Как посчитать сопротивление
Как посчитать сопротивление
Расчет сопротивления проводника — онлайн калькулятор, формула
Расчет сопротивления проводника — неотъемлемый этап при проектировании и анализе электрической цепи. Если обратится к понятным примером, то провода, обеспечивающие электроэнергией наши дома, в зависимости от длинны, сечения и материала обладают сопротивлением. Сопротивление проводника ограничивает величину тока в электрической цепи. Чем больше величина сопротивление, тем меньше ток. Провода, как правило, не обладают большим сопротивлением, способным значительно снизить силу тока. Но, так как проводник — это по сути последовательно соединенный резистор, то от его сопротивления зависит падение напряжения в цепи.
С помощью калькулятора расчета сопротивления проводника вы можете в онлайн режиме определить как сопротивление по длине, так и длину по сопротивлению. Также в обзоре приведена методика расчета с примерами.
Калькулятор сопротивления проводника
Особенность данного калькулятора в том, что вы можете производить как расчет сопротивления проводника по известной длине, так и длину по известному сопротивлению. После выбора соответствующего расчета необходимо указать:
Нажав на кнопку «Расчет» вы получите результат. Для очистки формы и нового расчета воспользуйтесь кнопкой «Очистить».
Расчет сопротивления провода
Сопротивление проводника рассчитывается по следующей формуле:
R = ρ×(l/S) | |
Где: R — электрическое сопротивление проводника (Ом); ρ — удельное сопротивление проводника (Ом·м);l — длина проводника (м);S — площадь сечения проводника (м²). |
Воспользуемся данной формулой и рассмотрим несколько примеров расчета сопротивления проводника:
В приведенных примерах не указаны удельные сопротивления проводников. Они брались из приведенных ниже таблиц. Причем, так как сечения у нас были в миллиметрах, то удельное сопротивление для простоты расчетов бралось из второй таблицы (Ом·мм²/м).
Удельное сопротивление проводников (электрическое)
Удельное электрическое сопротивление (удельное сопротивление) — это физическая величина, характеризующая способность материала препятствовать прохождению электрического тока, выражается в Ом·метр. Значение удельного сопротивления зависит от температуры. В проводниках удельное электрическое сопротивление с повышением температуры возрастает, а в полупроводниках и диэлектриках — наоборот, уменьшается.
Из соотношения ρ = R×(S/l) следует, что единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом. Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м².
Для характеристики удельного сопротивления также применяется единица Ом·мм²/м. То есть единица равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 мм², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом. Соответственно, удельное сопротивление какого-либо вещества, выраженное в этих единицах, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 мм².
Таблица показателей удельного сопротивления материалов (Ом·м):
Таблица удельных сопротивлений проводников (Ом·мм²/м):
Материал проводника | Удельное сопротивление, ρ (Ом·мм²/м) |
Серебро | 0,015 |
Медь | 0,0175 |
Золото | 0,023 |
Латунь | 0,025 — 0,108 |
Алюминий | 0,028 |
Натрий | 0,047 |
Иридий | 0,0474 |
Вольфрам | 0,05 |
Цинк | 0,054 |
Молибден | 0,059 |
Никель | 0,087 |
Бронза | 0,095 — 0,1 |
Железо | 0,1 |
Сталь | 0,103 — 0,137 |
Олово | 0,12 |
Свинец | 0,22 |
Никелин | 0,42 |
Манганин | 0,43 — 0,51 |
Константан | 0,5 |
Титан | 0,6 |
Ртуть | 0,94 |
Нихром | 1,05 — 1,4 |
Фехраль | 1,15 — 1,35 |
Висмут | 1,2 |
Хромаль | 1,3 — 1,5 |
Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления, нужно взять 7,7 м такого проводника. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки с площадью поперечного сечения 1 мм². 1 м медного проводника сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такого проводника.
Резисторы, ток и напряжение
В этой статье мы рассмотрим резистор и его взаимодействие с напряжением и током, проходящим через него. Вы узнаете, как рассчитать резистор с помощью специальных формул. В статье также показано, как специальные резисторы могут быть использованы в качестве датчика света и температуры.
Представление об электричестве
Новичок должен быть в состоянии представить себе электрический ток. Даже если вы поняли, что электричество состоит из электронов, движущихся по проводнику, это все еще очень трудно четко представить себе. Вот почему я предлагаю эту простую аналогию с водной системой, которую любой желающий может легко представить себе и понять, не вникая в законы.
Обратите внимание, как электрический ток похож на поток воды из полного резервуара (высокого напряжения) в пустой(низкое напряжение). В этой простой аналогии воды с электрическим током, клапан аналогичен токоограничительному резистору.
Из этой аналогии можно вывести некоторые правила, которые вы должны запомнить навсегда:
— Сколько тока втекает в узел, столько из него и вытекает
— Для того чтобы протекал ток, на концах проводника должны быть разные потенциалы.
— Количество воды в двух сосудах можно сравнить с зарядом батареи. Когда уровень воды в разных сосудах станет одинаковым, она перестанет течь, и при разряде аккумулятора, разницы между электродами не будет и ток перестанет течь.
— Электрический ток будет увеличиваться при уменьшении сопротивления, как и скорость потока воды будет увеличиваться с уменьшением сопротивления клапана.
Я мог бы написать гораздо больше умозаключений на основе этой простой аналогии, но они описаны в законе Ома ниже.
Резистор
Резисторы могут быть использованы для контроля и ограничения тока, следовательно, основным параметром резистора является его сопротивление, которое измеряется в Омах. Не следует забывать о мощности резистора, которая измеряется в ваттах (Вт), и показывает, какое количество энергии резистор может рассеять без перегрева и выгорания. Важно также отметить, что резисторы используются не только для ограничения тока, они также могут быть использованы в качестве делителя напряжения для получения низкого напряжения из большего. Некоторые датчики основаны на том, что сопротивление варьируется в зависимости от освещённости, температуры или механического воздействия, об этом подробно написано в конце статьи.
Закон Ома
Последовательное и параллельное соединение резисторов
Понимание последствий параллельного или последовательного подключения резисторов очень важно и поможет вам понять и упростить схемы с помощью этих простых формул для последовательного и параллельного сопротивления:
В этом примере схемы, R1 и R2 соединены параллельно, и могут быть заменены одним резистором R3 в соответствии с формулой:
В случае с 2-мя параллельно соединёнными резисторами, формулу можно записать так:
Кроме того, что эту формулу можно использовать для упрощения схем, она может быть использована для создания номиналов резисторов, которых у вас нет.
Отметим также, что значение R3 будет всегда меньше, чем у 2 других эквивалентных резисторов, так как добавление параллельных резисторов обеспечивает дополнительные пути
электрическому току, снижая общее сопротивление цепи.
Последовательно соединённые резисторы могут быть заменены одним резистором, значение которого будет равно сумме этих двух, в связи с тем, что это соединение обеспечивает дополнительное сопротивление тока. Таким образом, эквивалентное сопротивление R3 очень просто вычисляется: R3=R1+R2
В интернете есть удобные он-лайн калькуляторы для расчета последовательного и параллельного соединения резисторов.
Токоограничивающий резистор
Теперь, когда лампа будет рассматриваться как резистор, мы можем использовать закон Ома для расчета тока, проходящего через него. Закон Ома гласит, что ток, проходящий через резистор равен разности напряжений на нем, поделенное на сопротивление резистора: I=V/R или точнее так:
I=(V1-V2)/R
где (V1-V2) является разностью напряжений до и после резистора.
Теперь обратите внимание на рисунок выше, где добавлен токоограничительный резистор. Он будет ограничивать ток идущий к лампе, как это следует из названия. Вы можете контролировать, количество тока протекающего через лампу, просто выбрав правильное значение R1. Большой резистор будет сильно снижать ток, а небольшой резистор менее сильно (так же, как в нашей аналогии с водой).
Математически это запишется так:
Из формулы следует, что ток уменьшится, если значение R1 увеличится. Таким образом, дополнительное сопротивление может быть использовано для ограничения тока. Однако важно отметить, что это приводит к нагреву резистора, и вы должны правильно рассчитать его мощность, о чем будет написано дальше.
Вы можете воспользоваться он-лайн калькулятором для расчета токоограничительного резистора светодиода.
Резисторы как делитель напряжения
Как следует из названия, резисторы могут быть использованы в качестве делителя напряжения, другими словами, они могут быть использованы для уменьшения напряжения путем деления его. Формула:
Если оба резистора имеют одинаковое значение (R1=R2=R), то формулу можно записать так:
Другой распространенный тип делителя, когда один резистор подключен к земле (0В), как показано на рисунке 6B.
Заменив Vb на 0 в формуле 6А, получаем:
Узловой анализ
Теперь, когда вы начинаете работать с электронными схемами, важно уметь их анализировать и рассчитывать все необходимые напряжения, токи и сопротивления. Есть много способов для изучения электронных схем, и одним из наиболее распространенных методов является узловой, где вы просто применяете набор правил, и рассчитываете шаг за шагом все необходимые переменные.
Упрощенные правила узлового анализа
Определение узла
Узел – это любая точка соединения в цепи. Точки, которые связаны друг с другом, без других компонентов между ними рассматриваются как единый узел. Таким образом, бесконечное число проводников в одну точку считаются одним узлом. Все точки, которые сгруппированы в один узел, имеют одинаковые напряжения.
Определение ветви
Ветвь представляет собой набор из 1 и более компонентов, соединенных последовательно, и все компоненты, которые подсоединены последовательно к этой цепи, рассматриваются как одна ветвь.
Все напряжения обычно измеряются относительно земли напряжение на которой всегда равно 0 вольт.
Ток всегда течет от узла с более высоким напряжением на узел с более низким.
Напряжение на узле может быть высчитано из напряжения около узла, с помощью формулы:
V1-V2=I1*(R1)
Перенесем:
V2=V1-(I1*R1)
Где V2 является искомым напряжением, V1 является опорным напряжением, которое известно, I1 ток, протекающий от узла 1 к узлу 2 и R1 представляет собой сопротивление между 2 узлами.
Точно так же, как и в законе Ома, ток ответвления можно определить, если напряжение 2х соседних узлах и сопротивление известно:
I 1=(V1-V2)/R1
Текущий входящий ток узла равен текущему выходящему току, таким образом, это можно записать так: I 1+ I3=I2
Важно, чтобы вы были в состоянии понимать смысл этих простых формул. Например, на рисунке выше, ток протекает от V1 до V2, и, следовательно, напряжение V2 должно быть меньше, чем V1.
Используя соответствующие правила в нужный момент, вы сможете быстро и легко проанализировать схему и понять её. Это умение достигается практикой и опытом.
Расчет необходимой мощности резистора
На фото предоставлены резисторы различной мощности, в основном они отличаются размером.
Разновидности резисторов
Резисторы могут быть разными, начиная от простых переменных резисторов (потенциометров) до реагирующих на температуру, свет и давление. Некоторые из них будут обсуждаться в этом разделе.
