ней доставляется непосредственно в органы и ткани мишени, запуская или останавливая протекание того или иного процесса. Благодаря этому не только обеспечивается выполнение важных для жизнедеятельности процессов, но и способность организма чутко подстраиваться под изменения условий внутренней и внешней среды, расти и развиваться.
Взаимодействие гормонов с тканями осуществляется главным образом по принципу обратной связи. То есть синтезированной эндокринной железой гормон доставляется к клеткам-мишеням, запускает определенный процесс, что приводит к выработке другого гормона другой железой, который воздействует на источник продукции первого, давая знать, что нужный процесс осуществлен и тем самым тормозя его синтез. Таким образом, все гормоны и, соответственно, эндокринные органы тесно взаимосвязаны между собой и чутко реагируют на изменения в работе друг друга. Поэтому при возникновении нарушений в одном из органов эндокринной системы неизбежно страдает весь организм.
Таким образом, баланс гормонов очень важен для организма, но он может нарушаться на фоне действия различных факторов, в числе которых:
К сожалению, с подобными факторами может столкнуться каждый человек, поскольку избежать их в условиях современной жизни практически невозможно. Поэтому и нарушения гормонального баланса сегодня встречаются крайне часто, что приводит к неблагоприятным цепным изменениям в работе организма, нарушению протекания множества обменных процессов и развитию самых разнообразных заболеваний, осложнения которых способны приводить даже к летальным последствиям. А потому любые изменения в гормональном фоне требуют медикаментозной коррекции.
Тем не менее мужской организм более стабилен с точки зрения поддержания нормального гормонального фона. У женщин же он может колебаться в силу физиологических изменений, в частности при наступлении беременности, во время грудного вскармливания и при наступлении менопаузы. Кроме того, женский гормональный фон регулярно изменяется в течение каждого менструального цикла, чем объясняется тот факт, что сдавать анализы на женские половые гормоны необходимо строго в определенные дни цикла. В противном случае полученные данные могут быть неинформативными.
Во избежание развития различных заболеваний, обусловленных изменениями гормонального фона, важно его своевременно корректировать, в том числе и при физиологических изменениях, обусловленных менопаузой, поскольку дефицит эстрогенов повышает риск развития не только заболеваний половых органов, но и онкологии.
Сегодня известно более 60 различных гормонов, в число которых входят и половые. Женские половые гормоны называют эстрогенами, мужские – андрогенами. Тем не менее, эта градация довольно условна, поскольку в женском организме синтезируются как эстрогены, так и андрогены, точно так же, как и в мужском. Более того андрогены выступают в качестве основы для синтеза эстрогенов у женщин и играют важную роль в поддержании гомеостаза. Рассмотрим подробнее органы эндокринной системы и их основные гормоны.
Гипофиз и гипоталамус
Гипоталамус является своеобразным связующим звеном между эндокринной и нервной системой, поскольку он одновременно принадлежит к обеим. Именно он контролирует и объединяет эндокринные механизмы регуляции с нервными. В нем в ответ на получаемые от центральной и вегетативной нервной системы сигналы синтезируются так называемые нейрогормоны, которые ответственны за регуляцию выработки собственных гормонов другими эндокринными железами. Он же контролирует работу гипофиза, являющегося центральным органом эндокринной системы и оказывающего наибольшее влияние на деятельность остальных ее составляющих.
Именно гипоталамус способен отдать гипофизу команду усилить или замедлить продукцию всех остальных гормонов в организме.
Адренокортикотропный гормон
Адренокортикотропный гормон (АКТГ) представляет собой гормон пептидного происхождения, который синтезируется передней долей гипофиза под влиянием вырабатываемых гипоталамусом нейрогормонов. Он ответственен за инициацию синтеза кортизола в надпочечниках, а также андрогенов, т. е. мужских половых гормонов. При этом адренокортикотропный гормон, который еще называют кортикотропином, способствует повышению чувствительности периферических тканей к действию кортикостероидов. В меньшей степени он ответственен за протекание биохимических процессов, отвечающих за образование костной ткани остеобластах.
Уровень АКТГ может колебаться под действием стресса, физических нагрузок, а также изменяется во время сна, беременности и зависит от фазы менструального цикла.
Нормой считается содержание АКТГ в крови в пределах от 0 до 46 пк/мл. Физиологический пик его выработки приходится на 6—8 часов, а минимум — на 18—23 часа. Его концентрация может повышаться при:
Причиной повышения содержания АКТГ в крови может быть прием препаратов, содержащих глюконат кальция, инсулин, вазопрессин, эстрогены, кортикостероиды, спиронолактон, литий, метоприрон, этиловый спирт.
При длительном сохранении повышенной выработки АКТГ может наблюдаться увеличение размеров надпочечников, а также накапливание в их коре холестерина, аскорбиновой и пантотеновой кислоты, что приведет к ее разрастанию.
Снижение уровня АКТГ может быть следствием:
Вазопрессин (антидиуретический гормон)
Вазопрессин – пептидный гормон, который синтезируется задней долей гипофиза. Его основной задачей является сужение кровеносных сосудов, что является одним из механизмов регуляции уровня кровяного давления, а именно способствует его повышению. Также вазопрессин ответственен за обратное всасывание воды в почках, что приводит к уменьшению объема отводящейся мочи и поддержанию нормального водно-солевого обмена. Благодаря этому свойству вазопрессин и заслужил свое второе название – антидиуретический гормон.
При дефиците вазопрессина возможно развитие несахарного диабета.
Гормон роста
Соматотропин или гормон роста продуцируется гипофизом и является основным регулятором процесса роста и развития человека. Поддержание его выработки на должном уровне наиболее важно для детей в период с рождения до полового созревания, поскольку от него во многом зависит рост костей. У взрослых он сохраняется и отвечает за регуляцию плотности костей, поддержание мышечной массы, а также участвует в обмене жирных кислот.
Самый высокий уровень соматотропина в крови обычно наблюдается в ночное время. В норме у мужчин его концентрация составляет 0—3 нг/мл, у женщин – 0—8 нг/мл.
Недостаток гормона роста приводит к задержке физического развития детей, что может быть обусловлено опухолями и травмами гипофиза, перенесением менингита или рядом врожденных патологий. У взрослых дефицит соматотропина может приводить к повышению хрупкости костей, снижению объема мышц и концентрации липидов.
Избыток соматотропина наблюдается при опухолях гипофиза, которые обычно имеют доброкачественную природу. Это может выступать причиной гигантизма, формирования грубых черт лица, слабости, замедления полового развития, а у взрослых – акромегалии.
Лютеинизирующий гормон
Лютеинизирующий гормон (ЛГ) – гонадотропный гормоны передней доли гипофиза, который активизирует выработку половых гормонов как у женщин, так и у мужчин. Он стимулирует синтез эстрогена и прогестерона, а также провоцирует разрыв созревшего фолликула в яичнике и наступление овуляции. При этом ЛГ тесно взаимосвязан с эстрогенами, поэтому при колебаниях их уровня возможно и изменение концентрации ЛГ. У мужчин ЛГ влияет на клетки семенников, стимулирую в них продукцию тестостерона.
Повышение синтеза лютеинизирующего гормона возможно при возникновении:
Уровень ЛГ у женщин напрямую зависит от фазы менструального цикла. В норме он резко повышается с наступлением менопаузы.
В качестве симптомов избытка ЛГ могут выступать частые головные боли, одышка, слабость, нарушения менструального цикла и признаки избытка эстрогенов.
Дефицит гормона наблюдается при нарушении работы гипофиза, выраженном недостатке веса вплоть до анорексии, сильном стрессе. В таких ситуациях могут отмечаться нарушения работы ЖКТ, слабость.
Фолликулостимулирующий гормон
Фолликулостимулирующий гормон или ФСГ представляет собой гликопротеиновый гормон, синтезируемый в передней доле гипофиза и принимающих непосредственное участие в регуляции деятельности половых желез. Его выработку активизирует снижение концентрации половых гормонов, а угнетение – повышение их уровня. В норме уровень ФСГ резко возрастает перед началом полового созревания при развитии вторичных половых признаков.
С установлением менструального цикла у женщин гормон активизирует процесс созревания фолликулов в яичниках и подготавливает их к действию ЛГ, а также стимулирует синтез эстрогенов, т. е. взаимодействует с ними по принципу обратной связи. У мужчин ФСГ оказывает влияние на развитие семенных канальцев и возрастание уровня тестостерона, а также активизирует формирование и созревание спермы в яичках.
Избыток ФСГ возникает при патологиях почек, опухолях гипофиза, алкоголизме, первичной недостаточности яичек, гипогонадизме, эндометриозе. Это сопровождается у женщин прорывными маточными кровотечениями в отсутствии прямой зависимости от фазы менструального цикла или же отсутствием менструации, частыми головными болями.
Дефицит ФСГ может присутствовать при поликистозе яичников, патологиях гипоталамо-гипофизарной системы, истощении, анорексии, карликовости. В таких ситуациях нарушается менструальный цикл, возникают инфекционные или обостряются хронические заболевания половых органов, может возникнуть бесплодие.
Окситоцин
Окситоцин представляет собой нейропептид, накапливающийся в задней доле гипофиза и ответственный за сокращение мышц матки и протоков молочных желез, что приобретает особенную важность во время родов и последующего грудного вскармливания. Кроме того, окситоцин еще называют гормоном доверия, поскольку при увеличении его содержания в крови повышается уровень эмпатии и расположения.
Пролактин
Пролактин – еще один гормон гипофиза, который стимулирует нормальное развитие молочных желез, выработку молока при беременности, а также ответствен за поддержание лактации после родов. Кроме того, он регулирует синтез прогестерона и угнетает продукцию ФСГ, чем обеспечивает сохранение регулярности менструального цикла.
Высокая концентрация пролактина характерна для:
Это приводит к развитию бесплодия, аменореи (отсутствию менструаций) и галактореи (образованию грудного молока вне наступления беременности и лактации). Это может сопровождаться дискомфортом в груди и головными болями.
В норме повышенный уровень пролактина наблюдается после родов при сохранении грудного вскармливания, что оказывает ановуляторное действие на яичники и снижает вероятность наступления беременности.
Дефицит гормона возникает при недостаточности гипофиза, что типично для:
При снижении концентрации пролактина наблюдается повышенное потоотделение, сильная жажда. Если же у женщины синдром Шихана, происходит прекращение лактации, а затем постепенное уменьшение размера молочных желез, снижение веса, нарушение менструального цикла, снижение либидо.
Тиреотропный гормон
Тиреотропный гормон или ТТГ, прежде всего, отвечает за выработку гормонов щитовидной железы, ответственных за поддержание нормального уровня энергии. Поэтому при изменениях его выработки немедленно происходит нарушение синтеза тиреоидных гормонов, что приводит к развитию соответствующих заболеваний. Причинами нарушения продукции ТТГ гипофизом являются патологии гипоталамуса, а также щитовидной железы. Поэтому повышенные концентрации ТТГ в крови обнаруживаются при:
Дефицит ТТГ характерен для диффузного токсического зоба, болезни Пламмера, гипертиреоза беременных, а также аутоиммунного тиреоидита и кахексии.
Щитовидная железа
Щитовидная железа представляет собой небольшую железу внутренней секреции, расположенную на передней поверхности шеи и состоящей из двух половин, объединенных между собой перешейком. Она продуцирует те самые тиреоидные гормоны, которые имеют тесную взаимосвязь с ТТГ.
Тиреоидные гормоны представляют собой биологически активные вещества, в молекулах которых присутствует йод. Это тироксин (Т4) и трийодтиронин (Т3), которые регулируют процессы роста и развития организма, а также участвуют в регуляции скорости метаболизма. Они повышают потребность тканей в кислороде, а также способствуют повышению артериального давления, частоты и силы сердечных сокращений.
