если суждение предикат выражает отношение к субъекту такое суждение называется
Суждения это в логике? Сложные суждения примеры. Классификация.
Суждения это в логике? Сложные суждения примеры. Классификация суждений. Структура суждений. Простые суждения, примеры. Логические формулы.
Здравствуйте, уважаемые читатели!
Продолжаем публикацию цепочки статей, раскрывающих законы формальной логики. С первой частью Вы сможете познакомиться по ссылке: № 1. Статья «Понятие это в логике? Логика Аристотеля кратко и понятно!»
Сегодня мы рассмотрим суждения. Напоминаю, что основой для данной статьи послужила книга Гусев Д. А. «Краткий курс логики: Искусство правильного мышления».
Блок 1. Суждения. Что такое суждения?
Суждения обладают набором свойств, которые в том числе отличают их от понятий.
1. Все суждения состоят из понятий, которые связаны между собой. Пример:
2. Все суждения выражаются в форме предложения. Однако не любое предложение является суждением. Вопросительные и восклицательные предложения не являются суждениями, потому что в них ничего не утверждается и не отрицается. Повествовательное предложение всегда содержит утверждение или отрицание. Поэтому суждение выражается повествовательным предложением. Вместе с тем существуют риторические предложения, которые могут быть и вопросительными, и восклицательными по форме, в то время как по смыслу что – либо утверждают или отрицают. Примеры:
3. Все суждения можно разделить на истинные или ложные. Истинным является суждение, отражающее достоверное событие. Понятие «достоверное событие» определено в теории информации. Теория информации базируется на теории вероятности и математической статистике. Важно понимать, что здесь мы переходим к аппарату математической логики. В противном случае истинность или ложность суждения становятся уязвимы для критики, поскольку объем знаний отдельного субъекта в большинстве случаев не позволяет точно определить истинность/ложность события достоверно. Пример:
Является это суждение ложным или истинным? Если менеджеры обычно продают на 1 млн. руб, то можно предположить, что суждение истинное. Однако, всегда остается вероятность того, что план продаж в 10 млн. руб. будет выполнен при случайном благоприятном стечении обстоятельств. И автор однажды столкнулся с таким «удивительным» событием, хотя математически ничего удивительного в этом нет.
В самых простых случаях, на бытовом уровне люди разделяют более-менее хорошо истинность/ложность суждений. Пример:
Если Вы получили такой опыт, что Вам оказались доступны к наблюдению первичные и вторичные половые признаки, то суждение будет истинным. Однако, если Вы делаете выводы на основании вторичных и третичных половых признаков, при этом не знаете, что такое трансгендерность, интерсексуальность, то можете допустить ошибку в своем суждении.
4. Все суждения могут быть сложными и простыми. Простые суждения с помощью союза объединяются в сложные.
Глава VIII. Деление суждений
Деление суждений. В логике принято делить суждения с четырёх точек зрения: 1) количества, 2) качества, 3) отношениями 4) модальности.
Количество суждения. Когда суждения рассматриваются с точки зрения количества, то обращается внимание на то, в каком объёме берётся подлежащее: во всём объёме или в части, т.е., другими словами, справедливо ли то, что утверждается сказуемым по отношению к подлежащему, взятому во всём объёме, или оно справедливо только по отношению к подлежащему, взятому в части объёма. Если я говорю «все растения живут», то в этом суждении предикат «живут» справедлив относительно всех растений, относительно всего класса растений, относительно понятия «растения», взятого во всём объёме. Если я скажу «некоторые растения суть хвойные», то предикат «хвойные» справедлив только относительно части объёма растения. Первые суждения называются общими, а вторые – частными.
Формула общего суждения:
Формула частного суждения:
Некоторые S суть P
От частных суждений нужно отличать так называемые единичные, или индивидуальные, суждения. Например, суждение «Гутенберг – изобретатель книгопечатания» есть единичное суждение. Индивидуальные суждения обыкновенно относят к общим суждениям, так как в них предикат относится к субъекту, взятому во всём объёме, или, другими словами, в них предикат действителен по отношению ко всему, объёму субъекта. То же самое следует сказать относительно всяких суждений, в которых подлежащее выражается понятием единичной вещи. Возьмём в пример суждение: «самообладание есть добродетель». Очевидно, в этом суждении предполагается, что дело идёт о всяком самообладании.