Переменный резистор (потенциометр)
На рисунке выше показано схематическое изображение переменного резистора. Он часто упоминается как потенциометр, потому что он может быть использован в качестве делителя напряжения.
Они различаются по размеру и форме, но все работают одинаково. Выводы справа и слева эквивалентны фиксированной точке (например, Va и Vb на рисунке выше слева), а средний вывод является подвижной частью потенциометра, а также используется для изменения соотношения сопротивления на левом и правом выводах. Следовательно, потенциометр относится к делителям напряжения, которым можно выставить любое напряжение от Va к Vb.
Кроме того, переменный резистор может быть использован как тока ограничивающий путем соединения выводов Vout и Vb, как на рисунке выше (справа). Представьте себе, как ток будет течь через сопротивление от левого вывода к правому, пока не достигнет подвижной части, и пойдет по ней, при этом, на вторую часть пойдет очень мало тока. Таким образом, вы можете использовать потенциометр для регулировки тока любых электронных компонентов, например лампы.
LDR (светочувствительные резисторы) и термисторы
Есть много датчиков основанных на резисторах, которые реагируют на свет, температуру или давление. Большинство из них включаются как часть делителя напряжения, которое изменяется в зависимости от сопротивления резисторов, изменяющегося под воздействием внешних факторов.
Терморезисторы
Фоторезистор (LDR)
Как вы можете видеть на рисунке 11A, фоторезисторы различаются по размеру, но все они являются резисторами, сопротивление которых уменьшается под воздействием света и увеличивается в темноте. К сожалению, фоторезисторы достаточно медленно реагируют на изменение уровня освещённости, имеют достаточно низкую точность, но очень просты в использовании и популярны. Как правило, сопротивление фоторезисторов может варьироваться от 50 Ом при солнце, до более чем 10МОм в абсолютной темноте.
Как мы уже говорили, изменение сопротивления изменяет напряжение с делителя. Выходное напряжение можно рассчитать по формуле:
Если предположить, что сопротивление LDR изменяется от 10 МОм до 50 Ом, то Vout будет соответственно от 0.005В до 4.975В.
Термистор похож на фоторезистор, тем не менее, термисторы имею гораздо больше типов, чем фоторезисторы, например, термистор может быть либо с отрицательным температурным коэффициентом (NTC), сопротивление которого уменьшается с повышением температуры, или положительным температурным коэффициентом (PTC), сопротивление которого будет увеличиваться с повышением температуры. Сейчас термисторы реагируют на изменение параметров среды очень быстро и точно.
Схемотехническое обозначение резисторов
Про определение номинала резистора используя цветовую маркировку можно почитать здесь.
«Маленькие хитрости». Часть 4.
Формулы для радиолюбительских расчетов.
Каждый уважающий себя радио-мастер обязан знать формулы для расчета различных электрических величин. Ведь при ремонте электронных устройств или сборке электронных самоделок очень часто приходится проводить подобные расчеты. Не зная таких формул очень сложно и трудоемко, а порой и невозможно справиться с подобного рода задачей!
Как рассчитать емкость конденсатора, как рассчитать сопротивление резистора или узнать мощность устройства – в этом помогут формулы для радиолюбительских расчетов.
Первое, что нужно усвоить – ВСЕ ВЕЛЕЧИНЫ В ФОРМУЛАХ УКАЗЫВАЮТЬСЯ В АМПЕРАХ, ВОЛЬТАХ, ОМАХ, МЕТРАХ И КИЛОГЕРЦАХ.
Закон Ома.
Известный из школьного курса физики ЗАКОН ОМА. На нем строится большинство расчетов в радиоэлектронике. Закон Ома выражается в трех формулах:
Где: I – сила тока (А), U – напряжение (В), R– сопротивление, имеющееся в цепи (Ом).
Теперь рассмотрим на практике применение формул в радиолюбительских расчетах.
Как рассчитать сопротивление гасящего резистора.
Сопротивление гасящего резистора рассчитывают по формуле: R= U /I
Где: U – излишек напряжения, который необходимо погасить (В), I – ток потребляемый цепью или устройством (А).
Как рассчитать мощность гасящего резистора.
Расчет мощности гасящего резистора проводят по формуле: P=I 2 R
Где I – ток потребляемый цепью или устройством (А), R– сопротивление резистора (Ом).
Как рассчитать напряжение падения на сопротивлении.
Где R– сопротивление гасящего резистора (Ом), I– ток потребляемый устройством или цепью (А).
Как рассчитать ток потребляемый устройством или цепью.
Рассчитать ток потребляемый устройством или цепью можно по формуле: I=P/U
Где P– мощность устройства (Вт), U– напряжение питания устройства (В).
Как рассчитать мощность устройства в Вт.
Рассчитать мощность устройства в Вт. можно по формуле: P=IU
Где I– ток потребляемый устройством (А), U– напряжение питания устройства (В).
Как рассчитать длину радиоволны.
Рассчитать длину радиоволны можно по формуле: ƛ=300000/ƒ
Где ƒ-частота в килогерцах, ƛ- длинна волны в метрах.
Как рассчитать частоту радиосигнала.
Частоту радиосигнала можно рассчитать по формуле: ƒ=300000/ƛ
Где ƛ- длинна волны в метрах, ƒ – частота в килогерцах.
Как рассчитать номинальную выходную мощность звуковой частоты.
Где U 2 – напряжение звуковой частоты на нагрузке, R– номинальное сопротивление нагрузки.
И в завершении еще несколько формул. По этим формулам, ведут расчет сопротивления и емкости резисторов и конденсаторов в тех случаях, когда возникает необходимость в параллельном или последовательном их соединении.
Как рассчитать сопротивление двух параллельно включенных резисторов.
Расчет соединенных параллельно двух резисторов производят по формуле: R=R1R2/(R1+R2)
Как рассчитать сопротивление более двух включенных параллельно резисторов.
Расчет сопротивления включенных параллельно более чем двух резисторов проводят по формуле: 1/R=1/R1+1/R2+1/Rn…
Как рассчитать емкость включенных параллельно двух или более конденсаторов.
Расчет емкости соединенных параллельно нескольких конденсаторов проводят по формуле: C=C1+ C2+Cn…
Как рассчитать емкость включенных последовательно двух конденсаторов.
Расчет емкости двух соединенных последовательно конденсаторов проводят по формуле: C=C1 C2/C1+C2
Где C1 и C2 – емкость первого и второго конденсаторов соответственно (мФ).
Как рассчитать емкость включенных последовательно более двух конденсаторов.
Расчет емкости включенных последовательно более чем двух конденсаторов проводят по формуле: 1/C=1/C1+1/C2+1/Cn…
Рекомендуем посмотреть:
Расчет сопротивления по закону Ома
Показаны примеры решения простых электрических задач. Почти каждый расчет иллюстрируется электрической схемой, эскизом соответствующего оборудования. С помощью статей из этого нового раздела сайта вы сможете легко решить практические задачи из основ электротехники даже не имея специального электротехнического образования.
Приведенные в статье практические расчеты показывают, насколько глубоко в нашу жизнь проникла электротехника и какие неоценимые и незаменимые услуги оказывает нам электричество. Электротехника окружает нас повсюду и с ней мы сталкиваемся каждый день.
Примеры. 1. Последовательно с лампой включен амперметр. Напряжение лампы 220 В мощность ее неизвестна. Амперметр показал ток I = 276 мА. Каково сопротивление нити лампы (схема включения показана на рис. 1)?
Проведем расчет сопротивления по закону Ома:
Мощность лампочки Р = UI=220 х 0,276 = 60 Вт.
2. Через спираль кипятильника протекает ток I = 0,5 А при напряжении U = 220 В. Каково сопротивление спирали?
Рис. 1. Эскиз и схема к примеру 2.
Из трех ступеней сопротивления здесь подсчитано наименьшее.
4. Нагревательный элемент электрической печи включен в сеть напряжением 220 В через амперметр, который показывает ток 2,47 А. Какое сопротивление имеет нагревательный элемент (рис. 2)?
Рис. 2. Эскиз и схема к расчету из примера 4
5. Подсчитайте сопротивление г1 всего реостата, если при включении на ступень 1 по цепи протекает ток I = 1,2 А, а на последней ступени 6 ток I2 = 4,2 А при напряжении генератора U = 110 В (рис. 3). Если движок реостата на ступени 7, то ток I проходит через весь реостат и полезную нагрузку r 2.
Рис. 3. Схема к расчету из примера 5
Ток по величине наименьший, а сопротивление цепи наибольшее:
При положении движка на ступени 6 реостат исключен из цепи и ток проходит только через полезную нагрузку.
Сопротивление реостата равно разности между общим сопротивлением цепи r и сопротивлением потребителя r 2:
6. Какое сопротивление имеет цепь тока, если она разорвана? На рис. 4 показан разрыв одного провода подводящего шнура к утюгу.
Рис. 4. Эскиз и схема к примеру 6
Утюг мощностью 300 Вт и напряжением 220 В имеет сопротивление r ут = 162 ом. Ток, проходящий через утюг в рабочем состоянии
Цепь может находиться под напряжением без тока только в случае разрыва цепи. (Тот же результат будет в случае разрыва спирали.)
7. Как выражается закон Ома при коротком замыкании?
На схеме на рис. 5 показаны плитка с сопротивлением r пл, включенная через шнур в розетку, и проводка с предохранителями П. При соединении двух проводов проводки (из-за плохой изоляции) или соединении их через предмет К (нож, отвертка), который практически не имеет сопротивления, происходит короткое замыкание. При этом возникает большой ток, проходящий через соединение К, который при отсутствии предохранителей П мог бы привести к опасному нагреву проводки.
Рис. 5. Эскиз и схема подключения плитки в розетку
Практически это состояние, однако, не наступает, так как расплавленные плавкие вставки предохранителей разрывают электрическую цепь.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Сопротивление резистора — формула для рассчета
Движение электронов по проводнику встречает определённое препятствие. Оно зависит от удельного сопротивления материала (ρ), из которого изготовлен проводник, его длины (L) и площади поперечного сечения (S). Эта физическая характеристика была использована для создания резистора. С его помощью выполняются регулирование и распределение тока на различных участках электрических и электронных схем. Среди других пассивных элементов этот выделяется тем, что на нём происходят падение напряжения и преобразование энергии электричества в энергию тепла, которое рассеивается.
Виды резисторов
Резистор – инертный (пассивный) элемент цепи, у которого сопротивление может быть как постоянным, так и переменным. Это зависит от его конструкции. Он применяется для регулирования силы тока и напряжения в цепях, рассеивания мощности и иных ограничений. Дословный перевод с английского слова «резистор» – сопротивляюсь.
Классификацию резисторов можно провести по следующим критериям:
Устройства делятся на элементы общего и специального назначения. У специальных деталей повышенные характеристики сопротивления, частоты, рабочего напряжения или особые требования к точности.
Тип изменения сопротивления делит их на постоянные и переменные. Переменные резисторы конструктивно отличаются не только от элементов, имеющих постоянное сопротивление, но и между собой. Они различны по конструкции: бывают регулировочные и подстроечные.