От тиреоидных гормонов зависит энергичность человека, его психологическая энергия и скорость протекания когнитивных процессов. Также они способствуют образованию глюкозы и в печени и ее использованию клетками, при этом они подавляют накопление гликогена. Кроме того, тиреоидные гормоны способствуют более быстрому разложению жира и препятствуют образованию нового.
Паращитовидные железы
Паращитовидные железы – крошечные парные эндокринные железы, расположенные за щитовидной железой. Их основной задачей является синтез паратгормона, который необходим для обеспечения правильного формирования костей и синтеза витамина D. Также он принимает участие в выведении кальция и фосфора вместе с мочой.
Поджелудочная железа
Поджелудочная железа расположена в брюшной полости и является не только железой внутренней секреции, но и органом пищеварительной системы. Но ее гормонам отводится особенно большая роль в регуляции белкового, жирового и особенно углеводного обмена. К их числу принадлежат:
Надпочечники
Надпочечники – парные органы эндокринной системы, расположенные непосредственно над почками. Основными гормонами, синтезируемыми ими, являются:
Функционирование надпочечников контролируется гипофизом и гипоталамусом.
Половые гормоны
Половые гормоны всех видов вырабатываются и у мужчин, и у женщин. Но у мужчин преобладают андрогены, а у женщин – эстрогены. Синтезируются они частично в надпочечниках, но в основном в яичниках и яичках.
Прогестерон
Прогестерон синтезируется образовавшимся после разрыва фолликула и наступления овуляции желтым телом. Это временная эндокринная железа, которая постепенно рассасывается. Прогестерон ответственен за подготовку эндометрия (внутреннего слоя матки) к прикреплению оплодотворенной яйцеклетки. Также он задействован в подготовке молочных желез к продукции грудного молока.
Причинами повышения уровня прогестерона выступают кисты желтого тела, опухоли яичников и матки, нарушения функционирования надпочечников, ХПН. При избытке прогестерона наблюдаются:
Дефицит прогестерона наблюдается при патологиях гипофиза, провоцирующих снижение ЛГ, маточных кровотечениях, сальпингоофорите. В таких ситуациях менструации затягиваются или прекращаются. При этом наблюдается увеличение сексуального влечения.
Эстрогены
Эстрогены синтезируются в яичниках у женщин, а у мужчин в яичках. У женщин они управляют развитием женских половых органов и вторичных половых признаков, а у мужчин ответственны за регуляцию деятельности простаты и яичек. Кроме того, эстрогены участвуют в жировом и минеральном обмене.
Избыток эстрогенов в организме возникает при ожирении, попадании в организм ксеноэстрогенов, дисфункции щитовидной железы, гипотиреозе. Повышение уровня эстрогенов сопровождается:
Дефицит эстрогенов в организме может наблюдаться при:
Если эстрогена вырабатывается в организме недостаточно, это может приводить к оволосению по мужскому типу, огрубению голоса, а также нарушению менструального цикла вплоть до отсутствия менструации. При дефиците эстрогенов наблюдается снижение работоспособности, слабость, нарушения сна, возникает раздражительность и пропадает сексуальное влечение.
Тестостерон
Тестостерон – мужской половой гормон, ответственный за формирование вторичных половых признаков и репродуктивную функцию. У мужчин он синтезируется в яичках, что контролируется ЛГ, и в небольших количествах – в надпочечниках. У женщин же продуцируют тестостерон надпочечники и в малых количествах яичники.
На уровень тестостерона влияет витамин D, который, как было обнаружено недавно, так же является гормоном и антиоксидантом. Но снижение его концентрации чаще всего обусловлено патологиями гипофиза и гипоталамуса, травмами яичек, бесплодием или недоразвитием яичек. Избыток тестостерона может свидетельствовать об опухолях в яичках или надпочечниках, гипертиреозе, поликистозе яичников.
Существует еще множество других гормонов, каждый из которых выполняет свою функцию в организме и важен для него. Это и мелатонин, отвечающий за нормальный сон, и ренин с ангиотензином, обеспечивающие контроль над артериальным давлением, и многие другие.
Заместительная гормональная терапия: стоит ли бояться?
Заместительная гормональная терапия или ЗМТ – основной способ восстановления нормального гормонального фона при недостаточном синтезе организмом собственных. Как правило, она назначается пожизненно и позволяет избежать не только серьезных, но иногда и необратимых изменений в организме.
Тем не менее в обществе сформировалось понятие, что гормоны – это нечто плохое, что обязательно вызывает набор веса и другие нежелательные последствия. В действительности при правильном подборе дозировки ожидать подобных явлений не стоит, поскольку поступающий в организм извне гормон заменяет собственные, встраиваясь в цепь биохимических превращений и никоим образом не оказывая отрицательного влияния на деятельность организма. Напротив, он заменяет собой недостающий в организме собственный гормон, чем обеспечивает правильное протекание контролируемых им процессов.
Действительно ЗМТ обычно назначается пожизненно, но это обусловлено не ее особенностями, а невозможностью устранить средствами современной медицины причину дефицита синтеза собственного гормона в организме. В частности, такая потребность существует при:
В ряде случаев гормональная терапия назначается временно. Это показано при наличии возможности восстановить правильную работу гормонпродуцирующего органа, например, за счет удаления опухоли, устранения воспалительного процесса и т. д.
Автор статьи
Моя авторская методика коррекции сегментарной иннервации помогает восстановить нормальную работу внутренних органов с центральной нервной системой. Более 23 лет я успешно применяю ее в лечении своих пациентов.
Оглавление темы «Эндокринные железы. Основы эндокринологии.»:
Эндокринные железы. Основы эндокринологии. Система обратной связи
В результате обмена веществ, происходящего под влиянием нервной системы, в организме образуются химические соединения, которые, обладая высокой физиологической активностью, регулируют нормальное отправление функций организма и участвуют в процессе его роста и развития — химическая регуляция.
У простейших одноклеточных организмов, не имеющих нервной системы, регуляция всех функций организма и связь его с внешним миром осуществляются только с помощью химических веществ, содержащихся в жидкостях организма, — химическая, или гуморальная, регуляция.
При этом у одноклеточных циркуляция физиологически активных веществ совершается диффузно, по плазме, а у многоклеточных — по системе специальных трубок — сосудов. С появлением нервной системы постепенно складывается нейрогуморальная регуляция, при которой устанавливается тесное взаимодействие химически активных веществ и нервных элементов.
Активные химические вещества, вырабатываясь в процессе обмена веществ под влиянием нервной системы, одновременно становятся возбудителями последней — медиаторами, т. е. передатчиками нервного возбуждения (например, норадреналин, ацетилхолин, гистамин и др.).
Они действуют на большом расстоянии от места их образования (дистантные активаторы) и распространяются быстро по кровеносной и лимфатической системам. Эти дистантные активаторы вырабатываются в специально развивающихся органах — железах внутренней секреции, или эндокринных железах.
Эндокринными железами (endo — внутрь, crino — выделяю), или железами внутренней секреции, называются такие железы, которые не имеют выводного протока (беспроточные железы, glandulae sine ductibus) и свой секрет выделяют непосредственно в кровеносную систему, в противоположность железам внешней секреции, секрет или экскрет которых изливается на поверхность кожи (потовые, сальные железы) или слизистых оболочек (слюнные железы, печень и т. д.).
Выделение гормонов в кровь происходит железами внутренней секреции (ЖВС), которые не имеют выводных протоков, и также эндокринной частью желез смешанной секреции (ЖСС).
Гормоны
К ЖВС относятся гипофиз, эпифиз, щитовидная железа, паращитовидные железы, тимус (вилочковая железа), надпочечники.
По химической природе гормоны подразделяются на три основные группы: белковые (пептидные), производные аминокислот и стероидные гормоны, образующиеся из холестерина.
Нейрогуморальная регуляция
В основе физиологии организма заложен единый нейрогуморальный механизм регуляции функций: то есть контроль осуществляется как нервной системой, так и различными веществами через жидкие среды организма. Разберем функцию дыхания, как пример нейрогуморальной регуляции.
При повышении концентрации углекислого газа в крови возбуждаются нейроны дыхательного центра в продолговатом мозге, что увеличивает частоту и глубину дыхания. В результате углекислый газ начинает активнее удаляться из крови. Если концентрация углекислого газа в крови падает, то непроизвольно происходит урежение и снижение глубины дыхания.
Пример с нейрогуморальной регуляцией дыхания далеко не единственный. Взаимосвязь нервной и гуморальной регуляции настолько близка, что они объединяются в нейроэндокринную систему, главным звеном которой является гипоталамус.
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Эндокринная система — самая загадочная из всех систем человеческого тела, и гормональные нарушения могут расстроить весь организм. Какова роль гормонов и насколько гормоны влияют на нашу жизнь? Что мы знаем об этой сложной сети взаимосвязанных эндокринных желез?
Эндокринная система — функции. Как работает эндокринная система
Работа эндокринной системы — контролировать все физиологические функции организма. Эта сложная сеть желез, расположенных в разных частях тела, отвечает за гомеостаз — внутренний баланс.
Наряду с нервной системой и регуляцией на тканевом уровне эндокринная система образует узкоспециализированный внутренний «процессор», который контролирует все наши жизненно важные параметры. Когда какая-либо часть гормонального компьютера выходит из строя, мы сразу чувствуем это.
Каковы симптомы гормональных нарушений? Могут возникать неприятные ощущения со стороны разных органов, бывает также, что другие железы пытаются взять на себя функции тех, которые перестали работать должным образом.
Гормоны — виды и функции гормонов в организме
Описывая наиболее важные гормоны для нашего функционирования, путь через лабиринт человеческого тела начинается сверху, то есть от мозга, и заканчивается женскими и мужскими гонадами.
Гипоталамус и гормоны гипоталамуса (вазопрессин и окситоцин)
Эта часть промежуточного мозга контролирует такие функции организма, как циркадный ритм, сон, голод и жажду, а также температуру тела. Именно в гипоталамусе расположен центр удовольствия, и регулируются индивидуальные либидо и сексуальные предпочтения.
Гипоталамус синтезирует около 20 соединений, которые являются гормонами или нейротрансмиттерами. Наиболее известны: вазопрессин и окситоцин.
Гипофиз стимулирует рост длинных костей и рост тела, регулирует обмен веществ, отвечает за секрецию и поддержание молока у кормящих матерей, стимулирует расщепление лишних жиров, а также влияет на развитие и функцию яичек или яичников. Вырабатываемые им гормоны гипофиза включают пролактин, эндорфины, гормон АКТГ и гормон ТТГ.
Шишковидная железа — производит мелатонин — гормон сна
Считается, что именно шишковидная железа регулирует основные биологические часы человека, поскольку она производит мелатонин — гормон, отвечающий за циркадный ритм. Дефицит мелатонина сказывается не только на проблемах со сном.
Гормоны щитовидной железы влияют на функционирование всего организма, и наиболее важными из них являются: трийодтиронин (FT3), свободный тироксин (FT4), кальцитонин.
Работа щитовидной железы регулируется тиреотропином (ТТГ), вырабатываемым гипофизом, а также гипертиреозом и гипотиреозом, включая Болезнь Хашимото — одно из самых распространенных гормональных нарушений на сегодняшний день.
Наиболее важные гормоны, вырабатываемые тимусом, включают: Тимозин — тималин; обладает противораковыми свойствами, ускоряет созревание Т-лимфоцитов, и тимопоэтин — также ускоряет созревание Т-лимфоцитов.
Наиболее важными гормонами поджелудочной железы являются глюкагон, который стимулирует повышение уровня глюкозы в крови, и инсулин, снижающий уровень сахара в крови.
У здорового человека инсулин работает с глюкагоном, поддерживая необходимый уровень энергии в организме. Самым известным заболеванием поджелудочной железы является диабет, вызванный нарушением секреции инсулина или чувствительностью тканей к гормону. Наиболее распространенными типами диабета являются диабет 1 типа, сахарный диабет 2 типа.