Качество суждения. С точки зрения качества суждения делятся на утвердительные и отрицательные. Формулы их таковы:
Если мы предикат придаём субъекту, то это будет утвердительное суждение; если мы предикат отнимаем от субъекта, то суждение будет отрицательное. Например, суждение «люди пристрастны к самим себе» будет суждением утвердительным, потому что известный предикат мы приписываем субъекту (признаём входящим в содержание субъекта), а, например, суждение «люди не поддаются лести» будет отрицательным суждением, потому что предикат «поддаваться лести» мы отнимаем от людей, т.е. признаём не входящим в содержание субъекта «люди». Следовательно, с точки зрения качества мы определяем, придаётся ли предикат субъекту или отнимается от него.
Мы можем классы, получаемые от разделения суждений с точки зрения количества, соединить с классами, получаемыми от разделения суждений с точки зрения качества, и тогда мы получим суждения обще-утвердительные и частно-утвердительные, обще-отрицательные и частно-отрицательные.
Формулы этих суждений будут следующие:
1. Обще-утвердительное суждение: «все S суть P». Например, «все люди боятся смерти».
2. Частно-утвердительное суждение: «некоторые S суть P». Например, «некоторые люди имеют чёрный цвет кожи».
3. Обще-отрицательное суждение: «ни одно S не есть P». Например, «ни один человек не всеведущ».
4. Частно-отрицательное суждение: «некоторые S не суть P». Например, «некоторые люди не имеют чёрного цвета кожи».
Вот все четыре вида суждений. Для краткости их обозначения в логике принято употреблять следующие символы. Для обще-утвердительного суждения берут символ A, первую гласную глагола affirmo – утверждаю; для частно-утвердительного – I, вторую гласную того же глагола; для обще-отрицательного – E, первую гласную глагола nego – отрицаю; для частно-отрицательного – O, вторую гласную того же глагола.
Таким образом, символы суждений мы можем обозначить при помощи следующей таблицы:
I: Некоторые S суть P.
E: Ни одно S не есть P.
O: Некоторые S не суть P.
Отношение между подлежащим и сказуемым. Суждения различаются также по отношению, какое устанавливается между субъектом и предикатом. С этой точки зрения суждения разделяются на категорические, условные и разделительные. Если я говорю «все люди смертны», то здесь я беру отношение между субъектом и предикатом безусловно. Это будет категорическое суждение. Категорическое суждение есть такое, в котором сказуемое утверждается или отрицается относительно субъекта без какого-либо ограничения во времени, в пространстве или вообще в каких-либо обстоятельствах. Когда я ограничиваю отношение каким-либо условием, тогда получается условное суждение, а когда в суждении оставляется место неопределённости, тогда получается разделительное суждение.
Категорические суждения. Схема категорического суждения:
Пример: «Земля вращается вокруг Солнца».
Условные, или гипотетические, суждения. Схема условных суждений:
Если A есть B, то C есть D.
Пример условного суждения: «если дождь пойдёт, то почва будет мокрая». Здесь во втором суждении сказуемое может быть приписано подлежащему при условии допущения истинности первого суждения. Другой пример условного суждения: «если луна становится между солнцем и землёю, то солнце затмевается». Из этих примеров можно видеть, что условие, которое поставляется в одном из суждений, делает отношение между подлежащим и сказуемым другого суждения не категорическим, а условным. Первое суждение принято называть основанием, а второе – следствием. В условных суждениях, таким образом, мы имеем два суждения, которые находятся друг к другу в отношении основания к следствию. Суждение, которое содержит условие, называется также предыдущим (antecedens); суждение, которое содержит следствие, называется последующим (consequens).
Разделительные суждения. Разделительные суждения имеют двоякий вид:
1) S есть или A, или B, или C.