Регулировочные элементы переменного типа предназначены для частого изменения сопротивления. Это входит в процесс работы схемы устройства.
Подстроечный тип предназначен для того, чтобы выполнить подстройку и регулировку схемы при первичном запуске. После этого изменение положения регулятора не выполняют.
При изготовлении резистивных тел (рабочей поверхности) используются такие материалы, как:
Особое место занимают в этом ряду интегральные элементы. Это резисторы, выполненные в виде p-n перехода, который представляет собой зигзагообразный канал, интегрируемый в кристалл микросхемы.
Внимание! Интегральные элементы всегда отличаются повышенной нелинейностью своей ВАХ. Поэтому они применяются там, где использование других типов не представляется возможным.
Вид вольт-амперной характеристики делит рассматриваемые элементы на линейные и нелинейные. Особенность нелинейности заключается в том, что компонент меняет своё сопротивление в зависимости от следующих характеристик:
Нелинейность вольт-амперной характеристики расширило возможности их применения.
Способ монтажа может быть:
При печатном монтаже выводы детали вставляются в отверстие на плате, после чего припаиваются к контактной дорожке панели. Такой способ установки автоматизирован, и пайка происходит путём погружения контактных площадок в ванну с припоем.
Навесной монтаж, в большинстве своём, ручной. Выводы соединяемых деталей сначала скручиваются между собой, потом спаиваются для улучшения контакта. Сама пайка не предназначена для выдерживания механических нагрузок.
Интегрированный монтаж проводится в процессе изготовления кристаллов микросхем.
Параметры резисторного элемента
При нанесении на схемы графического обозначения элемента сопротивления на нём указывается некоторые из его параметров.
К главным параметрам и элементарным характеристикам относятся:
На чертежах и схемах резистор обозначается буквой R, с нанесением его порядкового номера.
Расчет резисторов
Для подбора и установки элементов в схему необходимо предварительно рассчитать номинал и мощность компонентов.
Формула для расчета сопротивления и мощности
Используют Закон Ома для участка цепи, чтобы вычислить сопротивление резистора, формула имеет вид:
где:
Эта формула применима для токов постоянного направления. В случае расчётов для переменного тока берут в расчёт импеданс цепи Rz.
Важно! Строение схем не ограничивается установкой только одного резистора. Обычно их множество, соединены они между собой параллельно и последовательно. Для нахождения общего показателя применяют отдельные методы и формулы.
Последовательное соединение
При таком соединении «выход» одного элемента соединяется с «входом» другого, они идут последовательно друг за другом. Как рассчитать резистор в этом случае? Можно использовать электронный онлайн-калькулятор, можно применить формулу.
Общее значение будет составлять сумму сопротивлений компонентов, входящих в последовательное соединение:
На каждом из них произойдёт одинаковое падение напряжения: U1, U2, U3.
Параллельное соединение
При выполнении данного вида соединения одноимённые выводы соединяются попарно, формула имеет вид:
R = (R1 x R2)/ (R1 + R2).
Обычно полученное значение R бывает меньше меньшего из всех значений соединённых элементов.
Информация. На практике параллельное или последовательное присоединение применяют, когда нет детали необходимого номинала. Элементы для таких случаев подбирают одинаковой мощности и одного типа, чтобы не получить слабого звена.
Смешанное соединение
Рассчитывать общее сопротивление смешанных соединений возможно, применяя правило объединения. Сначала выбирают все параллельные и последовательные присоединения и составляют эквивалентные схемы замещения. Их начинают рассчитывать, используя формулы для каждого случая. Из полученной более простой схемы вновь выделяют параллельные и последовательные звенья и опять производят расчёты. Делают это до тех пор, пока не получат самое элементарное соединение или один эквивалентный элемент. Вычисленный результат будет являться искомым.
Мощность
Одного поиска значения сопротивления недостаточно для того, чтобы применить деталь. Необходимо узнать, на какую мощность должен быть рассчитан элемент. В противном случае он будет перегреваться и выйдет из строя. Мощные детали при поверхностном монтаже лучше устанавливать на радиатор.
Расчет мощности резистора выполняется по формуле:
где:
После определения мощности резисторов по формуле подбирают комплектующие, исходя из графического обозначения на схемах.
Делитель напряжения
Наиболее применяемые готовые блоки питания рассчитаны на выходные напряжения: 9, 12 или 24 вольта. В то же время большинство электронных схем и устройств использует напряжение питания в интервале от 3 до 5 В. В этом случае возникает потребность снизить величину Uпит до необходимого значения. Сделать это можно, используя делитель напряжения, который имеет много вариантов исполнения. Самый простой – делитель на резисторах.
Подобные делители напряжения применяются исключительно в маломощных контурах. Это обусловлено их низким КПД. Часть мощности блока питания рассеивается на делителе, превращаясь в тепло. Эти потери тем больше, чем больше нужно уменьшить исходное напряжение. Подключение нагрузки параллельно одному плечу требует того, чтобы Rн было намного больше резистора, установленного в этом плече. Иначе делитель будет выдавать нестабильное питание.
При такой схеме напряжение по плечам делителя распределяется согласно полученным соотношениям между R1 и R2. Величина сопротивлений при этом роли не играет. Но следует помнить, что при низких значениях R1 и R2 увеличивается и мощность на нагрузке, и величина потерь на нагревание элементов.
Внимание! Перед тем, как вычислять точные параметры, нужно помнить, как подобрать резисторы. При их равном значении напряжение на выходе делится пополам. Если равенство не соблюдается, снимать поделенное напряжение нужно с элемента, имеющего больший номинал.
Зависимость сопротивления от температуры
Использование резисторов, как термометров, обусловлено почти линейной зависимостью их сопротивления от температуры. Это касается тех резисторов, у которых в качестве резистивного материала используется проволока или металл. Формула зависимости:
Речь идёт о значении температуры в Кельвинах. При температурах, приближающихся к нулю по Кельвину (-273°С), у множества металлов при охлаждении R скачком падает до нулевой отметки. В этом случае можно говорить о сверхпроводимости.
Интересно. Металлы, имеющие хорошую проводимость при нормальной температуре, могут не быть сверхпроводниками при критической отметки этой физической величины. Сверхпроводники в нормальном состоянии имеют сопротивление большее, чем традиционные тоководы: медные, серебряные или золотые.
При нагревании проводников изменение сопротивления происходит в основном за счёт изменения его удельного значения и имеет линейную зависимость.
Величина напряжения, обеспеченная резисторным элементом
Идеальный элемент, который превращает электричество в другой вид энергии, называют резистивным. Электроэнергия может преобразовываться в световую, тепловую или механическую виды. Величина напряжения на таком элементе зависит от разности потенциалов на концах резистора. Это значит, чем больше значение его сопротивления, тем больше значение напряжения на нём.
Изменение такой характеристики резистора, как сопротивление, позволяет реализовывать схематические решения в разных отраслях радиотехники и электроники. При выборе элементов следует учитывать удельное значение этой величины и изменение вольт-амперной характеристики при разных режимах работы.
Видео
Параллельное соединение резисторов. Калькулятор для расчета
Параллельное соединение резисторов — онлайн калькулятор
Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:
Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.
Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:
Формула параллельного соединения резисторов
Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:
Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:
Параллельное соединение резисторов — расчет
Пример №1
При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.
Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:
Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:
Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.
Пример расчета №2
Найти общее сопротивление R из трех параллельно соединенных резисторов:
Общее сопротивление R рассчитывается по формуле:
Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.
Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.
Как рассчитать сложные схемы соединения резисторов
Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:
Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.
Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).
Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:
В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:
Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.
Ток, протекающий в цепи параллельно соединенных резисторах
Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.
Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (закон Ома для участка цепи).
Правило Кирхгофа гласит: «Общий ток, входящий в цепь равен току выходящему из цепи».
Таким образом, протекающий общий ток в цепи можно определить как:
Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:
Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА
Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА
Таким образом, общий ток будет равен:
I = 0,545 мА + 0,255 мА = 0,8 мА
Это также можно проверить, используя закон Ома:
I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)
где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)
И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.
Подведем итог
Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.
Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора, входящего в параллельное соединение.
Расчёт сопротивления проводника: определение и метод измерения
Что это такое
Удельным сопротивлением проводника называется физический вид величины, который показывает, что материал может препятствовать электротоку. По-другому, это такое сопротивление металлов, которое оказывает материал с единичным сечением сопротивление протекающему току. Отличается удельное сопротивление постоянному току тем, что оно вызывается током на проводник. Что касается переменного тока, то он появляется в проводнике под действием вихревого поля.
Важно также уточнить, что собой представляет удельная электрическая проводимость. Электропроводимость — это величина, которая обратна сопротивлению и называется электропроводностью. Это показатель, показывающий меру проводимости силы электротока.
Обратите внимание! Чем больше он, тем лучше способен проводник проводить электричество.
В чем измеряется
Согласно международной системе единиц, измеряется величина в омах, умноженных на метр. В некоторых случаях применяется единица ом, умноженная на миллиметр в квадрате, поделенная на метр. Это обозначение для проводника, имеющего метровую длину и миллиметровую площадь сечения в квадрате.
Формула
Ток обусловлен движением электронов. Классическая формула, используемая для расчёта его силы была выведена немецким физиком Омом. Он на опыте смог подтвердить зависимость между собой тока, сопротивления и напряжения. В математическом виде связь записывают в виде формулы: I = U /R.
Согласно закону Ома, сопротивление тела электрическому току прямо пропорционально его силе и обратно пропорционально напряжению: R = I / U. Это эмпирическая формула справедлива для любого участка цепи.
Подвижные носители при хаотичном движении ведут себя как молекулы газа, поэтому в первом приближении физики считают носителей зарядов своего рода электронным газом. Как было установлено эмпирически, плотность этого газа и строение кристаллической решётки зависят от рода проводника. Соответственно, проводимость, а значит и сопротивление, определяется также и родом вещества. В свою очередь, физическое тело характеризуется и геометрическими параметрами.
Влияние размеров полупроводника объясняется зависимостью от них поперечного сечения. При его уменьшении поток зарядов становится плотнее, степень взаимодействия между частицами возрастает. Полная формула сопротивления проводника с учётом поперечного сечения выглядит так: R = (p * l) / S. Из неё становится ясно, что проводимость прямо пропорциональна площади сечения и обратно пропорциональна длине проводника.
Удельное электрическое сопротивление для многих веществ было установлено во время исследований. Существуют таблицы, в которые занесены данные, измеренные при температуре 20 градусов Цельсия. Ими часто пользуются при решении различных задач, связанных с электричеством. Вот некоторые из них:
Для проводников характерно увеличение сопротивления при росте температуры. Это связано с колебаниями атомов. В то же время с ростом температуры проводимость в полупроводниках и диэлектриках возрастает из-за увеличения концентрации носителей заряда.
Удельное сопротивление для неоднородного материала можно вычислить по формуле: p = E / J. Где: E и J напряжённость и плотность тока в конкретной точке.