Надпочечники — гормоны надпочечников
Кортикальная часть надпочечников вырабатывает стероидные гормоны, включая кортизол и альдостерон. Основные гормоны — это прежде всего адреналин и норадреналин.
Мужские гонады, расположенные в мошонке, выполняют две основные функции — репродуктивную (производство спермы) и гормональную, как место производства мужских половых гормонов. Их работу регулируют гормоны, вырабатываемые гипофизом.
Мужские андрогены — это стероидные гормоны, из которых играет наиболее важную роль тестостерон, Его деятельность включает формирование пола и развитие вторичных половых признаков, стимулирование развития и созревания спермы, регулирование полового влечения.
Женские гормоны
Женские гонады выполняют две функции: репродуктивную и гормональную. Их работу контролирует гипофиз. Самые важные женские гормоны — эстрогены, прогестерон и релаксин.
Гормональные нарушения
Обо всех тревожных симптомах, которые могут свидетельствовать о нарушении функции одной или нескольких желез внутренней секреции, следует сообщать эндокринологу. В любом случае такие нарушения лечит только этот врач, и при обращении к другому специалисту, он все-равно перенаправит пациента к гормональному специалисту — эндокринологу.
Добавить комментарий Отменить ответ
Вы должны быть авторизованы, чтобы оставить комментарий.
Популярные записи и страницы
Новые статьи
Анализ на уровень ацетаминофена. Лицензия freepik. Автор фото freepik
Воспаление щитовидной железы. Лицензия freepik. Автор фото benzoix
Ранняя диагностика рака шейки матки. Лицензия freepik. Автор фото stefamerpik
Гарднерелла и кандида. Лицензия freepik. Автор фото freepik
Гиперпролактинемия. Лицензия freepik. Автор фото wayhomestudio
Гиперандрогения. Лицензия freepik. Автор фото karlyukav
Профилактика простатита. Лицензия freepik. Автор фото cookie_studio
Профилактика простатита. Лицензия freepik. Автор фото benzoix
Опасный панкреатит. Лицензия freepik. Автор фото KamranAydinov
Скорая гинекологическая помощь. Лицензия freepik. Автор фото gpointstudio
Оглавление темы «Эндокринные железы. Основы эндокринологии.»:
Общие анатомо-физиологические свойства эндокринных желез
Несмотря на различия в форме, величине и положении отдельных эндокринных желез, последние обладают некоторыми общими анатомо-физиологическими свойствами. Прежде всего они все лишены выводных протоков. Так как выделение секрета совершается в кровеносную систему, то эндокринные железы обладают широко развитой сетью кровеносных сосудов. Эти кровеносные сосуды пронизывают железу в различных направлениях и играют роль, аналогичную роли протоков желез внешней секреции. Вокруг сосудов располагаются железистые клетки, выделяющие свой секрет в кровь.
Кроме богатства кровеносными сосудами, можно отметить также особенности со стороны капиллярной сети. Капиллярная сеть этих желез может состоять из очень неравномерно расширенных капилляров, так называемых синусоидов, эндотелиальная стенка которых непосредственно без промежуточной соединительной ткани прилегает к эпителиальным клеткам железы. Кроме того, местами стенка синусоидов даже прерывается и эпителиальные клетки вдаются прямо в просвет сосуда.
Продукты секреции эндокринных желез носят общее название инкретов, или гормонов (hormao — возбуждаю). Секретируемое вещество может оказывать специфическое действие на какой-либо орган или ткань. Например, секрет щитовидной железы имеет прямое влияние на обмен, исчезновение его из организма вызывает расстройство питания. Другие вещества, выделяемые эндокринными железами, оказывают влияние на рост и развитие организма. Несмотря на то что гормоны поступают в кровь в небольших количествах, они отличаются сильным физиологическим действием.
Связь эндокринных желез с нервной системой
Связь эндокринных желез с нервной системой двоякого рода. Во-первых, железы получают богатую иннервацию со стороны вегетативной нервной системы; ткань таких желез, как щитовидная, надпочечники, яички, пронизана множеством нервных волоконец.
Во-вторых, секрет желез в свою очередь действует через кровь на нервные центры. Кроме того, нейроны гипоталамуса вырабатывают особые нейросекреторные вещества — нейрогормоны, поступающие в заднюю долю гипофиза по аксонам гипоталамогипофизарного пучка. Связь между гипоталамусом и передней долей гипофиза осуществляется через портальные сосуды гипофиза, по которым в него поступают также нейрогормоны.
Отмеченные конструктивные и функциональные связи гипофиза и гипоталамуса объясняются их общим происхождением.
Тесная связь желез внутренней секреции и нервной системы выражена и в том, что многие из них развиваются в связи с нервной системой. Так, задняя доля гипофиза и эпифиз являются выростами мозга, мозговое вещество надпочечника развивается в связи с симпатическими узлами (часть вегетативной нервной системы), чем обусловлено действие его гормонов на симпатическую систему, а последняя тесно связана с хромаффинными органами.
ЭНДОКРИННАЯ СИСТЕМА (греческий endon внутри + krino отделять, выделять) — система, состоящая из специализированных структур, расположенных в центральной нервной системе, различных органах и тканях, а также желез внутренней секреции, вырабатывающих специфические биологически активные вещества (гормоны). Наряду с нервной системой эндокринная система участвует в регуляции функций различных систем, органов и метаболических процессов.
Регулирующее влияние эндокринной системы осуществляет через гормоны (см.), для которых характерны высокая биологическая активность (они оказывают действие в концентрациях 10-11 — 10
7 М) и дистантность действия (вдали от места образования). Биологическое значение гормонов заключается в гуморальном обеспечении координации и интеграции процессов жизнедеятельности организма: роста, развития, размножения, адаптации, поведения (см. Гормональная регуляция, Гуморальная регуляция).
К эндокринной системе человека относят: секреторные ядра гипоталамуса (см.), гипофиз (см.), шишковидное тело (см.), щитовидную железу (см.), вилочковую железу (см.), пара-щитовидные железы (см.), надпочечники (см.), мужские и женские половые железы (см. Половые железы), эндокринные отделы поджелудочной железы (см.) и желудочно-кишечного тракта.
Эндокринная система возникла на самых ранних этапах эволюции многоклеточных животных. Наличие нейроэндокринных функций обнаруживается уже у кишечнополостных. Развитие эндокринной системы характеризовалось усложнением строения, функции, изменением топографии желез внутренней секреции, а также химические строения гормонов, особенно белково-пептидных (см. Белково-пептидные гормоны).
Закладка, дифференцировка и функционирование эндокринной системы происходят на ранних стадиях эмбриогенеза. В постнатальном периоде наблюдается дальнейшее развитие, а также интеграция гормональных эффектов. К моменту рождения ребенка все звенья эндокринной системы морфологически сформированы, но размеры, форма, масса и микроархитектоника их подвергаются в процессе постнатального развития значительным преобразованиям. В первые годы жизни возрастные изменения всех органов эндокринной системы характеризуются дальнейшей дифференцировкой структур, ответственных за специфическую функцию, а также интенсивным развитием внутриорганных кровеносных сосудов и стромы. В период от 5 до 8 лет темпы структурных преобразований снижаются. Началу полового созревания предшествуют значительные изменения строения гипофиза, что ведет к усилению его гонадотропной функции. К 11 годам корреляционные соотношения между отдельными органами и межсистемные связи усиливаются. В половых железах у девочек нарастает количество зрелых фолликулов, появляются желтые тела; половые железы у мальчиков дифференцируются, в них образуются сперматозоиды. В период от 11 до 14 лет структурные преобразования происходят в аденогипофизе, надпочечниках, щитовидной и половых железах. К 16 годам строение органов эндокринной системы близко к их строению у людей зрелого возраста.
В эндокринной системе выделяют центральное звено — секреторные ядра гипоталамуса, шишковидное тело, которые получают информацию из центральной нервной системы и с помощью нейросекреции переключают ее на аденогипофиз, непосредственно участвующий в регуляции зависимых от него эндокринных органов. Периферическое звено эндокринной системы составляют: 1) железы, зависимые от аденогипофиза: щитовидная железа, кора надпочечников, а также гонады — яичник (см.) и яичко (см.); 2) железы, не зависимые от аденогипофиза: мозговая часть надпочечников, паращитовидные железы, околофолликулярные клетки щитовидной железы, а и |3-клетки островков поджелудочной железы, а также гормонпродуцирующие клетки желудочно-кишечного тракта, вилочковой железы.
Особое место в эндокринной системе занимает гипоталамо-гипофизарная система (см.), осуществляющая функции «эндокринного мозга». Гипоталамус в ответ на нервные импульсы и действие медиаторов образует гипоталамические нейрогормоны (см.), оказывающие стимулирующее (рилизинг-гормоны, или либерины) или тормозящее (статины) действие на переднюю долю гипофиза. Гипоталамические нейрогормоны специализированы и регулируют выработку определенных гормонов гипофиза: тиролиберин и тиростатин — ТТГ (см. Тиреопгропный гормон), соматолиберин и соматостатин — СТГ (см. Сомато-тпропный гормон). Через гипофизарные гормоны гипоталамус регулирует функцию периферических желез внутренней секреции (см.). Так, тиролиберин гипоталамуса сначала возбуждает секрецию ТТГ гипофиза, а последний, в свою очередь, стимулирует секрецию щитовидной железой тиреоидных гормонов. Точно так же осуществляется регуляция секреции коры надпочечников по функциональной оси кортиколибе-рин-адренокортикотропный гормон — глюкокортикоиды. В связи с этим принято говорить о единых функциональных системах: гипоталамус —гипофиз — щитовидная железа, гипоталамус — гипофиз — надпочечники. Основой регуляции таких систем является принцип положительной или отрицательной обратной связи (см. Обратная связь). Вместе с тем в самом гипоталамусе синтезируются, а затем секретируются некоторые гормоны, накапливающиеся в задней доле гипофиза: вазопрессин (см.), окситоцин (см.).
Эндокринная система включает также периферические железы внутренней секреции и внегипоталамические регуляторные комплексы, например систему ренин — ангиотензин — альдостерон (см. Альдостерон, Ангиотензин), метаболическую регуляцию (влияние содержания глюкозы в крови на секрецию инсулина островками поджелудочной железы), специализированные механизмы транспорта гормонов (транспортные белки типа транскортина, тироксинсвязывающих белков и др.), периферический обмен гормонов и, что особенно важно, рецепцию гормонов клетками-мишенями. Рецепторные специфические белки обусловливают избирательный прием, преобразование и инициацию действия гормонального сигнала (см. Рецепторы). Таким образом, каждый из компонентов гормональной регуляции имеет большое значение и выпадение его из общей системы приводит к развитию различных патологических состояний.
Патология эндокринной системы выражается различными заболеваниями и патологическими состояниями, в основе которых лежат гиперфункция, гипофункция или дисфункция желез внутренней секреции. Как правило, для патологии эндокринной системы характерны нарушения функции нескольких эндокринных желез, что связано с особенностями их регуляции. Заболевания отдельных эндокринных желез, относящихся к периферическому звену эндокринной системы, делят на первичные (поражения самой железы), вторичные (нарушение функции железы, связанное с поражением гипофиза) и третичные (нарушение функции железы, связанное с поражениями гипоталамуса).
Этиология и патогенез многих заболеваний эндокринной системы остаются во многом еще недостаточно изученными. Патология эндокринной системы может быть связана с нарушениями эмбриогенеза, генетическими и хромосомными аномалиями, воспалительными и опухолевыми процессами, иммунологическими расстройствами, травмами, нарушениями кровоснабжения, поражениями различных отделов нервной системы, нарушением тканевой чувствительности к гормонам. Среди наиболее распространенных заболеваний эндокринной системы следует отметить сахарный диабет (см. Диабет сахарный), ожирение (см.), эндемический зоб (см. Зоб эндемический), диффузный токсический зоб (см. Зоб диффузный токсический), гипотиреоз (см.) и нарушение функции половых желез (см. Яичко, Яичники).