2) Или A, или B, или C есть P
Разница между этими двумя видами разделительных суждений, как это легко видеть, сводится к следующему. В первом случае возможны два, три или больше сказуемых при одном подлежащем, во втором возможны два, три или больше подлежащих при одном сказуемом. Эта возможность нескольких подлежащих при одном сказуемом или нескольких сказуемых при одном подлежащем делает суждение неопределённым. Возьмём суждение «треугольник есть или остроугольный, или тупоугольный, или прямоугольный»; в этом суждении одно подлежащее и три сказуемых.
Придавая подлежащему одно какое-нибудь сказуемое, мы исключаем все остальные. Вследствие этого если одно суждение истинно, то остальные должны быть ложны. Если я говорю, что треугольник есть прямоугольный, то это значит, что он не остроугольный и не тупоугольный. Примером второго вида разделительных суждений может служить следующее суждение: «или Бэкон, или Шекспир, или человек, равный им по таланту, написал произведения, приписываемые Шекспиру».
Условия правильности разделительных суждений те же самые, что и условия правильности деления; они состоят в том, чтобы члены деления были приведены полностью и чтобы члены деления исключали друг друга. Против этого правила погрешают, например, такие суждения:
«треугольники бывают или прямоугольные, или тупоугольные»;
«человек бывает или образованный, или бедный» (какие ошибки?).
Условно-разделительные суждения. Из соединения условных суждений с разделительными образуются условно разделительные суждения. Схема их:
Если A есть B, то C есть или D, или E, или F,
или в более общей форме эту схему можно изобразить так:
например, «если кто желает получить высшее образование, то он должен учиться или в университете, или в институте, или в академии».
Модальность суждений. Остаётся рассмотреть четвёртое отношение между суждениями, именно с точки зрения модальности. С этой точки зрения рассматривается, с какой квалификацией, т.е. каким образом (cummodo), в суждении сказуемое приписывается подлежащему. Таких квалификаций можно признать три, а отсюда получается деление суждений по модальности на три разряда:
1. Проблематические: «S, вероятно, есть P». «Илиада есть, вероятно, продукт коллективного творчества». В проблематическом суждении соединение подлежащего со сказуемым и разъединение подлежащего от сказуемого выставляется просто как известное предположение.
2. Ассерторические: «S есть P». «Киев стоит на Днепре», «вода состоит из водорода и кислорода».
3. Аподиктические: «S необходимо должно быть P». Например, «две прямые линии не могут замыкать пространства».
Анализируя приведённые примеры, мы видим, что проблематическое суждение характеризуется некоторым ограничением связи между подлежащим и сказуемым (утверждается вероятность, возможность); об ассерторическом суждении связь подлежащего со сказуемым утверждается решительно, без колебания (утверждается действительность какого-либо факта); в аподиктическом суждении утверждение получает характер необходимости.
На первый взгляд различие между суждениями ассерторическими и аподиктическими не совсем ясно. Кажется, что оба они обладают одинаковой достоверностью и что поэтому между ними нет различия; на самом же деле между ними различие очень большое. Суждения ассерторические утверждают нечто действительно существующее, в этом смысле нечто вполне достоверное, но всегда можно мыслить и обратное тому, что утверждается в ассерторическом суждении; что же касается аподиктических суждений, то никоим образом нельзя мыслить противоречащих им суждений. Например, если я возьму ассерторическое суждение «Киев стоит на Днепре», я могу мыслить Киев стоящим не на Днепре, а, например, на Неве; если же я возьму аподиктическое суждение «две прямые линии не могут замыкать пространства», то я не могу мыслить иначе, я не могу мыслить, чтобы две прямые замыкали пространство. Аподиктическое суждение имеет характер необходимый. Другой пример аподиктических суждений: «если две величины равняются одной и той же третьей, то они равны между собой».
Эти три признака – возможность, действительность, необходимость – и характеризуют собой три вида указанных суждений, т.е. если в суждении выражается или возможность, или действительность, или необходимость, то получается или суждение проблематическое, или ассерторическое, или аподиктическое.
Но следует заметить, что некоторые логики отношение между аподиктическими и ассерторическими суждениями понимают несколько иначе. По их мнению, ассерторические суждения – это такие, в истинности которых мы убеждены, но только не знаем причины, почему так должно быть, как мы утверждаем. В аподиктических суждениях эта причина нам известна. Например, суждение «Юпитер имеет девять спутников» – ассерторическое. Суждение «скорость полёта ружейной пули должна постепенно уменьшаться» (именно вследствие сопротивления воздуха) – аподиктическое.