Какие существуют виды
Их немного, одно из которых мы уже разобрали:
Формулы расчёта электрического сопротивления для переменного тока
К сожалению, наш друг-физик решил не идти нам навстречу и вывел несколько формул по нахождению всех трёх величин. Электрическое сопротивление обозначается буквой R.
Но перед тем как пойти дальше, совет: всегда придумывайте какие-нибудь ассоциации, чтобы запомнилось на всю жизнь, например:
Ну и, конечно, формула закона Ома для участка цепи.
Ну а теперь главное, для чего мы все здесь собрались: «Зачем нужен этот закон? Что он даёт?»
Представьте перед собой электрическую цепь, по которой проходит ток, напряжение и сопротивление. И встаёт вопрос, как понять где что и в каких размерах. Для этого вывели формулу.
Также не забывате, если вдруг вас спросят от чего зависит сопротивление — отвечайте: » От напряжения и мощности».
Активного сопротивления
Ну что сказать? Придется запастись терпением и потратить время на все эти законы и определения.
Но к счастью, активное сопротивление, так и осталось большой буквой R. Просто немного поменялась формула и ее предназначение.
Подключим к нашей цепи проводник. Проводником может выступать лампа.
Понятно, что по нему тоже будет проходить ток. Это как танец «волна». Все 5 человек берутся за руки и начинают по очереди создавать колебания. Сопротивление уже известно на всех. Так же и здесь.
Мы ищем полное сопротивление. Обозначается большой буквой Z.
Если посмотреть, то можно найти сходство танца «волны» с этой буквой. Так и запомните.
Формула, как рассчитать силу тока:
Индуктивного сопротивления
Боюсь, что когда вы увидите данную формулу, то она вам точно не понравится. Но нет слова «не хочу», есть слово «надо».
Начнем с обозначения:
Емкостного
Ёмкостное сопротивление — это проводник, который подключен к цепи. Он не имеет сопротивление, но есть ёмкость. Обозначается это ёмкостное сопротивление буквами Xc.
Единица измерения сопротивления неизменно остается Ом.
Полного
Как говорилось выше — полное сопротиление что-то на подобии танца «волны». Нужно узнать R (сопротивление) всех.
Чтобы определить полное сопротивление цепи:
R = R1 +R2 (проводников может быть несколько).
Теперь, если у вас спросят как определить общее сопротивление цепи, вы знаете что делать.
Нахождение параметра
Найти сопротивление — значит, рассчитать потери тока. Существует 2 принципиально разных подхода к расчёту. В одном случае он ведётся для электрической цепи, а в другой — для материала. Если во втором случае всё предельно понятно, используется одна формула, в которую подставляют размеры тела и табличное значение удельной проводимости, то для электрической цепи не так всё просто.
В цепи может встречаться 3 вида соединения элементов:
Вычисление сопротивления для каждого типа соединения имеет особенности. При последовательном включении общее значение определяется путём простого складывания: R = r1 + r2 +…+ rn. При параллельном же соединении полное сопротивление цепи будет меньше самого малого из сопротивлений ветвей. Для такого включения верна формула: 1 / R = 1 / r1 + 1 / r2 +…+ 1 / rn.
Принцип расчёта смешанного соединения построен на группировке электрической цепи по виду подключения элементов. Определение параметра выполняют поочерёдно. Сначала высчитывают сопротивление одного узла, включающего однотипное соединение, затем к результату добавляют следующий элемент. Эту операцию повторяют до тех пор, пока не останется один элемент.
В радиотехнике деталь, применяющуюся в качестве сопротивления, называют резистором. С его помощью обозначают и так называемый эквивалентный параметр, используемый при расчётах электрических цепей. Его вводят, если нужно определить, например, мощность источника тока, выходное напряжение.
Таким образом, чтобы правильно посчитать сопротивление, нужно учитывать несколько факторов. При этом нужно помнить о единой системе измерений. Следует придерживаться СИ. Все величины, используемые в формулах, должны подставляться в стандартных единицах измерения. Почти во всех таблицах значение удельного сопротивления даётся в мм2/м, что связано с измерением площади.
Зависимость удельного сопротивления от температуры
Температурный коэффициент используется в формула для расчета удельного сопротивления с учетом изменения температуры:
$ρ_t =ρ_0 • [1+α•(t-t_0)]$, где
Для расчета удельного сопротивления при +30 C*, нужно взять первую формулу и подставить известные значения:
$ρ_t=ρ_0 • [1+α•(t-t_0)]=0,017 • [1+(0,0039 • (– 30 – 20)=0,0136$
Исходя из расчетов можно сделать вполне логичный вывод, который заключается в следующем.
Чем выше температура окружающей среды, тем выше удельное сопротивление.
Связь с удельной проводимостью
В изотропных материалах связь между удельным сопротивлением ρ
В случае анизотропных материалов связь между компонентами тензора удельного сопротивления ρ i j
Из этого равенства и приведённого ранее соотношения для E i ( r → )
Формулировка закона
Закон Ома говорит, что сила тока (I) отдельно взятого участка цепи пропорциональна напряжению на этом участке и обратно пропорциональна его сопротивлению.
Следует заметить, что в таком виде закон остается верным только для однородного участка цепи. Однородной называется та часть электрической цепи, которая не содержит источника тока. Как пользоваться законом Ома в неоднородной цепи, будет рассмотрено ниже.
Позже опытным путем было установлено, что закон остается справедливым и для растворов электролитов в электрической цепи.
Что такое ЭДС и откуда она берется
ЭДС расшифровывается, как электродвижущая сила. Обозначается греческой буквой ε и измеряется, как и напряжение, в Вольтах.
Химическая реакция внутри гальванического элемента (это синоним батарейки) происходит с выделением энергии в электрическую цепь. Именно эта энергия заставляет частицы двигаться по проводнику.
Зачастую напряжение и ЭДС приравнивают и говорят, что это одно и то же. Формально, это не так, но при решении задач чаще всего и правда нет разницы, так как эти величины обе измеряются в Вольтах и определяют очень похожие по сути своей процессы.
В виде формулы Закон Ома для полной цепи будет выглядеть следующим образом:
Закон Ома для полной цепи R — сопротивление [Ом] r — внутреннее сопротивление источника [Ом] |
Любой источник не идеален. В задачах это возможно («источник считать идеальным», вот эти вот фразочки), но в реальной жизни — точно нет. В связи с этим у источника есть внутреннее сопротивление, которое мешает протеканию тока.
Решим задачу на полную цепь.
Найти силу тока в полной цепи, состоящей из одного резистора сопротивлением 3 Ом и источником с ЭДС равной 4 В и внутренним сопротивлением 1 Ом
Возьмем закон Ома для полной цепи:
Ответ: сила тока в цепи равна 1 А.
Как образуется сопротивление проводников
Современные воззрения говорят: свободные электроны перемещаются по проводнику со скоростью порядка 100 км/с. Под действием возникающего внутри поля дрейф упорядочивается. Скорость перемещения носителей вдоль линий напряженности мала, составляет единицы сантиметров в минуту. В ходе движения электроны сталкиваются с атомами кристаллической решетки, некая доля энергии переходит в тепло. И меру этого преобразования принято называть сопротивлением проводника. Чем выше, тем больше электрической энергии переходит в тепло. На этом основан принцип действия обогревателей.
Параллельно контексту идет численное выражение проводимости материала, которое можно увидеть на рисунке. Для получения сопротивления полагается единицу разделить на указанное число. Ход дальнейших преобразований рассмотрен выше. Видно, что сопротивление зависит от параметров – температурное движение электронов и длина их свободного пробега, что прямо приводит к строению кристаллической решётки вещества. Объяснение – сопротивление проводников отличается. У меди меньше алюминия.
Когда «сопротивление бесполезно»
Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.
А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.
Ток идет по пути наименьшего сопротивления.
Теперь давайте посмотрим на закон Ома для участка цепи еще раз.
Закон Ома для участка цепи U — напряжение [В] R — сопротивление [Ом] |
Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.
Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.
Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.
Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.
Катушка индуктивности
Катушки индуктивности представляет собой устройство, главной частью которого является проводящий металл, скрученный в некое подобие колец либо обернутый вокруг диэлектрического сердечника. Если через такое устройство проходит электрический ток, то формируется местное магнитное поле. Это происходит из-за концентрации переменного магнитного поля.
Для вычислительной техники используется дроссель, который применяется для питания различного высокоточного оборудования. Устройство требуется для снижения колебаний переменного напряжения. С добавлением частоты сопротивление соответственно увеличивается. Технические параметры дросселя зависят от площади поперечного сечения проводящего материала, числа витков вокруг сердечника из диэлектрика.
Электросопротивление других металлов
Кроме меди и алюминия, в электротехнике используются другие металлы и сплавы:
Материалы высокой проводимости
К наиболее широкораспрстраненным материалам высокой проводимости следует отнести медь и алюминий (Сверхпроводящие материалы, имеющие типичное сопротивление в 10-20 раз ниже обычных проводящих материалов (металлов) рассматриваются в разделе Сверхпроводимость).
Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:
Медь получают чаще всего путем переработки сульфидных руд. После ряда плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехнических целей, обязательно проходит процесс электролитической очистки.
В качестве проводникового материала чаще всего используется медь марок М1 и М0. Медь марки М1 содержит 99.9% Cu, а в общем количестве примесей (0.1%) кислорода должно быть не более 0,08%. Присутствие в меди кислорода ухудшает ее механические свойства. Лучшими механическими свойствами обладает медь марки М0, в которой содержится не более 0.05% примесей, в том числе не свыше 0.02% кислорода.
Медь является сравнительно дорогим и дефицитным материалом, поэтому она все шире заменяется другими металлами, особенно алюминием.
В отдельных случаях применяются сплавы меди с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь.
Алюминий
Алюминий является вторым по значению после меди проводниковым материалом. Это важнейший представитель так называемых легких металлов: плотность литого алюминия около 2.6, а прокатанного — 2.7 Мг/м3. Т.о., алюминий примерно в 3.5 раза легче меди. Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди. Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата тепла, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.
Алюминий обладает пониженными по сравнению с медью свойствами — как механическими, так и электрическими. При одинаковом сечении и длине электрическое сопротивление алюминиевого провода в 1.63 раза больше, чем медного. Весьма важно, что алюминий менее дефицитен, чем медь.
Для электротехнических целей используют алюминий, содержащий не более 0.5% примесей, марки А1. Еще более чистый алюминий марки АВ00 (не более 0.03% примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов электролитических конденсаторов. Алюминий наивысшей чистоты АВ0000 имеет содержание примесей не более 0ю004%. Добавки Ni, Si, Zn или Fe при содержании их 0.5% снижают γ отожженного алюминия не более, чем на 2-3%. Более заметное действие оказывают примеси Cu, Ag и Mg, при том же массовом содержании снижающие γ алюминия на 5-10%. Очень сильно снижают электропроводность алюминия Ti и Mn.
Алюминий весьма активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением. Эта пленка предохраняет металл от дальнейшей коррозии.