См. также Железы внутренней секреции, Эндокринология.
Библиогр.: А ж и п а Я. И. Нервы желез внутренней секреции и медиаторы в регуляции эндокринных функций, М., 1981; Алешин Б. В. Гистофизиология гипоталамо-гипофизарной системы, М., 1971; Биохимия гормонов и гормональной регуляции, под ред. Н. А. Юдаева, М., 1976; Волкова О. В. и Пекарский М. И. Эмбриогенез и возрастная гистология внутренних органов человека, М., 1976; Ефимов А. С., Боднар П. Н. и Зелинский Б. А. Эндокринология, Киев, 1983; Левина С. Е. Формирование эндокринной системы в пренатальном развитии человека, М., 1976, библиогр.; Р о з е н В. Б. Основы эндокринологии, М., 1984; Р о-зен В. Б. и Смирнов А. Н. Рецепторы и стероидные гормоны, М., 1981; Руководство по клинической эндокринологии, под ред. В. Г. Баранова, JI., 1977; Руководство по эндокринологии, под ред. Б. В. Алешина и др., М., 1973; Старкова H. Т. Клиническая эндокринология, М., 1983; Физиология развития ребенка, под ред. В. И. Козлова и Д. А. Фарбер, с. 196, М., 1983; Физиология эндокринной системы, под ред. В. Г. Баранова и др., JI., 1979; Эндокринология и метаболизм, под ред. Ф. Фелига и др., пер. с англ., т. 1—2, М., 1985; Hormones in blood, ed. by С. H. Gray a. V. H. T. James, v. 1—5, L., 1979—1983; Lab-hart A. Klinik der inneren Sekretion, B.— N. Y., 1971; Textbook of endocrinology, ed. by R. H. Williams, Philadelphia a. o., 1981.
Эндокринная система состоит из желез внутренней секреции: гипофиза, щитовидной, околощитовидных, поджелудочной, надпочечников, половых. Эти железы выделяют гормоны — регуляторы обмена веществ, роста и полового развития организма.
Регуляция выделения гормонов осуществляется нервно-гуморальным путем. Изменение состояния физиологических процессов достигается посылкой нервных импульсов из ЦНС (ядер гипоталамуса) к некоторым железам (гипофизу). Выделяемые передней долей гипофиза гормоны регулируют деятельность других желез — щитовидной, половых, надпочечников.
Принято различать симпатоадреналовую, гипофизарно адренокортикальную, гипофизарно половую системы.
Симпатоадреналовая система ответственна за мобилизацию энергетических ресурсов. Адреналин и норадреналин образуются в мозговом веществе надпочечников и вместе с норадреналином, выделяющимся из нервных окончаний симпатической нервной системы, действует через систему «аденилатциклаза циклический аденозинмонофосфат (цАМФ)». Для необходимого накопления цАМФ в клетке требуется ингибировать цАМФ фосфодиэстеразу — фермент, катализирующий расщепление цАМФ. Ингибирование осуществляется глюкокортикоидами (инсулин противодействует этому эффекту).
Система «аденилатциклаза-цАМФ» действует следующим образом. Гормон током крови подходит к клетке, на наружной поверхности клеточной мембраны которой имеются рецепторы. Взаимодействие гормон рецептор приводит к конформации рецептора, т. е. активации каталитического компонента аденилатциклазного комплекса. Далее из АТФ начинает образовываться цАМФ, который участвует в регуляции метаболизма (расщеплении гликогена, активизации фосфофруктокиназы в мышцах, липолиза в жировых тканях), клеточной дифференциации, синтезе белков, мышечного сокращения (Виру А. А., 1981).
Гипофизарно-адренокортикальная система включает нервные структуры (гипоталамус, ретикулярную формацию и миндалевидный комплекс), кровоснабжение и надпочечники. В состоянии стресса усиливается выход кортиколиберина из гипоталамуса в кровоток. Это вызывает усиление секреции адренокортикотропного гормона (АКТГ), который током крови переносится в надпочечники. Нервная регуляция воздействует на гипофиз и приводит к секреции либеринов и статинов, а они регулируют секрецию тропных гормонов аденогипофиза АКТГ.
Механизм действия глюкокортикоидов на синтез ферментов может быть представлен следующим образом (по А. Виру, 1981).
1. Кортизол, кортикостерон, кортикотропин, кортиколиберин проходят через клеточную мембрану (процесс диффузии).
2. В клетке гормон (Г) соединяется со специфическим белком — рецептором (Р), образуется комплекс Г-Р.
3. Комплекс Г-Р перемещается в ядро клетки (через 15 мин.) и связывается с хроматином (ДНК).
5. Образование и РНК стимулирует синтез других видов РНК. Непосредственное действие глюкокортикоидов на аппарат трансляции состоит из двух этапов: 1) освобож-дения рибосом из эндоплазматической сети и усиления агрегации рибосом (наступает через 60 мин.); 2) трансляции информации, т. е. синтеза ферментов (в печени, в железах внутренней секреции, скелетных мышцах).
После выполнения своей роли в ядре клетки Г отцепляется от рецептора (время полураспада комплекса — около 13 мин.), выходит из клетки в неизменном виде.
На мембранах органов мишеней имеются специальные рецепторы, благодаря которым осуществляется транспорт гормонов в клетку. Клетки печени имеют особенно много таких рецепторов, поэтому глюкокортикоиды в них интенсивно накапливаются и метаболизируются. Время полужизни большинства гормонов составляет 20—200 мин.
Гипофизарно щитовидная система имеет гуморальные и нервные взаимосвязи. Предполагается ее синхронное функционирование с гипофизарно адренокортикальной системой. Гормоны щитовидной железы (тироксин, трийодтиронин, тиротропонин) положительно сказываются на процессах восстановления после выполнения физических упражнений.
Гипофизарно половая система включает гипофиз, кору надпочечников, половые железы. Взаимосвязь между ними осуществляется нервным и гуморальным путем. Мужские половые гормоны андрогены (стероидные гормоны), женские эстрогены. У мужчин биосинтез андрогенов осуществляется в основном в клетках Лейдига (интерстициальных) семенников (главным образом тестостерон). В женском организме стероиды образуются в надпочечниках и яичниках, а также коже. Суточная продукция у мужчин составляет 4-7 мг, у женщин — в 10—30 раз меньше. Органы мишени андрогенов — предстательная железа, семенные пузырьки, семенники, придатки, скелетные мышцы, миокард и др. Этапы действия тестостерона на клетки органов-мишеней следующие:
— тестостерон превращается в более активное соединение 5-альфа-дегидротестостерон;
— образуется комплекс Г-Р;
— комплекс активизируется в форму, проникающую в ядро;
— происходит взаимодействие с акцепторными участками хроматина ядра (ДНК);
— усиливается матричная активность ДНК и синтез различных видов РНК;
— активизируется биогенез рибо- и полисом и синтез белков, в том числе андрогенозависимых ферментов;
— увеличивается синтез ДНК и активизируется клеточное деление.
Важно заметить, что для тестостерона участие в синтезе белка необратимо, гормон полностью метаболизируется.
Гормоны, попадающие в кровь, подвергаются катаболизму (элиминации, разрушению) преимущественно в печени, причем некоторые гормоны при росте мощности интенсивность метаболизма, в частности глюкокортикоидов, возрастает.
Основой повышения тренированности эндокринной системы являются структурные приспособительные перестройки в железах. Известно, что тренировка приводит к росту массы надпочечников, гипофиза, щитовидной железы, половых желез (через 125 дней детренировки все возвращается к норме, Виру А. А., 1977). Отмечено, что увеличение массы надпочечников сочетается с повышением содержания ДНК, т. е. интенсифицируется митоз растет количество клеток. Изменение массы железы связано с двумя процессами синтеза и деградации. Синтез железы прямо пропорционально зависит от ее массы и обратно пропорционально — от концентрации гормонов в железе. Скорость деградации увеличивается с ростом массы железы и механической мощности, уменьшается — с повышением концентрации анаболических гормонов в крови.
Эндокринные заболевания лечит в Нижнем Новгороде врач-эндокринолог. Эндокринных заболеваний множество.
Как выявить эндокринные заболевания?
Симптомы эндокринных заболеваний коварны и схожи с другими заболеваниями.Эндокринная система в организме человека регулирует работу внутренних органов посредством выработки особых веществ – гормонов. Гормоны влияют на физические параметры человека, психическое и эмоциональное состояние человека и физиологические процессы в организме человека. Определить уровень гормонов в своем организме можно в Онли Клиник!
Если работа эндокринной системы дает сбой, то нарушается процесс выработки гормонов: гормоны вырабатываются в уменьшенном или увеличенном количестве, нарушаются процессы транспортировки или всасывания гормона, продуцируется аномальный гормон, вырабатывается устойчивость против гормонального действия.
Врачи-эндокринологи в Нижнем Новгороде констатируют нарушения в работе эндокринной системы человека, которые приводят к различным заболеваниям и нарушениям гормонального фона:
Симптомы эндокринных заболеваний, определяемые в Нижнем Новгороде доктором-эндокринологом. Эндокринная система включает в себя все железы внутренней секреции.
Среди основных симптомов эндокринных заболеваний в Нижнем Новгороде, врачи-эндокринологи Онли Клиник называют усталость, мышечную слабость, резкое изменение веса (его набор или похудение при неизменном рационе питания), боль в сердце, учащенное сердцебиение, лихорадку, потливость, перевозбудимость, сонливость, проблемы с мочеиспусканием, постоянное чувство жажды, повышенное артериальное давление, головные боли, проблемы с памятью, нарушение стула.
Все эти симптомы могут долгое время игнорироваться больным, или могут быть приняты за обычное переутомление. А тем временем болезнь может прогрессировать и проблемы с иммунной и гормональной системами нарастать.
Только обследование профессионального врача-эндокринолога, сдача необходимых анализов на гормоны смогут установить правильный диагноз и выявить причину недомогания.
Почему развиваются эндокринные заболевания в Нижнем Новгороде?
Есть люди, которые находятся в группе риска для заболеваний эндокринной системы.
Врачи-эндокринологи в Нижнем Новгороде называют такие факторы риска:
Выявление заболеваний эндокринной системы в Нижнем Новгороде.
Почему нужно обратиться в Онли Клиник?
Самостоятельно выявить эндокринное заболевание невозможно.
Только комплекс обследований и анализов смогут правильно установить диагноз.
Поэтому обратиться к врачу-эндокринологу в Онли Клиник в Нижнем Новгороде нужно обязательно при появлении симптомом эндокринных нарушений.
Врач-эндокринолог Онли Клиник проводит комплекс обследований эндокринной системы организма человека, на основании которых устанавливают диагноз:
Многие эндокринные заболевания являются наследственными. Это происходит из-за мутаций на уровне генов. Очень велик риск для ребенка заболеть, если оба или один родитель болеет каким-либо эндокринным заболеванием.
Эндокринные заболевания имеют последствия для всего здоровья человека
Гормоны играют важнейшую роль и в мужском, и в женском в организмах. Если нарушается выработка гормонов – это может привести к самым тяжелым последствиям для здоровья человека. Нарушения в работе эндокринной системы, в работе щитовидной железы, гормональный дисбаланс приводят к неправильной работе внутренних органов, обменных процессов, функций желез внутренней секреции, возникновению соматических нарушений и косметических дефектов.