Вопросы для повторения
Как делятся суждения по количеству и по качеству? На какие четыре класса делятся суждения и как они обозначаются? Как различаются суждения по отношению между подлежащим и сказуемым? Какова схема суждений категорических, условных, разделительных? Как делятся суждения по модальности и какое между ними различие? Каково отношение между ассерторическими и аподиктическими суждениями?
Если суждение предикат выражает отношение к субъекту такое суждение называется
Краткий курс логики: Искусство правильного мышления
Логика – один из обязательных предметов в высших учебных заведениях. В последнее время она также изучается в некоторых средних учебных заведениях. Практика показывает: тем, кто познакомился с логикой в школьные годы, намного легче осваивать эту науку в вузе. Книга состоит из четырёх основных глав, теста, ста занимательных задач. Первые три главы посвящены логическим формам: понятию, суждению и умозаключению, четвёртая – рассказывает о важнейших законах логики и распространённых нарушениях этих законов, которые делают наше мышление запутанным, речь – неясной, а значит, мешают полноценно общаться и понимать друг друга. Каждую тему завершают вопросы и задания для самопроверки и закрепления материала. Примеры, содержащиеся в книге, показывают практическую значимость логики для современного человека.
Тест состоит из ста заданий закрытого типа (при нескольких вариантах ответа на каждый вопрос, только один является правильным). Для выполнения теста обязательны теоретические знания по логике.
Сто занимательных логических задач, представленных в книге, различаются по типу построения и уровню сложности. Объединяет их то, что для правильного решения задач требуется нестандартный подход и творческая работа мысли. Задачи направлены на развитие мышления, памяти, внимания и воображения; они могут развлечь в часы досуга. Для решения задач не обязательны теоретические знания по логике, достаточно жизненного опыта и смекалки, т. е. интуитивной логики, которой в большей или меньшей степени обладают все люди, независимо от пола, возраста и уровня образования. Ко всем задачам приведены ответы и комментарии.
Книгу завершает список литературы, рекомендуемый для дальнейшего, более широкого изучения предмета.
Надеемся, что книга вам понравится, а изучение логики станет интересным и увлекательным.
В словаре приведены определения наиболее важных логических терминов, его можно рассматривать как конспект курса логики, построенный по алфавитно-терминологическому принципу.
Логика – наука о формах и законах правильного мышления.
Эта наука появилась приблизительно в V в. до н. э. в Древней Греции. Её создателем считается знаменитый древнегреческий философ и учёный Аристотель. Логике 2,5 тысячи лет, однако она до сих пор сохраняет своё практическое значение. Многие науки и искусства Древнего мира навсегда ушли в прошлое и представляют для нас только «музейное» значение, интересны исключительно как памятники старины, но некоторые из них пережили века, и в настоящее время мы продолжаем ими пользоваться. К их числу относится геометрия Евклида (в школе мы изучаем именно её) и логика Аристотеля. В XIX в. появилась и стала быстро развиваться символическая (математическая, современная) логика, которая является разделом высшей математики. Однако наша книга посвящена исключительно аристотелевской логике.
Так зачем нам нужна логика, какую роль она играет в нашей жизни? Логика помогает нам правильно строить свои мысли и верно их выражать, убеждать других людей и лучше понимать собеседника, объяснять и отстаивать свою точку зрения, избегать ошибок в рассуждениях.
Каждый из нас хорошо знает, что по содержанию человеческое мышление бесконечно многообразно, ведь мыслить (думать) можно о чём угодно, например, об устройстве мира и происхождении жизни на Земле, о прошлом человечества и его будущем, о прочитанных книгах и просмотренных фильмах, о сегодняшних занятиях и завтрашнем отдыхе… Но самое главное заключается в том, что наши мысли возникают и строятся по одним и тем же законам, подчиняются одним и тем же принципам, укладываются в одни и те же схемы или формы. Причём если содержание нашего мышления чрезвычайно разнообразно, то форм, в которых выражается это разнообразие, совсем немного.