Алюминиевые сплавы обладают повышенной механической прочностью. Примером такого сплава является альдрей, содержащий 0.3-0.5% Mg, 0.4-0.7% Si и 0.2-0.3% Fe. В альдрее образуется соединение Mg2Si, которое сообщает высокие механические свойства сплаву.
Железо и сталь
Железо (сталь) как наиболее дешевый и доступный металл, обладающий к тому же высокой механической прочностью, представляет большой интерес для использования в качестве проводникового материала. Однако даже чистое железо имеет значительно более высокое сравнительно с медью и алюминием удельное сопротивление; ρ стали, т.е. железа с примесью углерода и других элементов, еще выше. Обычная сталь обладает малой стойкостью коррозии: даже при нормальной температуре, особенно в условиях повышенной влажности, она быстро ржавеет; при повышении температуры скорость коррозии резко возрастает. Поэтому поверхность стальных проводов должна быть защищена слоем более стойкого материала. Обычно для этой цели применяют покрытие цинком.
В ряде случаев для уменьшения расхода цветных металлов применяют так называемый биметалл. Это сталь, покрытая снаружи слоем меди, причем оба металла соединены друг с другом прочно и непрерывно.
Натрий
Весьма перспективным проводниковым материалом является металлический натрий. Натрий может быть получен электролизом расплавленного хлористого натрия NaCl в практически неограниченных количествах. Из сравнения свойств натрия со свойствами других проводниковых металлов видно, что удельное сопротивление натрия примерно в 2.8 раза больше ρ меди и в 1.7 раз больше ρ алюминия, но благодаря чрезвычайно малой плотности натрия (плотность его почти в 9 раз меньше плотности меди), провод из натрия при данной проводимости на единицу длины должен быть значительно легче, чем провод из любого другого металла. Однако натрий чрезвычайно активен химически (он интенсивно окисляется на воздухе, бурно реагирует с водой), почему натриевый провод должен быть защищен герметизирующей оболочкой. Оболочка должна придавать проводу необходимую механическую прочность, так как натрий весьма мягок и имеет малый предел прочности при деформациях.
Пример из практики
Последовательно с источником освещения включен тестер. Напряжение осветительного прибора = 220 Вольт. Мощность неизвестна. На показателе амперметра указано 276 миллиампер тока. Какая величина у спирали лампы при последовательном включении в схему резисторов?
Формула нахождения сопротивления спирали
Электросопротивление представляет собой физическую величину, которая соответствует степени препятствия движению электрических частиц у каждого материала. Возможно измерить уровень величины мультиметром. В таком случае придется находить значение по формуле. Для предотвращения попадания электрического тока на непредназначенные для этого участки желательно заземлять линии передачи. Данная физическая величина используется во многих радиодеталях, например, светодиодах. В электрической цепи, чтобы узнать величину, требуется подключить к вольтметру фазу и ноль при известной силе тока, затем рассчитать по закону Ома.
Закон Ома — калькулятор, формулы, методика расчета
Закон Ома — эмпирический физический закон, определяющий связь электродвижущей силы источника (или электрического напряжения) с силой тока, протекающего в проводнике, и сопротивлением проводника. Установлен Георгом Омом в 1826 году (опубликован в 1827 году) и назван в его честь.
В данном обзоре приведены программы и калькуляторы закона Ома. Также дополнительно приведены основные формулы и методики расчетов.
Закон Ома — калькулятор онлайн
Онлайн калькулятор закона Ома позволяет быстро просчитать основные переменные для участка цепи. Для этого вам необходимо ввести любые два известных значения и нажать «рассчитать».
U Напряжение (В): |
P Мощность (Вт): |
R Сопротивление (Ом): |
I Сила тока (А): |
Закон Ома для постоянного тока — расчет, формулы
Закон Ома для постоянного тока определяет зависимость между током (I), напряжением (U) и сопротивлением (R) в участке электрической цепи.
Закон Ома для полной цепи:
I = ε / (R + r), где:
Из закона Ома для полной цепи вытекают следующие следствия:
Часто выражение I = U / R тоже называют законом Ома. При этом формулировка следующая — сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи, где:
Помимо закона Ома, важнейшим является понятие электрической мощности. Мощность постоянного тока (P) равна произведению силы тока (I) на напряжение (U):
P = I × U, где:
Комбинируя две формулы можно получить зависимость между силой тока, напряжением, сопротивлением и мощностью, и создадим таблицу:
Множительные приставки в системе СИ примирительные к закону Ома:
Закон Ома для цепи переменного тока
В цепи переменного тока сопротивление кроме активной, может иметь как емкостную, так и индуктивную составляющие. Рассмотрим цепь переменного тока, состоящую из резистора сопротивлением R, конденсатора емкостью C и катушки индуктивностью L, соединенных последовательно.
Мгновенные значения силы тока на всех элементах этой цепи одинаковы, а мгновенное значение напряжения между концами цепи равно алгебраической сумме мгновенных значений напряжений на резисторе (UR), конденсаторе (UC) и катушке индуктивности (UL).
Для того чтобы определить амплитудные (или действующие) значения напряжения и силы тока, а также сдвиг фаз между ними удобно использовать метод векторных диаграмм. Здесь действующие значения всех напряжений и токов рассматриваются как векторы, вращающиеся с угловой скоростью ω, равной циклической частоте переменного тока, а их мгновенные значения определяются проекциями этих векторов на горизонтальную ось. Так как сила тока в цепи одинакова, то построение векторной диаграммы начинается с вектора I¯0, модуль которого равен амплитудному значению силы тока в цепи. Направление этого вектора может быть любым. Зададим угол α = ωt к горизонтали.
Колебания напряжения на активном сопротивлении совпадают по фазе с колебаниями силы тока, поэтому вектор U¯0R, модуль которого равен U0R = I0 × R, совпадает по направлению с вектором I¯0. Сдвиг фаз между колебаниями силы тока и колебаниями напряжения на индуктивном сопротивлении составляет π / 2, причем ток отстает по фазе от напряжения. Поэтому вектор U¯0L, модуль которого равен U0L = I0 × ωL, нужно повернуть относительно вектора I¯0 на угол π / 2 против часовой стрелки. Вектор U¯0C, модуль которого равен I0 / ωC, отстает по фазе от вектора I¯0 на π / 2, поэтому его нужно повернуть на этот угол по часовой стрелке.
Для того чтобы найти напряжение на зажимах цепи, необходимо сложить три вектора: U¯0 = U¯0R + U¯0L + U¯0C.
В первую очередь сложим векторы U¯0R и U¯0C. Модуль этой суммы U’0 = [U¯0R + U¯0C]. Пусть ωL > 1 / ωC, тогда: U’0 = I0 × (ωL — 1 / ωC).
Теперь сложим векторы U¯0R и U’¯0. Модуль вектора U¯0 определяется по теореме Пифагора: U0² = U0R² + (U0L — U0C)² = I0² × R² + I0² × (ωL — 1 / ωC)². Соответственно амплитудное (действующее) значение силы тока в цепи переменного тока равно отношению амплитудного (действующего) значения напряжения на концах этой цепи к его полному сопротивлению (закон Ома для цепи переменного тока):
I0 = U0 / √(R² + (ωL — 1 / ωC)²) = U0 / Z, где:
Импеданс при параллельном подключении Z = 1 / √(1 / R² + 1 / (1 / ωL — ωC)²).
Сдвиг фаз между силой тока и напряжением равен углу φ между векторами U¯0 и I¯0. В соответствии с графиком выше ток отстает от напряжения на угол φ, причем tgφ = (ωL — 1 / ωC) / R.
Для того чтобы определить мгновенные значения напряжений на активном, емкостном и индуктивном сопротивлениях, необходимо спроектировать векторы U¯0R, U¯0L, U¯0C на прямую АВ.
Тогда:
Если 1 / ωС > ωL, то:
Таблица удельных сопротивлений проводников
Электрическое сопротивление (ρ) 1 метра провода, сечением 1 мм², при температуре 20 С°:
Материал проводника | Удельное сопротивление ρ, Ом |
Серебро | 0.015 |
Медь | 0.0175 |
Золото | 0.023 |
Латунь | 0,025. 0,108 |
Хром | 0,027 |
Алюминий | 0.028 |
Натрий | 0.047 |
Иридий | 0.0474 |
Вольфрам | 0.05 |
Цинк | 0.054 |
Молибден | 0.059 |
Никель | 0.087 |
Бронза | 0,095. 0,1 |
Железо | 0.1 |
Сталь | 0,103. 0,137 |
Олово | 0.12 |
Свинец | 0.22 |
Никелин (сплав меди, никеля и цинка) | 0.42 |
Манганин (сплав меди, никеля и марганца) | 0,43. 0,51 |
Константан (сплав меди, никеля и алюминия) | 0,44-0,52 |
Копель (медно-никелевый сплав с 43% никеля и 0,5% марганца) | 0.5 |
Титан | 0.6 |
Ртуть | 0.94 |
Хромель (хром 8,7 — 10 %; никель 89 — 91 %; кремний, медь, марганец, кобальт — примеси) | 1.01 |
Нихром (сплав никеля, хрома, железа и марганца) | 1,05. 1,4 |
Фехраль | 1,15. 1,35 |
Висмут | 1.2 |
Хромаль (Сплав 4,5 — 6% алюминия, 17 — 30% хрома, железа) | 1,3. 1,5 |
Сопротивление проводника определяется по формуле r = (ρ × l) / S, где:
Закон Ома — скачать программу
Расчеты с использованием закона Ома также можно проводить в офлайн режиме. Для этого необходимо воспользоваться бесплатной программой «КИП и А». В пункте Электрика находится калькулятор, производящий расчеты по закону Ома для цепей постоянного и переменного тока:
Последовательное и параллельное соединение проводников
На практике в основном используется два различных способа установки компонентов в схемах. В основном используют как последовательное соединение, так и как параллельное соединение различных проводников.
Сопротивление, как известно, характеризует свойство проводника препятствовать прохождению электрического тока. Мы можем описать последовательное и параллельное соединение проводников с помощью различных моделей. Однако мы также можем использовать удельное сопротивление в качестве объяснения.
Мы знаем формулу для вычисления сопротивления проводника:
Из этой формулы видно, что чем длиннее проводник, тем больше сопротивление. При последовательном соединении проводники расположены один за другим, следовательно сопротивления складываются.
Из формулы выше также видно, что чем больше поперечное сечение проводника, тем меньше сопротивление. При параллельном соединении проводники расположены рядом друг с другом. Если мы совместим проводники в один большой, то это будет соответствовать большему поперечному сечению. Следовательно, согласно формулы выше, общее сопротивление при увеличении поперечного сечения уменьшится.
Эти выводы нам пригодятся далее в статье.