При малейших подозрениях на эндокринное заболевание нужно срочно обратиться к врачу-эндокринологу в Нижнем Новгороде. Наличие эндокринного заболевания заставляет человека быть постоянно зависимым от прием лекарственных препаратов, гормонов. Эндокринные заболевания могут спровоцировать развитие других «болячек». Самолечение эндокринных заболеваний опасно для жизни!
Человек — сложнейшая биологическая система, состоящая из органов и тканей. Чтобы организм работал как одно целое, различные системы органов и тканей хорошо координировали друг с другом, и нужна эндокринная (гормональная) система.
Эндокринная система
Нейроэндокринная (эндокринная) система координирует и регулирует деятельность практически всех органов и систем организма, обеспечивает его адаптацию к постоянно изменяющимся условиям внешней и внутренней среды, сохраняя постоянство внутренней среды, необходимое для поддержания нормальной жизнедеятельности человека.
Эндокринная система так же взаимодействует с иммунной системой, обеспечивая человеку защиту от влияния «извне».
Гормоны — это вещества, которые в микроскопических концентрациях влияют на различные органы и ткани так, что те изменяют свой метаболизм. Например, запасают в тканях глюкозу или, наоборот, выбрасывают ее в кровь; вызывают учащение сердцебиения, ускорение или замедление роста человека и т. д.
Гипофиз
Самая главная эндокринная железа нашего организма — она регулирует выработку всех гормонов организма, выделяя статины и либерины — что-то вроде гормонов для гормонов, которые соответственно уменьшают/увеличивают выработку гормонов по всему организму.
Здесь вырабатываются собственные гормоны — например, соматостатин — гормон, который влияет на рост человека. Его недостаток или избыток приводят к карликовости или гигантизму.
Эпифиз
Регулирует половое созревание, продолжительность сна. Избыточное действие приводит к преждевременному половому созреванию. Недостаточное действие – к недоразвитию половых желёз и вторичных половых признаков.
Щитовидная железа
Эта железа — термостат для вашего метаболизма: он может увеличивать или уменьшать скорость сжигания калорий путем высвобождения или замедления выработки гормонов.
Паращитовидная железа
Регулирует обмен кальция и фосфора в организме. При избыточной функции усиливается выход кальция из костей в кровь и стимулируется выведение кальция и фосфатов почками.
Тимус (вилочковая железа)
Стимулирует развитие и формирование иммунной системы в детском возрасте. Если продолжает активно функционировать у взрослого человека, могут развиваться заболевания, при которых разрушаются собственные белки организма.
Надпочечники
Расположенные над вашими почками, эти железы выделяют гормоны, которые контролируют вашу реакцию «бороться или бежать» на стресс (кортизол и адреналин) и ваше кровяное давление (альдостерон) и многие другие функции.
Яичники женщин
Эти органы производят больше, чем яйцеклетки; Они производят и выпускают наиболее важные гормоны для развития женщин: эстроген, прогестерон и тестостерон. Они обеспечивают качество жизни, участвуют в беременности.
Яички мужчин
Выделяют во внешнюю среду сперматозоиды, а во внутреннюю – гормоны андрогены.
Эстроген
Симптомы нарушений обмена:
Избыточный вес; Жировые клетки действительно способствуют его увеличению, поэтому дополнительный вес может привести к слишком большому количеству эстрогена в организме. Избыток эстрогена у женщин может способствовать раку груди и матки.
Во время менопаузы, с другой стороны, все женщины испытывают естественное снижение уровня эстрогена, наряду с побочными эффектами, которые варьируются от приливов до головной боли и боли в суставах.
Избыток эстрогенов в мужском организме приводит снижению тестостерона, ожирению, гинекомастии, депрессии, снижению либидо и половой дисфункции. Повышенное содержание эстрогенов у мужчин связано обычно с возрастом и неправильным образом жизни. Часто это результат употребления продуктов питания содержащих большое количество эстрогенов.
Что делать?
Потеря веса может улучшить ваш баланс эстрогенов и одновременно снизить риск развития рака. (Женщина с избыточным весом или страдающая ожирением в постменопаузе, которая теряет всего 5 процентов своего веса, может потенциально снизить риск рака молочной железы на 50 процентов). Людям со слишком большим количеством эстрогенов следует избегать продуктов с высоким содержанием фитоэстрогенов (растительных соединений, которые похожи на эстрогены), такие как продукты из сои, пиво и т.д.
При резком беспричинном наборе веса следует немедленно проконсультироваться у врача!
Для женщин в менопаузе могут помочь травяные добавки, и специализированные сборы. Консультация эндокринолога поможет определить, подходит ли вам гормональная терапия.
Тестостерон
Симптомы нарушений обмена:
В годы, предшествующие менопаузе, женщина может страдать от снижения тестостерона, так как ее яичники и надпочечники замедляют выработку половых гормонов. Это может объяснить, почему многие женщины испытывают снижение либидо в течение этого периода своей жизни. Избыток тестостерона, однако, может быть результатом состояния, называемого синдромом поликистозных яичников (СПКЯ); Возможные симптомы включают нерегулярные периоды, облысение по мужскому типу, углубление голоса и избыток волос на теле.
Что делать?
Если вас беспокоит низкое либидо, попробуйте включить в свой рацион больше цинковых продуктов, таких как устрицы и семена кунжута (цинк, по-видимому, связан с увеличением уровней тестостерона), и попросите своего врача о необходимости гормонотерапии. Для лечения СПКЯ ваш врач может рекомендовать прием противозачаточных таблеток, содержащих синтетические гормоны, которые снижают выработку тестостерона. Также важно избегать рафинированного сахара и других углеводов в вашем рационе и есть больше клетчатки (которая противостоит повышению сахара в крови и способствует выведению избыточных сахаров из организма).
Мелатонин
Симптомы нарушений обмена:
Низкий уровень мелатонина, гормона, ответственного за поддержание циркадного ритма организма, связан с плохим сном и депрессией. Наши тела производят меньше мелатонина по мере старения, что обьясняет, почему у некоторых пожилых людей больше проблем со сном, чем у детей.
Что делать?
Спастись от бессонницы помогут лекарственные сборы, и назначенные врачом препараты.
Грелин и Лептин
Симптомы нарушений обмена:
Произведенный в желудке, грелин подсказывает мозгу, что вы голодны. Когда вы едите, лептин увеличивается, чтобы сообщить мозгу, что вы сыты. Если эти два гормона выходят из строя, вы можете потерять способность распознавать, когда ваше тело будет сытым и переедать или напротив — недоедать.
Что делать?
Постарайтесь изо всех сил высыпаться: исследование в Стэнфордском университете показало, что привычное ограничение сна (пять часов в сутки вместо восьми) повысило уровень грелина человека почти на 15 процентов, понизило уровень лептина на 15,5 процента и было напрямую связано с увеличенной массой тела. Другие исследования показали, что упражнения и снижение стресса могут помочь контролировать содержание грелина.
Гормон щитовидной железы
Симптомы нарушений обмена:
Уменьшение гормона приводит к депрессии и усталости. С другого края находится гипертиреоз, при котором щитовидная железа выделяет слишком много своего гормона, вызывая такие симптомы, как тревога, учащенное сердцебиение, чрезмерное потение, даже диарея.
Что делать?
Если у вас есть гипотиреоз, назначенная врачом диета поможет устранить дисбаланс. Если у вас есть сверхактивная щитовидная железа, ваш врач может назначить одно из нескольких методов лечения — от препаратов для медленного производства гормонов — до хирургического удаления железы.
Альдостерон
Симптомы нарушений обмена:
Альдостерон регулирует соотношение натрия и воды в вашем организме. Но состояние, называемое стеноз почечной артерии — сужение кровеносных сосудов, которые питают почки, — может вызывать высвобождение гормона, вызывая повышение кровяного давления.
Что делать?
Рекомендуется здоровый для сердца образ жизни, который сохраняет ваши кровеносные сосуды, и также может быть благоприятным для почек. Сведите к минимуму потребление соли, придерживайтесь диеты с низким содержанием жиров, занимайтесь спортом и не курите.
Кортизол
Симптомы нарушений обмена:
Когда вы находитесь в стрессе, ваши «шипы кортизола» обеспечивают организм быстрой дозой энергии. Хронический стресс, однако, может держать ваш кортизол постоянно повышенным — опасным состоянием, поскольку гормон может подавлять иммунную систему, вы будете чаще болеть и медленнее выздоравливать.
Что делать?
Приступ стресса преодолевается при помощи дыхательной гимнастики, расслабления, релаксации.
В клинике «Здоровая семья» на Фучика 3 в Екатеринбурге Вы сможете провести полное диагностическое исследование гормонов и проконсультироваться у эндокринолога высшей категории.
Звоните и записывайтесь на прием к специалисту по тел.: 219-30-50, 243-53-03, 300-40-50 или онлайн на сайте. Ждем Вас!
Эндокринология — это область медицины, которая изучает и лечит заболевания эндокринной системы, т. е. системы желез, вырабатывающих биологически активные вещества — гормоны. На протяжении всей жизни гормоны играют важнейшую роль практически во всех процессах, происходящих в нашем организме.
Эндокринные железы и их функции
Эндокринные железы (их называют ещё железами внутренней секреции) располагаются в различных частях тела. Так, гипофиз является частью головного мозга, щитовидная и паращитовидная железы расположены на шее, тимус — в верхнем отделе груди, надпочечники и поджелудочная железа — в забрюшинном пространстве, половые железы — в области таза. Эти железы вырабатывают и выделяют непосредственно в кровь более 50 различных гормонов, регулирующих уровни различных веществ в организме человека. Все железы эндокринной системы тесно взаимодействуют между собой. Именно по этой причине даже незначительные изменения в функции одной железы вызывают изменения во всём организме в целом.
Наиболее распространёные заболевания эндокринной системы
Внимание на ожирение!
Ожирение является общемировой проблемой в современном обществе. Вопреки распространённому мнению ожирение и избыточный вес — не одно и то же. Избыточный вес сам по себе не является заболеванием, но может перерасти в ожирение. По статистике люди с избыточным весом быстрее стареют и меньше живут. Избыточный вес значительно повышает риск развития раковых заболеваний, поражений суставов и сосудов, жёлчного пузыря и других органов. Если же человек страдает ожирением, то это может сократить его жизнь в среднем на 5–10 лет. У людей с ожирением в 3 раза чаще развиваются такие заболевания, как гипертония, сахарный диабет, боли в шее, отдающие в затылок; в 2 раза чаще — атеросклероз. Если вы столкнулись с проблемой избыточного веса, то начать борьбу с ней необходимо уже сегодня. Врач-эндокринолог даст вам рекомендации по снижению веса, рассчитает ваш оптимальный вес и ежедневный рацион питания, при необходимости назначит медикаментозное лечение.
Осторожно — сахарный диабет
Сахарный диабет — самое распространённое заболевание органов эндокринной системы. Здесь в первую очередь страдает углеводный обмен веществ, однако это влечёт за собой также и изменения в белковом и жировом обмене. Сахарный диабет приводит к ранней инвалидизации, развитию всевозможных сосудистых осложнений, поражению нервной системы. Однако современные методы диагностики и лечения привели не только к значительному увеличению продолжительности жизни таких больных, но и к улучшению качества их жизни. Врач-эндокринолог назначает диетотерапию, подбирает схему лечения таблетированными сахароснижающими препаратами или схему инсулинотерапии, консультирует по вопросам лечения и профилактики осложнений сахарного диабета.
Лечение в эндокринологии
Заболевания щитовидной железы также занимают лидирующие позиции среди эндокринных заболеваний. Последние десятилетия ознаменованы широким внедрением в клиническую практику современных инструментальных и лабораторных методов, позволяющих выявлять весьма незначительные изменения структуры и функции щитовидной железы. Болезни щитовидной железы при своевременном обращении к врачу успешно лечатся медикаментозно, однако в некоторых случаях бывает необходимо и хирургическое вмешательство. Вот почему необходимо не «запускать» заболевание, а вовремя обратиться к врачу-эндокринологу для назначения терапии.
Целлюлит является проблемой не только эстетической, но и вредной для здоровья в целом. Появление целлюлита…
Мы все худели понемногу, на чём-нибудь и как-нибудь. Советы звёзд и подруг, модные диеты, фитнес, разные…
ФГБУ «Эндокринологический научный центр» МЗ РФ, Москва
Организация и функционирование нейроэндокринной системы
Журнал: Проблемы эндокринологии. 2013;59(1): 62‑69
Бабичев В.Н. Организация и функционирование нейроэндокринной системы. Проблемы эндокринологии. 2013;59(1):62‑69. Babichev VN. Organization and functioning of the neuroendocrine system. Problemy Endokrinologii. 2013;59(1):62‑69. (In Russ.).
ФГБУ «Эндокринологический научный центр» МЗ РФ, Москва
Достижения нейроэндокринологии в последние годы дали возможность сформулировать цельное представление о системном подходе к лечению эндокринных заболеваний. В обзоре приведены экспериментальные и клинические доказательства присутствия в гипоталамусе специфических рецепторов к гормонам периферических эндокринных желез и тропным гипофизарным гормонам. Продукция гипоталамусом специфических веществ (рилизинг-гормонов) обеспечивает связь нервных и эндокринных структур. Прямые и обратные связи в организме способствуют устойчивой работе всех систем организма.
ФГБУ «Эндокринологический научный центр» МЗ РФ, Москва
Эндокринная система вместе с нервной составляет единое целое. Объединяющим и координирующим центром нейроэндокринной системы является область промежуточного мозга — гипоталамус, который не только проводит нервные импульсы, но и секретирует различные физиологические вещества [1].
Гипоталамус расположен на основании мозга и ограничен спереди перекрестом зрительных нервов, сзади — маммилярными телами, по бокам — расходящимися трактами зрительных нервов. Сверху в гипоталамическую область внедряется третий желудочек мозга, превращая гипоталамус в парный орган с симметричным расположением клеточных образований. В основании гипоталамуса располагается срединное возвышение, переходящее в ножку гипофиза.
Эндокринные функции гипоталамуса осуществляют преимущественно его передняя и медиальная части. Нервные клетки гипоталамуса группируются в многочисленные ядра, часть которых обладает секреторными свойствами. Крупноклеточные ядра переднего гипоталамуса (супраоптические и паравентрикулярные) связаны нервными волокнами с задней долей гипофиза. Многочисленные ядра медиобазального и части заднего гипоталамуса, часть паравентрикулярных, вентромедиальные и аркуатные — продуцируют нейросекрет в систему воротных вен гипофиза. Многочисленные комиссуральные пути гипоталамуса обеспечивают взаимодействие между нейроэндокринными ядрами. Нервные клетки паравентрикулярных и аркуатных ядер имеют многочисленные контакты с вышележащими структурами ЦНС.
Роль гипоталамуса в регуляции эндокринных функций была выяснена в 1955 г. Гиллемин впервые показал, что гипоталамический экстракт при введении его животным стимулирует секрецию гипофизом АКТГ. В 60-х годах XX века интенсивно исследовали влияние экстрактов гипоталамуса и срединного возвышения на секрецию гипофизом гормона роста (соматотропин, СТГ) и тиреотропного гормона (тиреотропин, ТТГ). Благодаря достижениям аналитической химии пептидов, разработке радиоиммунологических методов определения гормонов, развитию техники культивирования клеток сделан революционный скачок в исследованиях гипоталамической регуляции функций эндокринной системы.
Наличие в гипоталамусе специфических рецепторов к периферическим гормонам эндокринных желез и тропным гипофизарным гормонам определяет его особое положение в системах обратной связи. В гипоталамусе происходит переключение информации с нервно-медиаторного на нейрогормональный путь, которой составляют либерины и статины: кортиколиберин (АКТГ-рилизинг гормон, КРГ), люлиберин (гонадолиберин, ЛГ/ФСГ-рилизинг-гормон, ГнРГ), тиролиберин (ТРГ), соматолиберин (РГГР), соматостатин, меланолиберин, а также дофамин (ДА) и энкефалины, оказывающие влияние на функции гипофиза.
Гипоталамус является высшим вегетативным центром, осуществляющим сложную интеграцию и различных внутренних систем. В организме нет ни одной функции, к регуляции которой гипоталамус не имел бы отношения: он играет существенную роль в поддержании оптимального уровня обмена веществ (белкового, углеводного, жирового, водного и минерального) и энергии, в регуляции температурного баланса организма, деятельности пищеварительной, сердечно-сосудистой, выделительной, дыхательной и эндокринной систем.
Нейроэндокринологи имеют полное право рассматривать гипоталамус как главный нейроэндокринный орган, который осуществляет взаимосвязь между ЦНС и железами внутренней секреции. Он является интегрирующим звеном, пультом управления, на котором замыкаются все пути между ЦНС и эндокринной системой. Естественно, возникает вопрос, каким образом маленькая структура промежуточного мозга справляется со столь многочисленными функциями.
Для эндокринологов, в первую очередь, важен вопрос о регуляции гормональной системы.
Связь между гипофизом, который является основным продуцентом всех тропных гормонов (АКТГ, ТТГ, ЛГ, ФСГ, СТГ, пролактин) и гипоталамусом осуществляется через портальную систему сосудов, а также через гипоталамо-гипофизарный тракт — самый короткий, но хорошо очерченный пучок аксонов нейронов гипоталамуса. Волокна их берут начало в супраоптическом и паравентрикулярных ядрах и проходят через гипофизарную ножку к нейрогипофизу.
Биохимиками было показано существование в гипоталамусе специфических веществ, которые синтезируются нервными клетками и освобождаются в капилляры портальной системы, достигая передней доли гипофиза. На сегодняшний день выделено и охарактеризовано более 10 гипоталамических нейрогормонов, каждый из которых обладает специфическим влиянием (стимуляцией или торможением) секреции того или иного тропного гормона гипофиза. Такие соединения получили название ингибирующих и рилизинг-гормонов (либерины и статины), обладающие высокой специфичностью действия и чрезвычайно высокой биологической активностью. Установлена и подтверждена химическим синтезом их структура.
Основной точкой приложения гипоталамических рилизинг-гормонов являются клетки гипофиза, и некоторое время считалось, что каждый гормон стимулирует один тип клеток аденогипофиза, который в свою очередь синтезирует лишь один тропный гормон.
В дальнейшем было показано, что в ряде случаев гипоталамические гормоны стимулируют секрецию нескольких гипофизарных гормонов. Например, ТРГ усиливает выделение и ТТГ, и ПРЛ. ГнРГ способствует секреции ЛГ и ФСГ; соматостатин угнетает секрецию и гормона роста, и ТТГ. Каждый клеточный элемент аденогипофиза подвергается действию многих регуляторных факторов, и клетки в аденогипофизе не строго специализированы: в одной клетке могут синтезироваться несколько гормонов, например ЛГ и ФСГ, АКТГ и β-липотропин, СТГ и ПРЛ, но не ТТГ или ЛГ. Бифункциональность некоторых гормонов объясняется по-разному. Способность ГнРГ вызывать секрецию как ЛГ, так и ФСГ, причем несовпадающую по времени, определяется разной чувствительностью гонадотрофов, секретирующих ЛГ или ФСГ, а также длительностью воздействия с учетом влияния половых стероидов на гипофизарные клетки в разные стадии полового цикла. Большие концентрации эстрогенов в плазме, предшествующие овуляторному выбросу ЛГ, увеличивают чувствительность гипофиза к ГнРГ, а минимальные количества эстрогенов и прогестерона, секретируемого после овуляции, напротив, снижают эту чувствительность. Секреция ФСГ более чувствительна к ингибирующему эффекту эстрогенов. Нельзя исключить наличие в аденогипофизе и двух видов рецепторов. Одни из них характеризуются высоким сродством к ГнРГ и низкой связывающей способностью; за их счет осуществляется быстрая секреция ЛГ; вторые — более низким сродством к ГнРГ, но большей силой связывания, что и определяет более медленное освобождение ФСГ. Возможно существование двух различных нейрогормонов — ЛГ-РГ и ФСГ-РГ.
Анатомия и физиология гипофиза
Гипофиз расположен в турецком седле в основании черепа. Сверху он отделен от мозга выростом твердой мозговой оболочки. Гипофиз состоит из трех долей: передней, задней и средней (промежуточной). Последняя, как правило, анатомически не обособлена и вместе с передней входит в состав аденогипофиза, который составляет около 80% массы железы; задняя доля — нейрогипофиз — анатомически и функционально объединена со срединным возвышением, являющимся частью гипоталамуса. Аденогипофиз образуется из задней стенки ротовой полости зародыша (карман Ратке), задняя доля — из дивертикула дна третьего желудочка мозга.
Структурно-функциональная связь гипофиза с гипоталамусом осуществляется нервным и гуморальным путем. Нервные волокна из крупноклеточных гипофизотропных ядер гипоталамуса (паравентрикулярного и супраоптического) через срединное возвышение и ножку гипофиза достигают задней его доли. По аксонам этих клеточных ядер в заднюю долю гипофиза поступают окситоцин и вазопрессин. На стенках капилляров срединного возвышения оканчиваются терминали пептидергических волокон. Аксоны гипоталамических нейронов, идущие к аденогипофизу, прерываются на уровне срединного возвышения, где и происходит секреция гипоталамических статинов и либеринов.
Нейрогормоны попадают в переднюю долю гипофиза с кровотоком по системе воротных вен гипофиза. Стенки каппиляров, образуемых ветвями верхних гипофизарных артерий в срединном возвышении, проницаемы для рилизинг-гормонов. Концентрация последних в крови воротных вен гипофиза во много раз выше, чем в периферической крови.
Кровоток через переднюю долю гипофиза значительнее, чем через любой другой орган, что, наряду с высоким содержанием нейрогормонов в крови сосудов гипофиза, создает оптимальные условия для регуляции функций аденогипофиза и зависимых от него эндокринных желез. Задняя доля гипофиза снабжается кровью нижних гипофизарных артерий.
Являясь анатомически целостным органом, гипофиз образован двумя онтогенетически разными образованиями: передним (железистым) и задним (нервным). Клетки аденогипофиза разделяются по своей гистологической окраске на базофилы, ацидофилы (эозинофилы), хромофобы. Однако выявление специализированных клеток—лактотрофов, тиреотрофов, соматотрофов, кортикотрофов, гонадотрофов, продуцирующих соответствующие гормоны, осуществляется иммуноцитохимическим методом, выявляющим специализацию клеток с помощью высокоспецифических антител к конкретному гормону. Большую часть популяции аденогипофизоцитов составляют лактотрофы и соматотрофы. Обнаруживаются и камбиальные элементы, способные при необходимости дифференцироваться в те или иные специализированные клетки.
Гипофиз как центральный орган эндокринной системы получает афферентную и эфферентную информацию. Из срединного возвышения по сосудам портальной системы в аденогипофиз поступает кровь, содержащая гипоталамические нейрогормоны. К гипофизу поступает также большое количество гормонов периферических эндокринных желез и биологически активных метаболитов. Переработка этой информации позволяет гипофизу осуществлять тонкую интегральную функцию и посылать периферическим эндокринным железам адекватные, строго дозированные регуляторные сигналы путем выделения в кровь тропных гормонов. Периферические эндокринные железы, реагируя на тропные гормоны гипофиза, секретируют в кровь собственные гормоны, регулирующие биохимические процессы в тканях-мишенях. Циркулирующие в крови гормоны и биологически активные метаболиты контактируют со всеми структурами нейроэндокринной системы: ЦНС, гипоталамусом, гипофизом, другими железами внутренней секреции, клетками АПУД-системы (которые присутствуют в различных органах и тканях и продуцируют полипептидные гормоны за счет поглощения и декарбоксилирования предшественников аминов).
Вопрос и о локализации биосинтеза гипоталамических гормонов окончательно не решен. Имеются данные об их образовании в нервных окончаниях — синаптосомах, так как именно в них обнаруживается скопление этих гормонов и биогенных аминов. В настоящее время биогенным аминам отводится главная роль в регуляции секреции и синтеза гипоталамических гормонов. В гипоталамусе присутствуют специфические рецепторы гормонов и периферических аминорецепторов.
Воспринимая регуляторные сигналы сверху, железа ускоряет или тормозит выделение собственного гормона и, более того, она получает информацию о результатах действия ее гормонов на периферии. Механизм такой организации эндокринной железы, называемой в литературе принципом обратной связи (положительной и отрицательной), был впервые сформулирован М.М. Завадовским (1935). Он обеспечивает надежность работы нейроэндокринной системы в организме. Классическим примером может служить функционирование щитовидной железы, когда ТТГ стимулирует секрецию тиреоидных гормонов, которые в свою очередь, достигнув высоких концентраций в крови, тормозят секрецию гипофизом ТТГ. Обратная связь реализуется на четырех уровнях (ЦНС, гипоталамус, гипофиз, сама железа), и в ней различают длинные, короткие и ультракороткие звенья. Эндокринные регуляторы — гормоны дистантного действия — достигают своих целевых объектов с кровотоком.
Концентрация и ритм секреции гормонов определяют направленность действия и точку приложения в организме. Так, эстрогены, стимулируя секрецию пролактина гипофизом, увеличивают выделение ДА гипоталамусом, что приводит к торможению лактотропной функции гипофиза. На телах нейронов, синтезирующих ДА, обнаружены рецепторы эстрадиола. В этом процессе участвуют и метаболические регуляторы, такие как глюкоза [10].
В одной и той же железе имеется возможность обмена химической информацией между клетками, в которой принимают участие и гормоны. Показано, в частности, наличие рецепторов инсулина на альфа-клетках, секретирующих глюкогон (паракринная регуляция). Биологически активные вещества, в том числе гормоны, могут выделяться и связываться рецепторами той же клетки (аутокринная регуляция).
Чувствительность тканей к конкретному гормону определяется количеством специфических рецепторов, связывающих этот гормон. Высокие концентрации гормона, связывая большую часть рецепторов, снижают их биосинтез и уровень активных форм рецепторов, что предохраняет клетки-мишени от чрезмерного гормонального воздействия. Возможна и ситуация, когда гормон увеличивает концентрации собственных рецепторов.
Гормон может влиять не только на свои рецепторы, но и на рецепторы других гормонов. Так, ПРЛ стимулирует образование рецепторов ЛГ и ФСГ в гонадах, тиреоидные гормоны влияют на уровень эстрогенных и катехоламиновых рецепторов и т.д. Обратная связь реализуется довольно быстро, что обеспечивает постоянный относительный гомеостаз в организме; замедление или ускорение этого процесса свидетельствует о развитии патологического процесса.
Нарушения гормональной рецепции ведут к развитию патологического процесса (например, инсулинорезистентность при ожирении и сахарном диабете 2-го типа).
В срединном возвышении обнаружены многочисленные синаптические и аксональные контакты нейронов, вырабатывающих нейропептиды, а также анастомозы между капиллярами сосудов, идущими к аденогипофизу и нейрогипофизу, что и обеспечивает тесное взаимодействие различных эндокринных подсистем (гипоталамус—гипофиз—кора надпочечников, гипоталамус—гипофиз—щитовидная железа, гипоталамус—гипофиз—гонады и др.).
Главным достижением нейроэндокринологии последних лет является доказательство причастности нейромедиаторов к нейроэндокринной интеграции действия нейросекреторных нейронов, регулирующих секрецию тропных гормонов гипофиза. К ним относятся норадреналин (НА), адреналин (А), ДА, серотонин, гистамин, гамма-аминомасляная кислота (ГАМК), ацетилхолин, соматостатин, ТРГ, КРГ, соматолиберин и многие другие соединения. Все эти вещества несут нейрогенную информацию, необходимую для нормального функционирования нейросекреторных нейронов, регулирующих секрецию тропных гормонов гипофиза. Прежде всего это люлиберинпродуцирующие нейроны, регулирующие выделение ЛГ и ФСГ, нейроны, секретирующие пролактинингибирующий гормон, ТРГ, вазоактивный интестинальный полипептид, а также ДА. Полное понимание нейроэндокринного контроля требует точного знания топографии нейросекреторных и обычных проводниковых нейронов. Необходимо определить главные проекции нейронов и идентифицировать нейромедиаторы, содержащиеся в них. Обнаружены синапсы между норадренергическими нейронами и ГАМК-содержащими нейронами в этой области. Следует отметить также возможность несинаптического взаимодействия катехолсодержащих нейронов в ЦНС.
Дофаминергические нейроны, иннервирующие гипоталамус, имеют клеточные тела в трех областях мозга: во-первых, это тубероинфундибулярные нейроны, которые составляют 3—5% клеточных тел нейронов аркуатной области и обозначаются как А12. Терминали этих нейронов обнаружены в срединном возвышении в тесном контакте с первичными капиллярами гипофизарного портального сплетения. Эти нейроны выделяют большое количество ДА в портальную кровь и играют ведущую роль в регуляции секреции ПРЛ, а также ГнРГ. Две другие группы дофаминергических нейронов расположены в каудальном таламусе, заднем гипоталамусе и перивентрикулярных ядрах. Диффузное распределение дофаминергических нейронов в гипоталамусе затрудняет изучение их роли в регуляции секреции гонадотропинов и других тропных гормонов.
Изложение контрольных функций адренергических нейронов в секреции гонадотропинов целесообразно начать с их роли в регуляции пульсирующего выделения ЛГ, которая определяется квантовым выделением ГнРГ. Большинство исследователей, занимающихся этой проблемой, приходят к выводу, что норадренергические нейроны в физиологических условиях включаются в этот процесс, хотя на отдельных нейронах обнаружены адренергические рецепторы, активация которых вызывает торможение пульсирующего выделения ЛГ. Направленность действия ДА-нейронов зависит, скорее всего, от уровня половых гормонов.
При изучении роли биогенных аминов в регуляции овуляторного выброса гонадотропинов особое внимание обращается на значение половых гормонов в активации или торможении катехолсодержащих нейронов в системе обратной связи. На модели овариэктомированных крыс с имплантацией эстрадиола показано, что выброс ЛГ каждые 24 ч сопровождается увеличением скорости обмена НА в преоптической и аркуатной областях и супрахиазматических ядрах, а также срединном возвышении. Аналогичные данные получены и в опытах на интактных животных, у которых отмечено увеличение скорости обмена НА в преоптической области во 2-й половине проэструса, т.е. во время овуляторного выброса ЛГ, тогда как в другие стадии цикла подобных изменений в обмене НА в этой области не зарегистрировано. О негативном действии эстрадиола на обмен НА свидетельствуют эксперименты на овариэктомированных животных, у которых скорость обмена НА в преоптической области увеличивалась через 3 сут, а введение эстрадиола приводило к снижению скорости его обмена в этой области и срединном возвышении уже через 3 ч. Действие эстрогенов на обмен НА может осуществляться как непосредственно на уровне норадренергических нейронов, содержащих эстрогенные рецепторы, так и через опиоидные или ГАМК-содержащие интернейроны, которые также содержат рецепторы стероидных гормонов. Скорость обмена адреналина в некоторых областях гипоталамуса также увеличивается одновременно с овуляторным выбросом ЛГ. Это касается, главным образом, медиобазального гипоталамуса и преоптической области. Возникает вопрос о степени сродства адренергических рецепторов нейронов к половым гормонам в ходе менструального цикла.
Влияние половых гормонов на активность дофаминергических нейронов проявляется менее отчетливо. Дело в том, что изменение состояния тубероинфундибулярных дофамин-содержащих нейронов теснее связано с секрецией ПРЛ. Введение эстрогенов повышает уровень ПРЛ, который в свою очередь усиливает обмен ДА в этих нейронах. Показано также наличие рецепторов к эстрадиолу в дофаминергических клеточных телах нейронов аркуатного ядра и повышение скорости обмена ДА в этом ядре и срединном возвышении во второй половине стадии проэструса. В преоптической области изменения дофаминергической активности в это время не наблюдается. Овариэктомия незначительно влияет на обмен ДА в некоторых областях гипоталамуса, тогда как введение эстрадиола вызывает снижение обмена ДА в преоптической области и срединном возвышении и увеличение в медиобазальном гипоталамусе.
Имеется ряд сообщений о влиянии катехоламинергических агентов на овуляторный выброс ЛГ в проэструсе и вызванный эстрогенами выброс ЛГ. Начало этим исследованиям было положено в 1950 г. Сойером, который показал, что α-адренергические антагонисты блокируют овуляцию у крыс. В дальнейшем были исследованы более специфические фармакологические агенты, такие как α-метил-р-тирозин и диэтилдитиокарбомат, блокирующие синтез НА и А соответственно. Они тормозили овуляторный выброс ЛГ. Блокада α-адренергических рецепторов также прерывает овуляцию, причем наиболее эффективным является препарат празозин, избирательно блокирующий подтип α1-рецепторов, тогда как блокада другого подтипа рецепторов (α2) пипероксаном неэффективна.
Приведенные данные позволяют утверждать, что норадренергические и адренергические нейроны включаются в стимуляцию овуляторного выброса ЛГ, и действие их опосредуется через α1-адренергические рецепторы, локализованные в основном в медиобазальной преоптической области гипоталамуса. Роль дофаминсодержащих нейронов в регуляции овуляторного выброса ЛГ спорна: введение относительно специфического антагониста ДА пимозина в утренние часы проэструса снижало выброс ЛГ у крыс во второй половине дня. Этот же препарат, введенный женщинам за 2 ч до ожидаемого выброса ЛГ в середине менструального цикла, снижает величину выброса. В другом случае внутрижелудочковое введение ДА в проэструсе у крыс способствует увеличению уровня ЛГ в крови. Исследования in vitro также дают спорные результаты. Так, перфузия ДА фрагментов медиобазального гипоталамуса самцов крыс увеличивает выделение ГнРГ, которое блокируется введением антагониста α-адренергических рецепторов (фентоламина), но не антагониста ДА (пимозина). ДА обладает способностью ускорять выделение НА из терминалей срединного возвышения, но не влияет на обратный захват и обмен НА. Противоречивые данные затрудняют интерпретацию роли и значения ДА в решении системы ГнРГ—ЛГ.
Серотонинергическая система ЦНС представляет собой популяцию нейронов ствола мозга, которые берут начало в ядрах шва среднего мозга. Аркуатные ядра получают плотную серотонинергическую иннервацию, тесно контактирующую с дофаминергическими клеточными телами аркуатного ядра и медиальной зоны инсепта. Описаны контакты между нейрональными элементами, содержащими ГнРГ и серотонин, в преоптической области, концевой пластинке и срединном возвышении. Серотонин обнаружен в нервных окончаниях, локализованных вокруг больших кровеносных сосудов аденогипофиза, а также в секреторных гранулах гонадотрофов. Причастность серотонина к регуляции гонадотропной функции гипофиза доказана многочисленными исследованиями. Он может как стимулировать, так и тормозить эту функцию в зависимости от гормонального фона. Действие серотонина на секрецию ЛГ и овуляцию опосредовано регуляцией секреции ГнРГ нейросекреторными нейронами. Серотонинергическая система является одной из многих нейросекреторных систем, тесно связанных с гонадотропинрегулирующей системой преоптикопереднего и медиобазального отделов гипоталамуса и срединного возвышения. Половые гормоны модулируют активность этой нейротрансмиттерной системы. Анализ роли нейромедиаторов адренергического ряда в регуляции гонадотропной функции гипофиза позволяет утверждать, что НА следует рассматривать в качестве ведущего агента в регуляции секреции ЛГ, основной точкой приложения которого является преоптическая область. ДА реализует свой эффект через аркуатную область гипоталамуса, а серотонин играет роль синхронизирующего агента.
Новый класс соединений, выделяемых в группу пептидных нейромедиаторов, вносит свой вклад в наши представления об участии нервной системы в регуляции эндокринных функций гипофиза. Обнаружение регуляторных пептидов, общих как для нервной, так и для эндокринной систем, вызвало революцию в наших представлениях. Возникло новое направление исследований — психонейроэндокринология.
Практически каждый из перечисленных выше нейропептидов причастен к регуляции секреции гонадотропинов, ПРА, АКТГ, ТТГ. Большинство из них обнаружено в медиобазальном гипоталамусе. Нейропептиды, выделяясь в гипофизарную портальную систему, действуют на несколько типов аденогипофизарных клеток и, кроме того, взаимодействуют с многими нейромедиаторами непептидной природы, поступающими в медиобазальный гипоталамус из других структур, что в свою очередь обеспечивает их прямое или опосредованное действие на гормональный контроль.
Гипоталамические нейроны, продуцирующие нейропептиды, составляют общую систему. Большинство их клеточных тел локализовано в паравентрикулярных ядрах, медиальной перивентрикулярной области и аркуатных ядрах. Незначительная часть таких нейронов обнаружена в преоптической области и супрахиазматических ядрах. Бóльшая часть всех этих нейронов заканчивается в области срединного возвышения. Аксональные коллатерали иннервируют ряд гипоталамических и экстрагипоталамических структур. Нервные клетки паравентрикулярных и аркуатных ядер в свою очередь имеют многочисленные контакты с большим числом других структур ЦНС, что и определяет их стратегическую позицию в координации гормональной регуляции, а также ряда поведенческих реакций. Особенно это касается полового поведения, требующего синхронизации поведенческих компонентов с процессами менструального цикла. Окончания нейронов, синтезирующих нейропептиды, тесно контактируют не только с перикарионами, вырабатывающими нейротрансмиттеры, но и с нейронами, синтезирующими нейропептиды. Например, ГнРГ-продуцирующие нейроны и их волокна могут оканчиваться на аналогичных клеточных телах; имеют место также аксо-аксональные контакты.
Учитывая большое число нейропептидов, принимающих участие в регуляции репродуктивной системы, целесообразно сгруппировать их по месту синтеза. Такими группами могут быть: 1) нейропептиды, продуцируемые нейронами, локализованными, главным образом, в преоптической области (соматостатин, ГнРГ, тахикинины, нейротензин, предсердный натрийуретический гормон); 2) нейропептиды, продуцируемые нейронами аркуатной области (панкреатический нейропептид, пептид YY, нейропептид Y); 3) нейропептиды, синтезирующиеся в перикарионах паравентрикулярных или супраоптических ядер (ТРГ, КРГ, холецистокинин, вазопрессин, окситоцин, ангиотензин, брадикинин, бомбезин); 4) гастроинтестинальные пептиды (ВИП, гастроинтестинальный пептид); 5) семейство опиоидных пептидов.
Механизм действия этих нейропептидов как на гипоталамическом, так и на гипофизарном уровне можно проследить на примере модуляции секреции гонадотропинов, ПРЛ, окситоцина, т.е. тех гормонов, которые имеют отношение к репродуктивной функции. Например, соматостатин, который обнаружен во многих структурах ЦНС и главным действием которого является угнетение продукции гормона роста и частично ТТГ и ПРЛ, способен изменять активность нейромедиаторных систем мозга, вызывая блокаду секреции ГнРГ.
Группа классических пептидов (тахикинины А и Б, субстанция Р) стимулирует выделение ПРЛ и тормозит выделение гормона роста. Пептид нейротензин широко распространен в ЦНС и проявляет свой эффект за счет стимуляции секреции инсулина, ингибиции секреции глюкагона и модуляции гастроинтестинальной перистальтики. Внутрижелудочковое введение нейротензина снижает уровень ЛГ в крови, что делает возможным его участие в контроле гонадотропной функции гипофиза. Предсердный натрийуретический гормон угнетает выделение вазопрессина и может стимулировать выделение ЛГ и пролонгировать действие ГнРГ. Семейство панкреатических пептидов также причастно к функционированию репродуктивной системы, они чаще всего блокируют секрецию ЛГ и снижают частоту пульсации ГнРГ в срединном возвышении.
Пептиды, синтезирующиеся в паравентрикулярных и супрахиазматических ядрах, основными из которых являются вазопрессин и окситоцин, наиболее активно влияют на репродуктивную систему. Основная гормональная функция вазопрессина на уровне аденогипофиза — стимуляция выделения АКТГ за счет усиления действия КРГ. Имеются данные о тормозном влиянии вазопрессина на секрецию ПРЛ за счет повышения обмена ДА в тубероинфундибулярных нейронах. Стимулирующий эффект вазопрессина на выделение ПРЛ может опосредоваться опиатными нейронами. ТРГ, синтезирующийся в паравентрикулярных ядрах, помимо своего прямого действия на секрецию ТТГ, способен стимулировать выделение ПРЛ и гормона роста, и его эффект усиливается под влиянием эстрогенов. ТРГ также оказывает влияние на обмен нейромедиаторов в мозге. Из группы гастроинтестинальных пептидов следует выделить вазоактивный интестинальный полипептид (ВИП), основное нейроэндокринное действие которого сводится к стимуляции выделения ПРЛ, а также гормона роста и ТТГ. Этот эффект является эстрогензависимым.
Особое внимание в регуляции гонадотропной функции гипофиза в последние годы уделяется опиоидным пептидам. Главным действием опиоидов является их способность повышать выделение ПРЛ и гормона роста и блокировать секрецию ЛГ, ФСГ и ТТГ. Они специфически ингибируют овуляторный выброс ЛГ и ФСГ. Опиаты способны регулировать амплитуду и частоту пульсации ЛГ за счет модуляции гипоталамического пейсмекера, контролирующего периодичность активации ГнРГ-продуцирующих нейронов. Влияние опиатов на секрецию ЛГ опосредовано повышением секреции ПРЛ. Опиаты блокируют тоническую секрецию ГнРГ на фоне высокого уровня ПРЛ. Регуляция процессов биосинтеза и секреции ПРЛ, как и ЛГ, опиоидными пептидами осуществляется через специфические рецепторы.
Приведенные выше данные о влиянии различных нейромедиаторов адренергической природы и нейропептидов ставят вопрос о том, каким образом разные вещества с различными механизмами действия координируют работу репродуктивной системы. В ряде случаев отмечен синергизм их действия как на гипоталамическом, так и на гипофизарном уровне, в других — антагонизм их влияния. Можно отметить параллелизм в действии различных медиаторов, вырабатываемых в одних и тех же структурах. В настоящее время наблюдается быстрый прогресс в изучении химии и нейроанатомии нейросекреторных нейронов, участвующих в регуляции репродуктивной функции.
В настоящее время цельное представление о функционировании гипоталамо-гипофизарной системы распалось на отдельные направления исследований с использованием новых специфических методических приемов. Интенсивно используются достижения смежных дисциплин, таких как иммунология. Показана тесная взаимосвязь нейроэндокринной и иммунной систем в различные периоды жизни и при различных физиологических состояниях. Например, с возрастом снижается реакция иммунной системы и параллельно снижается активность гормона роста. При беременности снижается секреция пролактина и окситоцина и повышается секреция половых гормонов — эстрогенов, прогестерона. Доказана взаимосвязь нервной, иммунной и эндокринной систем регуляции секреции инсулина. Разработка фундаментальных аспектов нейроэндокринологии открывает широкие перспективы лечения нарушений репродуктивной системы, заболеваний щитовидной железы или надпочечников гормональными средствами или препаратами, обладающими нейрогенными свойствами. Такими препаратами могут быть производные нейромедиаторов адренергической, холинергической природы, а также нейропептиды.
Начиная с конца 50-х годов прошлого столетия внимание исследователей всего мира все больше стало привлекать изучение воздействия гормональных факторов на функцию головного мозга. В результате многочисленных исследований родилась новая наука — психонейроэндокринология. Ее задачами является изучение вопросов, связанных с влиянием гормонов на высшие функции мозга, — от молекулярного уровня до различных сторон психической деятельности.
Проблема воздействия гормональных факторов на высшие интегративные функции мозга чрезвычайно сложна как по существу, так и в силу отсутствия объективной модели, отражающей зависимость между уровнем гормонов в организме и его влиянием на когнитивные функции.
Показано, что гормоны, взаимодействуя с нейромедиаторами, образуют на уровне ЦНС единую координирующую нейрогуморальную систему, контролирующую интегративную деятельность головного мозга. Нарушение биосинтеза или обмена нейромедиаторов, нарушения их взаимодействия с соответствующими рецепторами могут играть патогенетическую роль в развитии ряда нервно-психических состояний. Сложились устойчивые представления о том, что функция гормонов в ЦНС связана с контролем экспресии гормонзависимых генов и регуляции таких процессов, как развитие и старение мозга, регенерация, адаптация, память.
Различают геномный и негеномный механизм действия гормонов. Полипептидные гормоны действуют на специфические рецепторные зоны мембраны клетки. Связывание лиганда поверхностными рецепторами клетки индуцирует внутриклеточный сигнал (цАМФ и/или кальций) и приводит к быстрому результату (активации остеокластов, секреции кортизола и т.п.). Трансдукция сигнала полипептидных гормонов может вовлекать фосфатидилиновый путь или фосфорилирование рецепторов.
Стероидные и тиреоидные гормоны проявляют свое действие главным образом через специфические внутричерепные связывающие белки, которые взаимодействуют с элементами генов клеток-мишеней, что сопровождается изменением транскрипции специфических генов.
Гипофиз — главный регулятор функционирования эндокринных желез
В аденогипофизе секретируются следующие гормоны: ТТГ, АКТГ, ЛГ и ФСГ, которые оказывают стимулирующее влияние соответственно на клетки щитовидной железы, коры надпочечников и половые железы. Попадая в кровь, гормоны периферических желез активизируют деятельность всех органов и тканей организма, в том числе и аденогипофиза. Осуществляя обратную связь, они блокируют избыточное поступление тропных гормонов гипофиза. Наступает равновесие между мутацией гормонов гипофиза и потребностью организма в гормонах периферических желез. Несколько иной результат наблюдается в отношении ПРА и гормона роста, не имеющих специализированного целевого органа, секреция которого оказывала бы тормозной эффект на выделение этих гормонов. Помимо блокирующего эффекта гормонов периферических желез на синтез и секрецию тропных гормонов гипофиза, аналогичным эффектом обладают также ингибиторные факторы гипоталамического происхождения.
Синдромы эндокринной недостаточности, обусловленные полным или частичным выпадением функций передней и задней долей гипофиза, обозначаются как гипопитуаризм. Гипофункция гипофиза может быть следствием поражения самого гипофиза или гипоталамуса. Результат один — сниженная секреция гипофизарных гормонов с последующим дефицитом гормонов периферических желез.
Уровень гормона роста в крови в норме очень низок, но увеличивается при физической нагрузке, во время сна и при стрессе. Наиболее надежные стимулирующие тесты для данного гормона — индуцированная инсулином гипогликемия, инфузия аргинина или введение L-допа. Эти тесты сопровождаются увеличением секреции гипоталамического соматолиберина.
Секреция пролактина у здоровых людей обычно низкая в течение дня, увеличивается во сне, при стрессе и родах. В клинике используют провоцирующий тест с внутривенным введением ТРГ