Приведём простой пример. Рассмотрим три совершенно различных по содержанию высказывания: «Все караси – это рыбы», «Все треугольники – это геометрические фигуры», «Все стулья – это предметы мебели». Несмотря на различное содержание, у этих высказываний есть нечто общее, что-то их объединяющее. Что? Их объединяет форма. Отличаясь по содержанию, они сходны по форме – каждое из трёх высказываний строится по форме: «Все A – это B», где A и B – какие-либо предметы. Понятно, что само высказывание: «Все A – это B», – лишено всякого содержания. Это высказывание представляет собой чистую форму, которую можно наполнить любым содержанием, например: «Все сосны – это деревья», «Все города – это населённые пункты», «Все школы – это учебные заведения», «Все тигры – это хищники».
Другой пример: возьмём три различных по содержанию высказывания: «Если наступает осень, то опадают листья», «Если завтра пройдёт дождь, то на улице будут лужи», «Если вещество – металл, то оно электропроводно». Будучи непохожими друг на друга по содержанию, эти высказывания сходны между собой тем, что строятся по одной и той же форме: «Если A, то B». Понятно, что к этой форме можно подобрать огромное количество различных содержательных высказываний, например: «Если не подготовиться к контрольной работе, то можно получить двойку», «Если взлётная полоса покрыта льдом, то самолёты не могут взлетать», «Если слово стоит в начале предложения, то его надо писать с большой буквы».
Логика не интересуется содержанием мышления (им занимаются другие науки), она изучает только формы мышления; её интересует не то, что мы мыслим, а то, как мы мыслим, поэтому она часто называется формальной логикой. Аристотелевскую (формальную) логику также часто называют традиционной.
Если по содержанию высказывание: «Все комары – это насекомые», – является нормальным, а высказывание: «Все Чебурашки – это инопланетяне», – абсурдным, то для логики эти два высказывания равноценны, так как она занимается формами мышления, а форма у этих высказываний одна и та же: «Все A – это B».
Форма мышления – это способ выражения мыслей, или схема их построения.
Существует всего три формы мышления:
1. Понятие – это форма мышления, которая обозначает какой-либо объект или признак объекта. Примеры понятий: карандаш, растение, небесное тело, химический элемент, мужество, глупость, нерадивость.
2. Суждение – это форма мышления, которая состоит из понятий, связанных между собой, и что-либо утверждает или отрицает. Примеры суждений: «Все планеты являются небесными телами», «Некоторые школьники – это двоечники», «Все треугольники не являются квадратами».
3. Умозаключение – это форма мышления, в которой из двух или нескольких исходных суждений (посылок) вытекает новое суждение (вывод).
В логике принято располагать посылки и вывод друг под другом и отделять посылки от вывода чертой.
9. Краткий курс классической логики. Суждение
Суждение – это форма мышления, в которой что-либо утверждается или отрицается. Примеры суждений: «Некоторые студенты – отличники», «Все люди – смертные».
Суждения составляется из понятий, оно предоставляет собой чаще всего повествовательное предложение. В редких случаях оно бывает риторическое-восклицательное или риторическое-вопросительное предложение, которое что-то утверждает или отрицает.
Бывают простые и сложные суждения, сложные суждения складываются из двух или более простых суждений соединённых союзом.
Суждение на отмену от понятий бывают истинные и ложные, а так же имеют сложную структуру, которая складывается из таких понятий:
Субъект и предикат суждения могут состоять в отношениях:
1.Равнозначности – когда объем субъекта равен объёму предиката. «Все квадраты – равносторонние прямоугольники».
2.Подчинения – когда объем субъекта входит в объем предиката или наоборот. «Все березы – это деревья». Объем понятия деревья больше понятия березы, так как береза только одно из разновидностей деревьев.
3.Пересечения – когда объемы субъекта и предиката пересекаются частично, к примеру, «Некоторые литераторы – это лауреаты нобелевской премии». Литераторы могут быть лауреатами нобелевской премии, но могут и не быть, так же как и лауреаты нобелевской премии могут быть литераторами, но могут ими и не быть. Объем этих понятий совпадает только в некоторых случаях, потому субъект и предикат находятся в отношении пересечения.