Последовательное соединение проводников
Последовательное соединение, каких-либо компонентов, например, резисторов в схеме выглядит приблизительно как на схеме ниже:
Рис. 1. Последовательное соединение резисторов
По аналогии с двумя последовательно соединенными проводниками, мы также можем нарисовать два “прямоугольника” один за другим. Прямоугольник удлиняется и вместе с ним увеличивается и сопротивление. Сопротивления складываются. Применяется следующая формула:
Если у нас N проводников, тогда формула для расчета общего сопротивления последовательно соединенных проводников следующая:
Согласно схемы видно, что электрический ток протекает сначала через первый проводник, а от него непосредственно к следующему и всем последующим. Правила расчета электрического тока I и напряжения U для проводников R1 – RN выглядят следующим образом:
Электрический ток остается неизменным, так как все электроны, протекающие через первый проводник, должны также протекать через второй, третий и все последующие проводники. Поэтому электрический заряд в электрической цепи с последовательным соединением не изменяется.
Напряжение пропорционально сопротивлению, иначе формула из закона Ома для участка цепи – R = U / I не выполнялась бы. Поэтому мы помним: U= R * I также применимо и здесь. Для электрической цепи с последовательным соединением проводников это означает, что чем больше сопротивление проводника, тем больше на нем падает напряжение.
Параллельное соединение проводников
Параллельное соединение, каких-либо компонентов, например, резисторов в схеме выглядит приблизительно как на схеме ниже:
Рис. 2. Параллельное соединение резисторов
По аналогии с двумя проводниками, соединенными параллельно, мы также можем нарисовать прямоугольник шире. Сопротивление становится меньше. Применяется следующая формула:
Если у нас N проводников соединено параллельно, тогда формула примет вид:
1 / Rобщ = 1 / R1 + 1 / R2 + 1 / R3 + … + 1 / RN, то есть чем больше в электрической цепи подключено проводников, тем меньше будет общее сопротивление.
В каждом ответвлении ток I разделяется на I1, I2, … IN. Это приводит к следующим соотношениям:
В электрической цепи с параллельным соединением проводников напряжение постоянно, а электрический ток можно сложить до общего тока путем сложения отдельных токов на каждом из проводников.
Калькулятор
Этот калькулятор рассчитывает значение общего сопротивления для нескольких резисторов, соединенных последовательно или параллельно.
Физика: формула удельного сопротивления и закон Ома
Сопротивление – способность материала препятствовать направленному движению заряженных частиц. Определяется величина согласно закону Ома. Точные значения параметра требуются во многих сферах, включая электронику и радиодетали. Определенным уровнем сопротивления обладает каждый материал на планете, вне зависимости от агрегатной формы. Некоторые вещества имеют настолько высокое сопротивление, что проведение через них электрического тока практически невозможно.
Формула удельного сопротивления
Что такое электрическое сопротивление
Что такое сопротивление в физике? Сопротивление – это физическое значение, которым описывается свойство проводящего материала препятствовать прохождению заряженных частиц сквозь него. Согласно закону Ома, данная величина равна значению напряжения на концевых участках проводника, деленному на силу тока в амперах, проходящего по нему. Значение противодействия направленному току заряженных частиц для цепей с переменным током и полей электромагнитного типа характеризуется полями волнового препятствия изменению потенциала и импедансом.
Интересно. На основании данной характеристики также получила название радиодеталь резистор, от английского Resistance – сопротивление. Эта часть требуется для введения в цепи питания активного препятствия электрическому току.
Определение единицы сопротивления – Ом
Что такое электрическое сопротивление
Как обозначается сопротивление? Величина измеряется в Омах (русское обозначение), в то время как в других странах символ для маркировки – омега (Ω). Единица представляет собой значение силы препятствия прохождению электрического тока проводника, по которому течет напряжение в 1В с силой постоянного электрического тока в 1А.
Единица измерения была введена в 1960 году, вместе с принятием международной системы величин в целом. Существующая величина имеет обратное значение в виде проводимости электрического тока, которая измеряется в сименсах.
Средства воспроизведения сопротивления
Сопротивление тока: формула
Для определения меры электрического сопротивления используют:
Расчет сопротивления последовательных резисторов
Cила тока: формула
При последовательном сопротивлении нескольких резисторов соответственно увеличивается эквивалентная величина. Расчет сопротивления нескольких элементов, соединенных между собой последовательно, проводится за счет суммирования номиналов каждого элемента. Например, при соединении нескольких элементов, которые соединены в одну цепь последовательно, величина электрического сопротивления будет равной сумме уровня противодействия каждого из резисторов. Формула имеет одинаковый вид для любого количества резисторов.
Как найти сопротивление формула для последовательной цепи
Если заменить в последовательной цепи один из элементов, то соответственно изменится уровень противодействия направленному движению частиц в этой цепи. Это также повлечет изменение силы тока.
Резистор
Государственный эталон сопротивления
Данный государственный стандарт под индексом ГЭТ 14-91 принято описывать в следующем виде.
Величины и характеристики эталонного сопротивления
Название характеристики | Величина по государственному эталону 14-91 |
Воспроизводимое значение в Омах | 6453 и 12906 |
Хранимое значение в Омах | 1 |
Неточности по первому типу (А) в миллиардных долях | 25 |
Неточности по второму типу (В) в миллиардных долях | 35 |
Сумма стандартной неопределенности, ppb | 45 |
Увеличенная неопределенность при коэффициенте, равном двум, ppb | 90 |
Закон в простой форме
Исследования Ома по изучению вольт-амперных характеристик проводников показали, что сила тока внутри металлического проводника пропорциональна разности потенциалов на его концах (I
U) и обратно пропорциональна некоему коэффициенту, то есть I
1/R. Этот коэффициент стал называться «сопротивление проводника», а единица измерения электрического сопротивления — Ом или В/А.
Стоит отметить еще вот что. Закон Ома часто используется для расчета сопротивления в цепях.
Зависимость величины от характеристик проводника
В проводнике носителями электрического тока являются свободные отрицательно заряженные частицы. Поведение в веществе подобно газу. Плотность свободных частиц зависят от плотности среды. Исходя из этого, плотность и структура кристаллической решетки определяются типом проводящего материала и его размерами. Из-за этого на проводимость влияют площадь поперечного сечения и температура. Сопротивление через площадь поперечного сечения считается расчетной величиной.
Расчет по площади поперечного сечения
Формула
Общее электросопротивление проводника можно найти по представленной выше формуле. Что касается нахождения показаний для активной, реактивной, отрицательной и удельной разновидности, есть свои специальные формулы. Все они представлены в соответствующей схеме далее с обозначениями.
Формулы, используемые для расчета значения проводника
Электросопротивление в электродинамике является электротехнической величиной, характеризующей способность металла препятствовать электрическому току. При расчетах используется буква R, вне зависимости от того, какое сопротивление изучается и подсчитывается. Формул для нахождения величины множество. В основном используется R=U/I.
Показатели для твердотельных материалов
Удельное сопротивление сплавов и твердотельных металлов практически не меняется при повышении или снижении температуры. Это происходит из-за плотности кристаллической решетки. Характеристика присуща константану, манганину и другим плотным сплавам. Для такой особенности требуется повышенное удельное значение относительно составляющих компонентов.
Таблица сопротивлений твердотельных материалов
Закон Ома понятным языком
Один из фундаментальных законов, который всегда изучают в курсе физике — это закон Ома
. Он относительно простой, но при этом весьма важен для корректного понимания. Давайте изучим его
в режиме «для чайников».
С пониманием как такового физического явления
, обуславливающего появление закона Ома, обычно проблем не возникает. Но вот с вариантами формулировки и записи самого закона, а также аспектами, связанными с особенностями его применения в разных случаях, сложности частенько появляются.
В основе закона Ома лежит некая физическая штука, которая называется сопротивление
Показатели для жидких проводников
Показатели электросопротивления растворов солей и щелочей являются динамическими. Значения зависят от состава, концентрации вещества. При этом влияние температуры, обратное металлам. Во время нагрева из-за эффекта диффузии значение падает и наоборот. При слишком низких температурах электролит может перейти в твердое агрегатное состояние и не проводить ток. Так, вода, которая кристаллизовалась, не является проводником. Гидравлическое препятствование движению частиц возникает из-за наличия в жидкости производных солей, являющихся проводниками.
Пример из практики
Последовательно с источником освещения включен тестер. Напряжение осветительного прибора = 220 Вольт. Мощность неизвестна. На показателе амперметра указано 276 миллиампер тока. Какая величина у спирали лампы при последовательном включении в схему резисторов?
Формула нахождения сопротивления спирали
Электросопротивление представляет собой физическую величину, которая соответствует степени препятствия движению электрических частиц у каждого материала. Возможно измерить уровень величины мультиметром. В таком случае придется находить значение по формуле. Для предотвращения попадания электрического тока на непредназначенные для этого участки желательно заземлять линии передачи. Данная физическая величина используется во многих радиодеталях, например, светодиодах. В электрической цепи, чтобы узнать величину, требуется подключить к вольтметру фазу и ноль при известной силе тока, затем рассчитать по закону Ома.
Зависимость удельного сопротивления от деформаций
При холодной обработке проводников происходит пластическая деформация сырья с последующим искажением кристаллической решетки, что значительно увеличивает уровень удельного сопротивления.
Электрическое сопротивление – это свойство любого вещества препятствовать движению ионов. Характеристика является динамической и зависит от нескольких факторов. Изоляция и некоторые материалы обладают уровнем сопротивления, при котором электрический ток не способен проходить сквозь вещество. Это может характеризовать некоторые вещества, как плохо проводящие ток из-за малого объема ионов. Что такое сопротивление проводника? Величина, из-за которой происходит потеря мощности при прохождении электричества.
Расчет сопротивления параллельных резисторов
Сопротивление резистора — формула для рассчета
Сопротивление формула для параллельного соединения имеет несколько другой вид.
Относительно большого количества последовательных элементов при увеличении количества резисторов в цепи соответственно возрастает сложность проведения расчета. Удельное сопротивление буква, которая ему соответствует, – латинская ρ.
Использование параллельного соединения оправдано в цепях, в которых требуется высокая величина параметра. Тогда применяются радиоэлементы с одинаковым параметром мощности и сопротивления. Например, 10 элементов, обладающих уровнем сопротивления 1000 Ом, которые объединены в единую цепь с параллельным соединением, на выходе будут иметь величину препятствия движению заряженных частиц в 100 Ом.
Понятие сопротивление доходчиво
Электрическое сопротивление — это величина, которая определяет способность проводника пропускать электрический ток
. Полезно также освежить знания про электрический ток ( писали в этой статье ).
Представить это проще всего, исходя из строения металлов.
По классической теории металл состоит из кристаллической решетки, а между структурными элементами этой решетки путешествуют свободные электроны.
Внешнее электрическое поле заставляет их перемещаться и образуется электрический ток, т.е. направленное упорядоченное движение частиц
Решетка металла мешает им двигаться по своему объему
. Электроны трутся об её узлы и не могут протиснуться. Вот это явление и образует сопротивление. Это «сила», которая мешает перемещению.
Ситуация аналогично ситечку на раковине. Вода проходит, но медленнее, чем проходила бы без ситечка.
Аналогичная ситуация присутствует во всех материалах, правда род и тип частичек может меняться. Тип строения тоже разный. Но условно можно принять, что всегда структура мешает им двигаться что в дереве, что в металле.
Закон Ома для полной цепи
(в отличие от участка цепи, применительно к которому мы излагали всё выше) называется
цепь с учетом источника тока
.
Почему это важно?
Именно потому, что если мы представим себе электрическую цепь условно как систему труб для воды, то участок цепи это будет незамкнутый кусок трубы, а полная цепь — зацикленная система
Из примера может показаться, что участок цепи есть незамкнутая в электрическом смысле цепь. Нет, пример приведен не для этого. И там, и там электрическая цепь замкнута.
Просто нам нужно обозначить, что без учета источника тока и его внутреннего сопротивления (r) цепь не полная, а расчёт не всегда способен учитывать все значимые характеристики.
Ну а внутреннее сопротивление
, как вы наверное догадались — это то сопротивление, которым обладает источник тока. Да, току в цепи сложно проходить и через сам источник! Даже сам источник провоцирует энергетические потери. А вот считать его аналогично расчёту для участка цепи нельзя.
Получается, что в закон Ома добавится ещё и внутренне сопротивление. И всё! Ничего страшного.
Формулировка закона Ома для полной цепи немного изменится. Теперь у нас слово напряжение заменится словом ЭДС (электродвижущая сила), а слово сопротивление заменится суммой внешнего сопротивления цепи и внутреннего сопротивления источника тока. Ну и формула будет такая:
Расчет сопротивления электрической цепи
1.1. Электрическая цепь и все ее элементы
В электротехнике рассматривается устройство и принцип действия основных электротехнических устройств, используемых в быту и промышленности. Чтобы электротехническое устройство работало, должна быть создана электрическая цепь, задача которой передать электрическую энергию этому устройству и обеспечить ему требуемый режим работы.
Электрической цепью называется совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электрическом токе, ЭДС (электродвижущая сила) и электрическом напряжении.
Звоните (495) 740-42-64 Ждем. Скидки. Доставка.
Для анализа и расчета электрическая цепь графически представляется в виде электрической схемы, содержащей условные обозначения ее элементов и способы их соединения. Электрическая схема простейшей электрической цепи, обеспечивающей работу осветительной аппаратуры, представлена на рис. 1.1.
Все устройства и объекты, входящие в состав электрической цепи, могут быть разделены на три группы:
1) Источники электрической энергии (питания).
Общим свойством всех источников питания является преобразование какого-либо вида энергии в электрическую. Источники, в которых происходит преобразование неэлектрической энергии в электрическую, называются первичными источниками. Вторичные источники – это такие источники, у которых и на входе, и на выходе – электрическая энергия (например, выпрямительные устройства).
2) Потребители электрической энергии.
Общим свойством всех потребителей является преобразование электроэнергии в другие виды энергии (например, нагревательный прибор). Иногда потребители называют нагрузкой.
3) Вспомогательные элементы цепи: соединительные провода, коммутационная аппаратура, аппаратура защиты, измерительные приборы и т.д., без которых реальная цепь не работает.
Все элементы цепи охвачены одним электромагнитным процессом.
В электрической схеме на рис. 1.1 электрическая энергия от источника ЭДС E, обладающего внутренним сопротивлением r0, с помощью вспомогательных элементов цепи передаются через регулировочный реостат R к потребителям (нагрузке): электрическим лампочкам EL1 и EL2.
1.2. Основные понятия и определения для электрической цепи
Для расчета и анализа реальная электрическая цепь представляется графически в виде расчетной электрической схемы (схемы замещения). В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают. Источник питания показывается как источник ЭДС E с внутренним сопротивлением r0, реальные потребители электрической энергии постоянного тока заменяются их электрическими параметрами: активными сопротивлениями R1, R2, …, Rn. С помощью сопротивления R учитывают способность реального элемента цепи необратимо преобразовывать электроэнергию в другие виды, например, тепловую или лучистую.
При этих условиях схема на рис. 1.1 может быть представлена в виде расчетной электрической схемы (рис. 1.2), в которой есть источник питания с ЭДС E и внутренним сопротивлением r0, а потребители электрической энергии: регулировочный реостат R, электрические лампочки EL1 и EL2 заменены активными сопротивлениями R, R1 и R2.
Источник ЭДС на электрической схеме (рис. 1.2) может быть заменен источником напряжения U, причем условное положительное направление напряжения U источника задается противоположным направлению ЭДС.
При расчете в схеме электрической цепи выделяют несколько основных элементов.
Ветвь электрической цепи (схемы) – участок цепи с одним и тем же током. Ветвь может состоять из одного или нескольких последовательно соединенных элементов. Схема на рис. 1.2 имеет три ветви: ветвь bma, в которую включены элементы r0, E, R и в которой возникает ток I; ветвь ab с элементом R1 и током I1; ветвь anb с элементом R2 и током I2.
Узел электрической цепи (схемы) – место соединения трех и более ветвей. В схеме на рис. 1.2 – два узла a и b. Ветви, присоединенные к одной паре узлов, называют параллельными. Сопротивления R1 и R2 (рис. 1.2) находятся в параллельных ветвях.
Контур – любой замкнутый путь, проходящий по нескольким ветвям. В схеме на рис. 1.2 можно выделить три контура: I – bmab; II – anba; III – manbm, на схеме стрелкой показывают направление обхода контура.
Условные положительные направления ЭДС источников питания, токов во всех ветвях, напряжений между узлами и на зажимах элементов цепи необходимо задать для правильной записи уравнений, описывающих процессы в электрической цепи или ее элементах. На схеме (рис. 1.2) стрелками укажем положительные направления ЭДС, напряжений и токов:
а) для ЭДС источников – произвольно, но при этом следует учитывать, что полюс (зажим источника), к которому направлена стрелка, имеет более высокий потенциал по отношению к другому полюсу;
б) для токов в ветвях, содержащих источники ЭДС – совпадающими с направлением ЭДС; во всех других ветвях произвольно;
в) для напряжений – совпадающими с направлением тока в ветви или элемента цепи.
Все электрические цепи делятся на линейные и нелинейные.
Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным, например электропечь.
Нелинейный элемент, например лампа накаливания, имеет сопротивление, величина которого увеличивается при повышении напряжения, а следовательно и тока, подводимого к лампочке.
Следовательно, в линейной электрической цепи все элементы – линейные, а нелинейной называют электрическую цепь, содержащую хотя бы один нелинейный элемент.
1.3. Основные законы цепей постоянного тока
Расчет и анализ электрических цепей производится с использованием закона Ома, первого и второго законов Кирхгофа. На основе этих законов устанавливается взаимосвязь между значениями токов, напряжений, ЭДС всей электрической цепи и отдельных ее участков и параметрами элементов, входящих в состав этой цепи.
Закон Ома для участка цепи
Соотношение между током I, напряжением UR и сопротивлением R участка аb электрической цепи (рис. 1.3) выражается законом Ома
Рис. 1.3
или UR = RI.
В этом случае UR = RI – называют напряжением или падением напряжения на резисторе R, а – током в резисторе R.
При расчете электрических цепей иногда удобнее пользоваться не сопротивлением R, а величиной обратной сопротивлению, т.е. электрической проводимостью:
.
В этом случае закон Ома для участка цепи запишется в виде:
Закон Ома для всей цепи
Этот закон определяет зависимость между ЭДС Е источника питания с внутренним сопротивлением r0 (рис. 1.3), током I электрической цепи и общим эквивалентным сопротивлением RЭ = r0 + R всей цепи:
.
Сложная электрическая цепь содержит, как правило, несколько ветвей, в которые могут быть включены свои источники питания и режим ее работы не может быть описан только законом Ома. Но это можно выполнить на основании первого и второго законов Кирхгофа, являющихся следствием закона сохранения энергии.
Первый закон Кирхгофа
В любом узле электрической цепи алгебраическая сумма токов равна нулю
,
где m – число ветвей подключенных к узлу.
Второй закон Кирхгофа
В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках
,
где n – число источников ЭДС в контуре;
m – число элементов с сопротивлением Rк в контуре;
Uк = RкIк – напряжение или падение напряжения на к-м элементе контура.
Для схемы (рис. 1.2) запишем уравнение по второму закону Кирхгофа:
Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контру, включая источники ЭДС равна нулю
.
При записи уравнений по второму закону Кирхгофа необходимо:
1) задать условные положительные направления ЭДС, токов и напряжений;
2) выбрать направление обхода контура, для которого записывается уравнение;
3) записать уравнение, пользуясь одной из формулировок второго закона Кирхгофа, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с обходом контура, и со знаком «минус», если они противоположны.
Запишем уравнения по II закону Кирхгофа для контуров электрической схемы (рис. 1.2):
В действующей цепи электрическая энергия источника питания преобразуется в другие виды энергии. На участке цепи с сопротивлением R в течение времени t при токе I расходуется электрическая энергия
Скорость преобразования электрической энергии в другие виды представляет электрическую мощность
.
Из закона сохранения энергии следует, что мощность источников питания в любой момент времени равна сумме мощностей, расходуемой на всех участках цепи.
.
Это соотношение (1.8) называют уравнением баланса мощностей. При составлении уравнения баланса мощностей следует учесть, что если действительные направления ЭДС и тока источника совпадают, то источник ЭДС работает в режиме источника питания, и произведение E I подставляют в (1.8) со знаком плюс. Если не совпадают, то источник ЭДС работает в режиме потребителя электрической энергии, и произведение E I подставляют в (1.8) со знаком минус. Для цепи, показанной на рис. 1.2 уравнение баланса мощностей запишется в виде:
При расчете электрических цепей используются определенные единицы измерения. Электрический ток измеряется в амперах (А), напряжение – в вольтах (В), сопротивление – в омах (Ом), мощность – в ваттах (Вт), электрическая энергия – ватт-час (Вт-час) и проводимость – в сименсах (См)
Кроме основных единиц используют более мелкие и более крупные единицы измерения: миллиампер (1мA = 10–3А), килоампер (1кA = 103А), милливольт (1мВ = 10–3В), киловольт (1кВ = 103В), килоом (1кОм = 103Ом), мегаом (1мОм = 106Ом), киловатт (1кВт = 103Вт), киловатт-час (1кВт-час = 103 ватт-час).
1.4. Способы соединения сопротивлений и расчет эквивалентного
сопротивления электрической цепи
Сопротивления в электрических цепях могут быть соединены последовательно, параллельно, по смешанной схеме и по схемам «звезда», «треугольник». Расчет сложной схемы упрощается, если сопротивления в этой схеме заменяются одним эквивалентным сопротивлением Rэкв, и вся схема представляется в виде схемы на рис. 1.3, где R=Rэкв, а расчет токов и напряжений производится с помощью законов Ома и Кирхгофа.
Электрическая цепь с последовательным соединением элементов
Рис. 1.4 | Рис. 1.5 |
Последовательным называют такое соединение элементов цепи, при котором во всех включенных в цепь элементах возникает один и тот же ток I (рис. 1.4).
На основании второго закона Кирхгофа (1.5) общее напряжение U всей цепи равно сумме напряжений на отдельных участках:
Таким образом, при последовательном соединении элементов цепи общее эквивалентное сопротивление цепи равно арифметической сумме сопротивлений отдельных участков. Следовательно, цепь с любым числом последовательно включенных сопротивлений можно заменить простой цепью с одним эквивалентным сопротивлением Rэкв (рис. 1.5). После этого расчет цепи сводится к определению тока I всей цепи по закону Ома
,
и по вышеприведенным формулам рассчитывают падение напряжений U1, U2, U3 на соответствующих участках электрической цепи (рис. 1.4).
Недостаток последовательного включения элементов заключается в том, что при выходе из строя хотя бы одного элемента, прекращается работа всех остальных элементов цепи.
Электрическая цепь с параллельным соединением элементов
Параллельным называют такое соединение, при котором все включенные в цепь потребители электрической энергии, находятся под одним и тем же напряжением (рис. 1.6).
В этом случае они присоединены к двум узлам цепи а и b, и на основании первого закона Кирхгофа (1.3) можно записать, что общий ток I всей цепи равен алгебраической сумме токов отдельных ветвей:
I = I1 + I2 + I3, т.е. ,
откуда следует, что
.
В том случае, когда параллельно включены два сопротивления R1 и R2, они заменяются одним эквивалентным сопротивлением
.
Из соотношения (1.6), следует, что эквивалентная проводимость цепи равна арифметической сумме проводимостей отдельных ветвей:
По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается.
Напряжения в электрической цепи с параллельно соединенными сопротивлениями (рис. 1.6)
Отсюда следует, что
,
т.е. ток в цепи распределяется между параллельными ветвями обратно пропорционально их сопротивлениям.
По параллельно включенной схеме работают в номинальном режиме потребители любой мощности, рассчитанные на одно и то же напряжение. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных. Поэтому эта схема является основной схемой подключения потребителей к источнику электрической энергии.
Электрическая цепь со смешанным соединением элементов
Смешанным называется такое соединение, при котором в цепи имеются группы параллельно и последовательно включенных сопротивлений.
Для цепи, представленной на рис. 1.7, расчет эквивалентного сопротивления начинается с конца схемы. Для упрощения расчетов примем, что все сопротивления в этой схеме являются одинаковыми: R1=R2=R3=R4=R5=R. Сопротивления R4 и R5 включены параллельно, тогда сопротивление участка цепи cd равно:
.
В этом случае исходную схему (рис. 1.7) можно представить в следующем виде (рис. 1.8):
На схеме (рис. 1.8) сопротивление R3 и Rcd соединены последовательно, и тогда сопротивление участка цепи ad равно:
.
Тогда схему (рис. 1.8) можно представить в сокращенном варианте (рис. 1.9):
На схеме (рис. 1.9) сопротивление R2 и Rad соединены параллельно, тогда сопротивление участка цепи аb равно
.
Схему (рис. 1.9) можно представить в упрощенном варианте (рис. 1.10), где сопротивления R1 и Rab включены последовательно.
Тогда эквивалентное сопротивление исходной схемы (рис. 1.7) будет равно:
.
Рис. 1.10 | Рис. 1.11 |
В результате преобразований исходная схема (рис. 1.7) представлена в виде схемы (рис. 1.11) с одним сопротивлением Rэкв. Расчет токов и напряжений для всех элементов схемы можно произвести по законам Ома и Кирхгофа.
Соединение элементов электрической цепи по схемам «звезда» и «треугольник»
В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме (рис. 1.12). Сопротивления R12, R13, R24, R34 включены в плечи моста, в диагональ 1–4 включен источник питания с ЭДС Е, другая диагональ 3–4 называется измерительной диагональю моста.
Рис. 1.12 | Рис. 1.13 |
В мостовой схеме сопротивления R13, R12, R23 и R24, R34, R23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R24 R34 R23 звездой R2 R3 R4 (рис. 1.13). Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям:
;
;
.
Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:
;
;
.
После проведенных преобразований (рис. 1.13) можно определить величину эквивалентного сопротивления мостовой схемы (рис. 1.12)
.
1.5. Источник ЭДС и источник тока в электрических цепях
При расчете и анализе электрических цепей реальный источник электрической энергии с конечным значением величины внутреннего сопротивления r0 заменяют расчетным эквивалентным источником ЭДС или источником тока.
Рис. 1.14
Источник ЭДС (рис. 1.14) имеет внутреннее сопротивление r0, равное внутреннему сопротивлению реального источника. Стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС.
Для данной цепи запишем соотношение по второму закону Кирхгофа
Эта зависимость напряжения U на зажимах реального источника от тока I определяется его вольт-амперной или внешней характеристикой (рис. 1.15). Уменьшение напряжения источника U при увеличении тока нагрузки I объясняется падением напряжения на его внутреннем сопротивлении r0.
У идеального источника ЭДС внутреннее сопротивление r0 » 0). В этом случае его вольт-амперная характеристика представляет собой прямую линию (рис. 1.16), следовательно, напряжение U на его зажимах постоянно (U=E) и не зависит от величины сопротивления нагрузки Rн.
Рис. 1.17
Источник тока, заменяющий реальный источник электрической энергии, характеризуется неизменным по величине током Iк, равным току короткого замыкания источника ЭДС , и внутренним сопротивление r0, включенным параллельно (рис. 1.17).
Стрелка в кружке указывает положительное направление тока источника. Для данной цепи запишем соотношение по первому закону Кирхгофа
Iк = I0 + I; .
В этом случае вольт-амперная (внешняя) характеристика I(U) источника тока определится соотношением
и представлена на рис. 1.18.
Рис. 1.18 | Рис. 1.19 |
Уменьшение тока нагрузки I при увеличении напряжения U на зажимах ab источника тока, объясняется увеличением тока Iо, замыкающегося в цепи источника тока.
В идеальном источнике тока r0>>Rн. В этом случае можно считать, что при изменении сопротивления нагрузки Rн потребителя Iо » 0, а I » Iк. Тогда из выражения (1.11) следует, что вольт-амперная характеристика I(U) идеального источника тока представляет прямую линию, проведенную параллельно оси абсцисс на уровне I = Iк = E/r0 (рис. 1.19).
При сравнении внешних характеристик источника ЭДС (рис. 1.15) и источника тока (рис. 1.18) следует, что они одинаково реагируют на изменение величины сопротивления нагрузки. Покажем, что в обоих случаях ток I в нагрузке определяется одинаковым соотношением.
Ток в нагрузке Rн для схем источника ЭДС (рис. 1.14) и источника тока (рис. 1.17) одинаков и равен .
Для схемы (рис. 1.14) это следует из закона Ома, т.к. при последователь-ном соединении сопротивления r0 и Rн складываются. В схеме (рис. 1.17) ток распределяется обратно пропорционально сопротивлениям r0 и Rн двух параллельных ветвей. Ток в нагрузке Rн
,
т.е. совпадает по величине с током при подключении нагрузки к источнику ЭДС. Следовательно, схема источника тока (рис. 1.17) эквивалентна схеме источника ЭДС (рис. 1.14) в отношении энергии, выделяющейся в сопротивлении нагрузки Rн, но не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника питания.
Каким из двух эквивалентных источников питания пользоваться, не играет существенной роли. Однако на практике, особенно при расчете электротехнических устройств, чаще используется в качестве источника питания источник ЭДС с внутренним сопротивлением r0 и величиной электродвижущей силы Е.
В тех случаях, когда номинальное напряжение или номинальный ток и мощность источника электрической энергии оказываются недостаточными для питания потребителей, вместо одного используют несколько источников. Существуют два основных способа соединения источников питания: последовательное и параллельное.
Последовательное включение источников питания (источников ЭДС) применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС (рис. 1.20).
Для этой цепи на основании второго закона Кирхгофа можно записать
.
Таким образом, электрическая цепь на рис. 1.20 может быть заменена цепью с эквивалентным источником питания (рис. 1.21), имеющим ЭДС Eэ и внутреннее сопротивление rэ.
Рис. 1.21 | Рис. 1.22 |
При параллельном соединении источников (рис. 1.22) соединяются между собой положительные выводы всех источников, а также их отрицательные выводы. Характерным для параллельного соединения является одно и то же напряжение U на выводах всех источников. Для электрической цепи на рис. 1.22 можно записать следующие уравнения:
Как видно, при параллельном соединении источников ток и мощность внешней цепи равны соответственно сумме токов и мощностей источников. Параллельное соединение источников применяется в первую очередь тогда, когда номинальные ток и мощность одного источника недостаточны для питания потребителей. На параллельную работу включают обычно источники с одинаковыми ЭДС, мощностями и внутренними сопротивлениями.
1.6. Режимы работы электрической цепи
При подключении к источнику питания различного количества потребителей или изменения их параметров будут изменяться величины напряжений, токов и мощностей в электрической цепи, от значений которых зависит режим работы цепи и ее элементов.
Реальная электрическая цепь может быть представлена в виде активного и пассивного двухполюсников (рис. 1.23).
Двухполюсником называют цепь, которая соединяется с внешней относительно нее частью цепи через два вывода а и b – полюса.
Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит. Для расчета цепей с двухполюсниками реальные активные и пассивные элементы цепи представляются схемами замещения. Схема замещения пассивного двухполюсника П представляется в виде его входного сопротивления
.
Схема замещения активного двухполюсника А представляется эквивалентным источником с ЭДС Eэ и внутренним сопротивлением r0э, нагрузкой для которого является входное сопротивление пассивного двухполюсника Rвх = Rн.
Режим работы электрической цепи (рис. 1.23) определяется изменениями параметров пассивного двухполюсника, в общем случае величиной сопротивления нагрузки Rн. При анализе электрической цепи рассматривают следующие режимы работы: холостого хода, номинальный, короткого замыкания и согласованный.
Работа активного двухполюсника под нагрузкой Rн определяется его вольт-амперной (внешней) характеристикой, уравнение которой (1.10) для данной цепи запишется в виде
Эта вольт-амперная характеристика строится по двум точкам 1 и 2 (рис. 1.24), соответствующим режимам холостого хода и короткого замыкания.
1. Режим холостого хода
В этом режиме с помощью ключа SA нагрузка Rн отключается от источника питания (рис. 1.23). В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения (1.12) напряжение на зажимах ab становится равным ЭДС Eэ и называется напряжением холостого хода Uхх
2. Режим короткого замыкания
В этом режиме ключ SA в схеме электрической цепи (рис. 1.23) замкнут, а сопротивление Rн=0. В этом случае напряжение U на зажимах аb становится равным нулю, т.к. U = IRн, а уравнение (1.12) вольт-амперной характеристики можно записать в виде
.
Значение тока короткого замыкания Iк.з соответствует т.2 на вольт-амперной характеристике (рис. 1.24).
Анализ этих двух режимов показывает, что при расчете электрических цепей параметры активного двухполюсника Eэ и r0э могут быть определены по результатам режимов холостого хода и короткого замыкания:
Eэ = Uхх; .
При изменении тока в пределах активной двухполюсник (эквивалентный источник) отдает энергию во внешнюю цепь (участок I вольт-амперной характеристики на рис. 1.24). При токе I