4.Несовместимости – когда объемы субъекта и предиката не имеют общих точек соприкосновения. «Звезды – это не планеты». Чаще субъект и предикат, входя в третье более общее понятия, в нашем случае – это небесные тела.
Важно заметить, что при обращении, суждения меняют свой тип, согласно ниже приведенных примеров:
Суждения типа А:
равнозначности – обращается в самое себя.
подчинения – обращается в суждения типа I.
Суждения типа I:
пересечения – обращается в самое себя.
подчинения – обращается в суждения типа I.
Суждения типа Е:
несовместимости – обращается в самое себя.
Суждения типа О:
пересечения – обращению не поддается.
подчинения – обращению не поддаётся.
Второе действие над суждениями — превращения. Оно заключается в том, что у суждения меняется связка, положительная на отрицательную или наоборот. При этом предикат суждения меняется на противоречащий, перед ним ставиться частица «не». Вернемся к нашему исходному суждению: «Все акулы – являются рыбами». Результатом превращения будет суждения: «Все акулы не являются не рыбами». Выглядит это суждения непривычно, однако это более короткое изречение той мысли, что если какое-то животное не являются акулой, то оно не являются и рыбой. Или, что если какое-то животное является акулой то оно обязательно должно являться рыбой, ни одна акула не может быть таким существом, которое бы не являлось при этом рыбой.
В отличие от обращения превращение не зависит от характера отношения субъекта и предиката простого суждения:
Суждения типа А всегда превращается в суждения типа Е, и наоборот.
Суждения типа I всегда превращается в суждения типа О, и наоборот.
При действии противоставления предикату суждения меняют свой тип, аналогично обращении.
В итоге, из одного суждения, мы можем получить четыре:
1. Исходное суждение: «Все акулы являются рыбами».
2. Результат обращения: «Некоторые рыбы – это акулы».
3. Результат превращения: «Все акулы не являются не рыбами».
4. Результат противоставления предикату: «Все не рыбы не являются акулами».
Если мы разобрались с этим, то совершить превращения и противоставления предикату этого суждения совсем не проблематично. Получиться, как и в первом варианте — четыре суждения:
Исходное суждение: «Идти назад – значит не идти вперед»
Обращения: «Иногда не идти вперед, значит идти назад».
Превращения: «Идти назад не означает, не идти вперед».
Противоставление предикату: «Иногда не идти вперед не означает, не идти назад».
Несовместимые суждения находятся в отношениях:
Противоположности (контарность) – суждения, в которых, так же как при отношении частичного совпадения, субъект и предикат совпадает, а связка отличается, но в этом случае суждения могут быть только общими: общеутвердительными (А) или общеотрицательными (О). «Все люди – лгут», «Все люди – не лгут». Важным признаком противоположных суждений является то, что они не могут быть одновременно истинные как несовместимые, но при этом могут быть одновременно ложными. Между этими суждениями всегда можно вставить третье, нейтральное утверждение. В нашем примере это «Некоторые люди лгут, а некоторые не лгут». Это суждение, будучи истинным, доказывает ложность двух первых.
Противоречия (контрадикторность) – это отношения между двумя суждениями в которых предикаты совпадают, связки отличаются, а субъекты находятся в родовом, видовом отношении, то есть отличаются объемами. «Все люди – являются разумными существами», Некоторые люди – не являются разумными существами». На отмену от противоположных суждений противоречивые, не могу быть одновременно ложными. Ложность одного непременно будет доказательством истинности другого, и наоборот.
Возможные отношения между простыми суждениями отображают посредством, так называемого логического квадрата:
Истинное значение суждения, связано с истинностью значений всех других сравнимых суждений. К примеру если суждения типа А: «Все акулы – являются рыбами» истинно, смотря на логический квадрат, можно определить, что суждения типа I: «Некоторые рыбы – являются акулами», тоже будет истинным. Суждения типа Е: «Все акулы – не являются рыбами», точно так же как и суждения типа О: «Некоторые акулы – не являются рыбами», будут ложными.
Еще несколько слов о сложных суждениях. В зависимости от союза, которым соединяются простые суждения в сложные, выделяют пять видов сложного суждения: