Как работает реле
Как работает реле
Принцип действия и назначение работы Реле.
Реле — электрическое устройство (выключатель), предназначенное для замыкания и размыкания различных участков электрических цепей при заданных изменениях электрических или неэлектрических входных величин.
Типы реле могут различаться по управляющему сигналу и по исполнению, не будем останавливаться на этом, тем более все это есть на той же википедии. Отметим лишь, что наибольшее распространение получили электрические (электромагнитные) реле.
Понять для чего нужно реле из определения трудно, поэтому разжуем на простых словах:
Реле предназначено для коммутации больших токов нагрузки. Другими словами является переключателем, а еще проще — принцип работы реле — малым током (например сигналом кнопки) включать цепи с большим током. А используют реле, когда исполнительное устройство (стартер, генератор, вентилятор, обогрев зеркал, клаксон и т.д.) потребляет больший ток (до 30-40 ампер).
Электромагнитное реле состоит из:
электромагнита (представляет собой электрический провод, намотанный на катушку с сердечником из магнитного материала).
якоря (пластина из магнитного материала, через толкатель управляющая контактами).
переключателя (могут быть замыкающими, размыкающими, переключающими).
При пропускании электрического тока через обмотку электромагнита возникающее магнитное поле притягивает к сердечнику якорь, который через толкатель смещает и тем самым переключает контакты.
**************************************************************************************************************************
Контакты и принцип работы реле
Контакты реле:
Контакты 85 и 86 — это катушка.
Контакт 30 — общий контакт, всегда присутствует в реле. Он, без подачи напряжения на контакты обмотки, постоянно замкнут на контакт 87а.
Контакт 87А — нормально-замкнутый контакт.
Контакт 87 — нормально-разомкнутый контакт.
Силовые контакты имеют всегда маркировку 30, 87 и 87а.
Принцип действия реле:
В состоянии покоя, т.е., когда на катушке нет питания, контакт 30 замкнут с контактом 87А. При одновременной подаче питания на контакты 85 и 86 (на один контакт «плюс» на другой — «минус», без разницы куда что, если на реле нет маркировки диода) катушка «возбуждается», то есть срабатывает. Тогда контакт 30 отмыкается от контакта 87А и соединяется с контактом 87.
************************************************************************************************************************
Некоторые виды реле:
-реле с пятью контактами (5ти контактное реле). Если на обмотку подан сигнал, то 30 контакт отключается от 87а и подключается к 87.
-реле с четырьмя контактами (4х контактное реле). Контакт 87а или 87 может отсутствовать, тогда реле будет работать только на включение или выключение (замыкание или размыкание) силовой цепи.
Все реле имеют контакты обмотки (85 и 86 контакты).
*************************************************************************************************************************
Применяемость и назначение:
Реле 4х контактное и 5и контактное используются применяются в авто как средство включение или переключение цепи.
Вывод:
Главное отличие и сходства 4х контактного реле от 5ти контактного реле в том:
-Сходство этих типов реле. У них есть катушка возбуждения которая переключает перемычку (якарь). (Контакты 86,85-катушка)
-Отличие этих реле состоит в том что.
У 4х контактного реле контур всегда разомкнут (контакты 87,30) и под воздействием катушки (возбудителя) контур замыкается (происходит контакт).
У 5ти контактного реле контур разомкнута, замкнутый (контакты 87а, 30- замкнуты) (контакты 87,30-разомкнуты) под воздействием катушки(возбудителя) происходит переключение перемычки (якоря) с контакта 87а на контакт 87.
Что такое реле, и как оно работает? Диод и провода в автомобили.
Зная, как работает реле, Вы сможете осуществить различные схемы подключения к электропроводке автомобиля.
Что такое реле, и как оно работает? 5-тиконтактное реле
Обычно реле имеет 5 контактов (бывают и 4-хконтактные и 7-ми и т.д.). Если Вы посмотрите на реле внимательно, то увидите, что все контакты подписаны. Каждый контакт имеет своё обозначение. 30, 85, 86, 87 и 87А. На рисунке видно где, какой контакт.
Контакты 85 и 86 — это катушка. Контакт 30 — общий контакт, контакт 87А — нормально-замкнутый контакт, контакт 87 — нормально-разомкнутый контакт.
Что такое реле, и как оно работает? 5-тиконтактное реле
В состоянии покоя, т.е., когда на катушке нет питания, контакт 30 замкнут с контактом 87А. При одновременной подаче питания на контакты 85 и 86 (на один контакт «плюс» на другой — «минус», без разницы куда что) катушка «возбуждается», то есть срабатывает. Тогда контакт 30 отмыкается от контакта 87А и соединяется с контактом 87. Вот и весь принцип действия. Вроде бы ничего сложного.
Реле часто приходит на выручку во время установки дополнительного оборудования. Давайте рассмотрим простейшие примеры применения реле.
Блокировка двигателя.
Что такое реле, и как оно работает? Реле блокировки двигателяВ качестве блокируемой цепи может быть что угодно, лишь бы машина не заводилась при разорванной цепи (стартер, зажигание, бензонасос, питание форсунок и т.д.). Один контакт питания катушки (пусть 85) соединяем с проводом сигнализации, на котором появляется «минус» при постановке в охрану. На другой контакт катушки (пусть 86) подаём +12 Вольт при включении зажигания. Контакты 30 и 87А подцепляем в разрыв блокируемой цепи. Теперь, если попытаться завести автомобиль при включенной охране, контакт 30 разомкнётся с контактом 87А и не даст завести двигатель.
Эта схема используется, если у вас «минус» с сигнализации на блокировку выходит при постановке в охрану. Если у вас «минус» с сигнализации на блокировку выходит при снятии с охраны, тогда вместо контакта 87А используем контакт 87, т.е. разрыв цепи теперь будет на контактах 87 и 30. При таком подключении реле будет всегда в рабочем состоянии (разомкнутом) при работающем двигателе.
Инвертируем полярность сигнала (с «минуса» делаем «плюс» и наоборот). Подключаемся к слаботочным транзисторным выходам сигнализации.
Что такое реле, и как оно работает? Инвертируем сигнал с помощью реле Допустим, нам надо получить «минус», но у нас есть только «плюсовой» сигнал (например, у автомобиля положительные концевики, а у сигнализации нет входа положительных концевиков, а есть только вход отрицательных). На помощь опять приходит реле.
Подаём на один из контактов катушки (86) наш «плюс» (с концевиков автомобиля). На другой контакт катушки (85) и на контакт 87 подаём «минус». В итоге на выходе (контакт 30) получаем нужный нам «минус».
Если нам надо, наоборот, из «минуса» получить «плюс», то маленько меняем подключение. На контакт 86 подаём исходный «минус», а на контакты 85 и 87 подаём «плюс». В итоге на выходе (контакт 30) получаем нужный нам «плюс».
Если нам надо из слаботочного отрицательного выхода сигнализации (в сигнализации такие выходы могут называться по-разному и их назначение тоже различное: выход на 3-е зажигание, выход на открытие багажника, выход на закрытие стёкол и т.д.) сделать хороший мощный «минус» или «плюс», то тоже используем эту схему.
На контакт 85 подаём выход с сигнализации. На контакт 86 подаём «плюс». На контакт 87 подаём сигнал той полярности, который нам надо получить на выходе. В итоге на контакте 30 мы имеем ту полярность, которая на контакте 87.
Открытие багажника с брелока сигнализации.
Что такое реле, и как оно работает? Открытие багажника с брелока сигнализации Если в автомобиле стоит электрический привод багажника, то можно подключиться к нему автосигнализацией для открытия его с брелока сигнализации.
Если с сигнализации выходит слаботочный сигнал на открытие багажника (а чаще всего так и есть), то используем эту схему.
Прежде всего, находим провод на привод багажник, где появляется +12 Вольт при открытии багажника. Разрезаем этот провод. Тот конец разрезанного провода, который идёт к приводу, подцепляем к контакту 30. Другой конец провода подцепляем к контакту 87А. Выход с сигнализации подцепляем к контакту 86. Контакты 87 и 85 подцепляем на +12 Вольт.
Теперь, при подаче сигнала с сигнализации на открытие багажника, реле сработает и на провод электропривода багажника пойдёт «плюс». Привод сработает, и багажник откроется.
Это лишь немногие схемы подключения с использованием реле.
Ещё один элемент, который так же, как и реле, часто используется в установке автосигнализаций — диод.
Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны), полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.
У нас при установке автосигнализаций тоже применяются полупроводниковые диоды.
Полупроводниковые диоды используют свойство односторонней проводимости p-n перехода — контакта между полупроводниками с разным типом примесной проводимости, либо между полупроводником и металлом.
Полупроводниковый диод. Катод и анод диода. Полупроводниковый диод. Течение тока в диоде.
Полупроводниковые диоды — очень простые устройства. Кроме оценки силы тока диода, есть три основных вещи, которые вы должны держать в уме:
1. Катод (сторона с полосой)
2. Анод (сторона без полосы)
3. Диод пропускает «-» от катода к аноду (не пропускает «+») и «+» от анода к катоду (не пропускает «-»).
Подключение концевиков дверей с помощью диодов.
Немного про использование диодов при подключении автосигнализации к электропроводке автомобиля написано в статье Поиск концевиков.
Встречаются автомобили, у которых нет общей точки концевиков дверей, т.е. все концевики развязаны. Для каждой двери свой концевик. Например, Honda некоторые, Ford, GM и т.д.
При подключении автосигнализации в таких автомобилях можно подцепиться к плафону в салоне и запрограммировать функцию вежливой подсветки, можно тупо все провода концевиков связать вместе.
Первый способ не всегда может пройти. Почему, написано в статье Поиск концевиков.
Второй способ может подойти, если при таком виде подключения не нарушится функциональность некоторых приборов автомобиля. Если у вас на автомобиле на приборной панели показывается открытие каждой двери отдельно — такой способ не подойдёт. Если после установки автосигнализации у вас при открытии любой двери, а не только водительской, начинает пищать зуммер, указывающий об оставленном ключе в замке зажигания, значит, был применён вышеприведенный способ подключения концевиков.
В таких автомобилях при подключении автосигнализации правильнее всего использовать диоды.
Ниже приведены примеры подключения автосигнализации с использованием диодов к отрицательным и положительным концевикам дверей.
Полупроводниковый диод. Подключение отрицательных концевиков к автосигнализации при помощи диодов.Полупроводниковый диод. Подключение положительных концевиков к автосигнализации при помощи диодов.
Эти же схемы используются при подключении двух датчиков к одному входу (например, удара и наклонного).
Сечение провода. мм2 0.5 \ 0.75 \1.0 \ 1.5\ 2.5\ 4.0\ 6.0
Электрическое сопротивление Ом’м х 10? 3.7 \2.5 \1.85 \ 1.2\ 0.72\ 0.46 \ 0.29
Допустимые значения сипы тока при длительных нагрузках роводов сечением 0.5-16 мм2 при одиночной прокладке должны быть не выше указанных в таблице
Электроника для чайников: что такое реле и зачем оно нужно. Устройство, типы, описание
Реле – это переключатель. Причем не совсем обычный. Когда в подъезде лампочка загорается от звука шагов, это не волшебство, это работает реле. В этой статье расскажем о назначении реле и принципе его работы.
Существует очень много типов и классификаций реле. Но мы поговорим не только о них, но и о том, что такое реле и как оно работает. Поехали!
Что такое реле
Определение реле таково:
Реле – это электромагнитное коммутационное устройство, предназначенное для установки и разрыва соединений в электрических цепях. Реле срабатывает при скачкообразном изменении входной величины.
Говоря проще, когда входная величина меняется (ток, напряжение), реле замыкает или размыкает цепь. При этом в зависимости от типа реле входная величина не обязательно имеет электрическую природу.
Слово «реле» происходит от французского relay. Это понятие обозначало смену почтовых лошадей или передачу эстафеты.
Как работает реле?
Во-первых, вспомним Джозефа Генри, с именем которого связано понятие индуктивности. Провод, по которому течет ток, является магнитом. Если мы намотаем провод витками на сердечник, то получится катушка индуктивности.
Как катушка индуктивности ведет себя в цепи переменного тока? Если катушку включить в цепь, то фаза тока в цепи будет отставать от напряжения. Другими словами, при максимальном значении напряжения ток будет минимален и наоборот.
Это связано с тем, что когда катушка включена в цепь, в ней возникает ЭДС самоиндукции, которая препятствует росту основного тока через катушку.
Теперь вернемся к реле. Простейшее электромагнитное реле состоит из электромагнита (катушки), якоря и соединяющих элементов. При подаче электрического тока на катушку она притягивает якорь с контактом, который замыкает цепь.
Чтобы представить все это, посмотрим на рисунок:
Устройство и вид электромагнитного реле
Реле имеет две цепи: управляющую и управляемую. Управляющая цепь – это цепь, через которую ток подается на катушку. Управляемая – цепь, которую и замыкает якорь при срабатывании реле.
Таким образом, реле позволяет контролировать большие токи в управляемой цепи при помощи слаботочной управляющей цепи.
На каждом реле есть обозначения контактов управляемой и управляющей цепи. Также на корпусе изделия указаны значения тока и напряжения, на которые рассчитано реле.
Обозначения на корпусе реле
Электромагнитное реле, рассмотренное выше, не работает мгновенно. После подачи тока на катушку должно пройти какое-то время, и лишь потом реле сработает. Это связано с таким явлением, как гистерезис. Гистерезис переводится с латинского как отставание или запаздывание.
Мы уже говорили про ЭДС самоиндукции, возникающую в катушке. Когда реле включается в цепь, в катушке начинает течь ток, но сила тока нарастает постепенно. Нарастание тока в катушке можно представить в виде петли гистерезиса. Когда нужное значение силы тока достигнуто, реле срабатывает.
По этой причине реле не используются в самой быстродействующей аппаратуре, где время срабатывания должно быть сведено практически к нулю.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Типы реле
В зависимости от входной величины, на которую реагирует реле, бывают:
Также в зависимости от принципа действия различают:
Применение реле
В основном реле применяются для защиты силовой аппаратуры от перенапряжений, в электронике автомобилей. Реле также присутствуют во многих бытовых приборах. В чайнике используется тепловое реле. В каждом холодильнике есть пусковое реле.
Джозеф Генри изобрел реле в 1835 году. Первые реле нашли свое предназначение в телеграфии.
Например, логично предположить, что реле тока служит для контроля силы тока в цепи.
Так, при перегрузках на электродвигателе включается реле тока, которое своими контактами включает реле времени. По прошествии допустимого времени работы двигателя в режиме перегрузки реле времени разрывает цепь.
Конечно, сначала все это может показаться сложным и запутанным. Однако если начать разбираться и приложить немного усилий, вы в скором времени сами сможете не только рассказать про устройство и принцип действия реле, но и успешно заняться его подключением. А в будущем, возможно, стать специалистом по релейной защите.
Когда есть студенческий сервис, специалисты которого готовы оказать помощь в любое время, больше не нужно бояться трудных предметов и строгих преподавателей.
Напоследок видео, в котором подробно, наглядно и просто рассказывается о том, как работает реле:
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Автомобильные реле: как устроены, как их выбирать и проверять
Машины год от года становятся все умнее – они уже самостоятельно вращают рулем, меняют жесткость подвески, делают водителю массаж пятой точки и многое другое… Однако конечный исполнительный механизм большинства электрических цепей автомобиля, скромная «рабочая лошадка» – это реле, практически не изменившее свою конструкцию аж с 1831 года, когда впервые было изобретено… Что обычному автовладельцу полезно знать о реле?
Как устроено и применяется реле
К ак известно, габариты и мощность выключателя, коммутирующего мощную нагрузку, должны этой нагрузке соответствовать. Нельзя включить такие серьезные потребители тока в автомобиле, как, скажем, вентилятор радиатора или обогрев стекла крошечной кнопочкой – её контакты просто сгорят от одного-двух нажатий. Соответственно, кнопка должна быть крупной, мощной, тугой, с четкой фиксацией положений on/off. К ней должны подходить длинные толстые провода, рассчитанные на полный ток нагрузки.
Но в современном автомобиле с его изящным дизайном интерьера места таким кнопкам нет, да и толстые провода с дорогостоящей медью стараются применять экономно. Поэтому в качестве дистанционного силового коммутатора чаще всего применяется реле – оно устанавливается рядом с нагрузкой или в релейном боксе, а управляем мы им с помощью крошечной маломощной кнопочки с подведенными к ней тоненькими проводками, дизайн которой легко вписать в салон современной машины.
Внутри простейшего типичного реле располагается электромагнит, на который подается слабый управляющий сигнал, а уже подвижное коромысло, которое притягивает к себе сработавший электромагнит, в свою очередь замыкает два силовых контакта, которые и включают мощную электрическую цепь.
В автомобилях чаще всего используются два типа реле: с парой замыкающих контактов и с тройкой переключающих. В последнем при срабатывании реле один контакт замыкается на общий, а второй в это время отключается от него. Существуют, конечно же, и более сложные реле, с несколькими группами контактов в одном корпусе – замыкающими, размыкающими, переключающими. Но встречаются они существенно реже.
Обратите внимание, что на нижеприведенной картинке у реле с переключающей контактной тройкой рабочие контакты пронумерованы. Пара контактов 1 и 2 называется «нормально замкнутые». Пара 2 и 3 – «нормально разомкнутые». Состоянием «нормально» считается состояние, когда на обмотку реле НЕ подано напряжение.
Наиболее распространенные универсальные автомобильные реле и их контактные выводы со стандартным расположением ножек для установки в блок предохранителей или в выносную колодку выглядят так:
Герметичное реле из комплекта нештатного ксенона выглядит иначе. Залитый компаундом корпус позволяет ему надежно работать при установке вблизи фар, где водяной и грязевой туман проникают под капот через решетку радиатора. Цоколевка выводов – нестандартная, поэтому реле комплектуется собственным разъемом.
Для коммутации больших токов, в десятки и сотни ампер, используют реле иной конструкции, нежели описанные выше. Технически суть неизменна – обмотка примагничивает к себе подвижный сердечник, который замыкает контакты, но контакты имеют значительную площадь, крепление проводов – под болт от М6 и толще, обмотка – повышенной мощности. Конструктивно эти реле сходны со втягивающим реле стартера. Применяются они на грузовых машинах в качестве выключателей массы и пусковых реле того же стартера, на разной спецтехнике для включения особо мощных потребителей. Нештатно их используют для аварийной коммутации джиперских лебедок, создания систем пневмоподвески, в качестве главного реле системы самодельных электромобилей и т.п.
К слову, само слово «реле» переводится с французского как «перепряжка лошадей», и появился сей термин в эпоху развития первых телеграфных линий связи. Малая мощность гальванических батарей того времени не позволяла передавать точки и тире на дальние расстояния – все электричество «гасло» на длинных проводах, и доходившие до корреспондента остатки тока были неспособны шевельнуть головку печатающего аппарата. В результате линии связи стали делать «с пересадочными станциями» – на промежуточном пункте ослабевшим током активировали не печатающий аппарат, а слабенькое реле, которое уже, в свою очередь, открывало путь току из свежей батареи – и далее, и далее…
Что нужно знать о работе реле?
Напряжение, которое обозначено на корпусе реле, – это усредненное оптимальное напряжение. На автомобильных реле пропечатано «12V», но срабатывают они и при напряжении 10 вольт, сработают и при 7-8 вольтах. Аналогично и 14,5-14,8 вольт, до которых поднимается напряжение в бортсети при запущенном двигателе, им не вредит. Так что 12 вольт – это условный номинал. Хотя реле от 24-вольтовой грузовой машины в 12-вольтовой сети не заработает – тут уж разница слишком велика…
Второй главный параметр реле после рабочего напряжения обмотки – максимальный ток, который может пропустить через себя контактная группа без перегрева и пригорания. Указывается он обычно на корпусе – в амперах. В принципе, контакты всех автомобильных реле достаточно мощные, «слабаков» тут не водится. Даже самое миниатюрное коммутирует 15-20 ампер, реле стандартных размеров – 20-40 ампер. Если ток указывается двойной (например, 30/40 А), то это означает кратковременный и долговременный режимы. Собственно, запас по току никогда не мешает – но это касается в основном какого-то нештатного электрооборудования автомобиля, подключаемого самостоятельно.
Выводы автомобильных реле маркируются в соответствии с международным электротехническим стандартом для автопрома. Два вывода обмотки пронумерованы цифрами «85» и «86». Выводы контактной «двойки» или «тройки» (замыкающие или переключающие) обозначаются как «30», «87» и «87а».
Впрочем, гарантии маркировка, увы, не дает. Российские производители порой маркируют нормально замкнутый контакт как «88», а иностранные – как «87а». Неожиданные вариации стандартной нумерации встречаются и у безымянных «брендов», и у компаний уровня Bosch. А иногда контакты и вовсе маркируются цифрами от 1 до 5. Так что если тип контактов не подписан на корпусе, что нередко случается, лучше всего проверить распиновку неизвестного реле при помощи тестера и источника питания 12 вольт – подробнее об этом ниже.
Контактные выводы реле, к которым подключается электропроводка, могут быть «ножевого» типа (для установки реле в разъем колодки), а также под винтовую клемму (обычно у особо мощных реле или реле устаревших типов). Контакты бывают «белыми» или «желтыми». Желтые и красные – латунь и медь, матовые белые – луженая медь или латунь, блестящие белые – сталь, покрытая никелем. Луженые латунь и медь не окисляются, но голая латунь и медь – лучше, хотя и склонны темнеть, ухудшая контакт. Никелированная сталь также не окисляется, но сопротивление её высоковато. Неплохо, когда силовые выводы – медные, а выводы обмотки – никелированные стальные.
Чтобы реле сработало, на его обмотку подается питающее напряжение. Полярность его – безразлична для реле. Плюс на «85» и минус на «86», или наоборот – без разницы. Один контакт обмотки реле, как правило, постоянно подсоединен к плюсу или минусу, а на второй приходит управляющее напряжение с кнопки или какого-либо электронного модуля.
В прежние годы чаще использовалось постоянное подключение реле к минусу и плюсовой управляющий сигнал, сейчас более распространен обратный вариант. Хотя это не догма – бывает по-всякому, в том числе и в рамках одного автомобиля. Единственный вариант исключения из правил – реле, в котором параллельно обмотке подключен диод – тут уже полярность важна.
Если напряжение на обмотку реле подает не кнопка, а электронный модуль (штатный или нештатный – например, охранное оборудование), то при отключении обмотка дает индуктивный всплеск напряжения, который способен повредить управляющую электронику. Чтобы погасить всплеск, параллельно обмотке реле включается защитный диод.
Как правило, внутри электронных узлов эти диоды уже есть, но иногда (в особенности в случае различного допоборудования) требуется реле со встроенным внутри диодом (в этом случае его символ маркирован на корпусе), а изредка применяется выносная колодка с диодом, припаянным со стороны проводов. И если вы устанавливаете какое-то нештатное электрооборудование, нуждающееся, согласно инструкции, в таком реле, требуется строго соблюдать полярность при подключении обмотки.
Обмотка реле потребляет мощность около 2-2,5 ватт, из-за чего его корпус во время работы может достаточно сильно греться – это не криминально. Но нагрев допускается у обмотки, а не у контактов. Перегрев же контактов для реле губителен: они обугливаются, разрушаются и деформируются. Такое случается чаще всего в неудачных экземплярах реле российского и китайского производства, у которых плоскости контактов порой не параллельны друг другу, контактная поверхность из-за перекоса недостаточна, и при работе идет точечный токовый разогрев.
Реле не выходит из строя мгновенно, но рано или поздно перестает включать нагрузку, или наоборот – контакты привариваются друг к другу, и реле перестает размыкаться. К сожалению, выявить и предупредить такую проблему не совсем реально.
Проверка реле
При ремонте неисправное реле обычно временно подменяют исправным, а затем заменяют на аналогичное, и дело с концом. Однако мало ли какие задачи могут возникнуть, к примеру, при установке дополнительного оборудования. А значит, полезно будет знать элементарный алгоритм проверки реле с целью диагностики или уточнения цоколевки – вдруг попалось нестандартное? Для этого нам понадобятся источник питания с напряжением 12 вольт (блок питания или два провода от аккумулятора) и тестер, включенный в режиме измерения сопротивления.
Предположим, что у нас реле с 4 выводами – то есть, с парой нормально разомкнутых контактов, работающих на замыкание (реле с переключающей контактной «тройкой», проверяется аналогичным образом). Сперва касаемся щупами тестера поочередно всех пар контактов. В нашем случае это 6 комбинаций (изображение условное, чисто для понимания).
На одной из комбинаций выводов омметр должен показать сопротивление около 80 ом – это обмотка, запомним или пометим её контакты (у автомобильных 12-вольтовых реле наиболее распространенных типоразмеров это сопротивление бывает в диапазоне от 70 до 120 ом). Подадим на обмотку напряжение 12 вольт от блока питания или АКБ – реле должно отчетливо щелкнуть.
Соответственно, два других вывода должны показывать бесконечное сопротивление – это наши нормально разомкнутые рабочие контакты. Подключаем к ним тестер в режиме прозвонки, а на обмотку одновременно подаем 12 вольт. Реле щелкнуло, тестер запищал – все в порядке, реле работает.
Если же вдруг на рабочих выводах прибор показывает замыкание даже без подачи напряжения на обмотку, значит, нам попалось редкое реле с НОРМАЛЬНО ЗАМКНУТЫМИ контактами (размыкающимися при подаче напряжения на обмотку), либо, что более вероятно, контакты от перегрузки оплавились и сварились, замкнувшись накоротко. В последнем случае реле отправляется в утиль.
Что такое реле: виды, принцип действия и области применения
Реле – коммутационное устройство (КУ), соединяющее или разъединяющее цепь электронной или электрической схемы при изменении входных величин тока. Прежде чем мы перейдем к детальному рассмотрению того, что такое реле, как устроено, по какому принципу работает и где применяется, пожалуй, нужно узнать, когда это устройство впервые появилось и кто его изобретатель.
История создания
Первенство создания реле спорно. Некоторые утверждают, что впервые это устройство было сконструировано в 1830—1832 гг. русским ученым Шиллингом П.Л. и являлось основным элементом вызывающего механизма в разработанном им же варианте телеграфа.
Другие научные историки приписывают первенство изобретения известному физику Дж. Генри, который в 1835 г. разработал контактное реле во время усовершенствования созданного им в 1831 году телеграфного аппарата. Первый соленоид работал по принципу электромагнитной индукции и был некоммутационным устройством.
Реле, в качестве самостоятельного устройства, впервые упоминается в патенте на телеграф, выданном Самуэлю Морозе.
Первое реле Морзе
Как видим, первой сферой применения этого коммутационного устройства был телеграф и только позднее с развитием техники он стал применяться в электрическом и электронном оборудовании.
Устройство и принцип работы реле
Реле представляет собой катушку, состоящую из немагнитного основания, на которое намотан провод из меди с тканевой или синтетической изоляцией, но чаще всего с диэлектрическим лаковым покрытием. Внутри катушки установленной на нетокопроводящее основание, размещается металлический сердечник. Также в устройстве имеются пружины, якорь, соединительные элементы и пары контактов.
При подаче тока на обмотку электромагнита (соленоида) сердечник притягивает якорь, который соединяется с контактом и электрическая или электронная цепь замыкается. При снижении силы тока до определенного значения, якорь, под действием пружины, возвращается на исходную позицию, вследствие чего происходит размыкание цепи.
Более плавная и точная работа достигается благодаря использованию резисторов, а защиту от скачков напряжения и искрения обеспечивает установка конденсаторов.
У большинства электромагнитных реле имеется не одна, а несколько пар контактов, что позволяет управлять несколькими цепями одновременно.
Простейшая схема устройства электромагнитного соленоида
Если в двух словах, то этот вид коммутационного устройства работает по принципу электромагнитной индукции. Благодаря довольно простому принципу действия реле имеют высокую надежность в эксплуатации.
В видеоролике ниже разъясняется принцип действия электромагнитного КУ:
Основные характеристики КУ
К основным характеристикам, на которые следует обратить внимание при выборе данного вида коммутационного устройства, относят:
Классификация и для чего нужно реле
Поскольку реле являются высоконадежными коммутационными устройствами, то не удивительно, что они нашли широкое применение в самых различных областях человеческой деятельности. Они используются в промышленности для автоматизации рабочих процессов, а также в быту в самой различной технике, например в привычных всех холодильниках и стиральных машинах.
Разнообразие видов реле очень велико и каждый предназначен для выполнения определенной задачи
Реле имеют сложную классификацию и делятся на несколько групп:
По сфере применения:
По принципу действия:
По поступающему параметру, вызывающему срабатывание КУ:
По принципу воздействия на управляющую часть устройства:
На фото (обведено красным) показано, где находится одно из реле в стиральной машине
В зависимости от вида и классификации реле применяются в бытовой технике, автомобилях, поездах, станках, вычислительной технике и т.д. Однако, чаще всего этот вид коммутирующего устройства используется для управления токами большой величины.
Основные виды реле и их назначение
Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.
Электромагнитные реле
Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.
Принцип работы электромагнитного соленоида
Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.
Реле переменного тока
Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.
Промежуточное реле 220 В
Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.
Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике
Работает это таким образом:
С каждым годом реле становятся эффективней и компактней
Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.
Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.
Реле постоянного тока
Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.
Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.
Четырехконтактное автомобильное реле
К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.
Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:
Что такое реле: виды, принцип действия и устройство
Реле – одно из наиболее распространенных устройств, применяемых для автоматизации процессов в электротехнике. По факту, это автоматический выключатель, который соединяет или разъединяет электроцепи при достижении установленных значений или под внешним воздействием. Реле применяются в промышленности для автоматизации технологических процессов, в бытовой технике, которая есть в каждом доме, например в холодильниках и стиральных машинках, для защиты сети от слишком высоких или слишком низких параметров тока. Выбор нужного устройства упрощает классификация реле по различным признакам.
Содержание статьи
Общее описание конструкции
Понятие «реле» объединяет целое семейство устройств разной конструкции. Но в общем случае реле состоит из трех основных функциональных элементов:
Исполнение и принцип действия первичного элемента зависят от того, какое назначение имеет реле и на какую физическую величину (сила тока, напряжение, свет, тепло и т.п.) оно настроено.
Основные характеристики реле
Независимо от вида и принципа действия реле, выделяют несколько параметров, на которые обращают внимание при выборе этого прибора:
Виды реле: контактные и бесконтактные
По устройству исполнительного компонента реле делят на контактные и бесконтактные.
Контактные
Воздействуют на управляемую цепь с помощью электрических контактов. Их размыкание или замыкание полностью разъединяет или замыкает электроцепь. Для изготовления контактов используются: медь, серебро, вольфрам. Количество контактов – до 10 штук. Четырех- и пятиконтактные реле используются в электрических схемах автомобилей для включения и переключения цепей.
Бесконтактные
Такие реле воздействуют на управляемую цепь способом изменения электрических параметров выходных электроцепей – емкости, сопротивления, индуктивности, величины тока или напряжения.
Классификация реле по способу включения
Первичные
Эти устройства включаются непосредственно в цепь элемента, для защиты которого они предназначены. Их преимущества – не требуются измерительные трансформаторы, источники оперативного тока, контрольные кабели.
Вторичные
Подключаются в цепь с использованием вторичных трансформаторов. Это наиболее распространенный вид реле. Их преимущества – изоляция от высокого напряжения, возможность расположить устройство в месте, удобном для обслуживания. Вторичные реле выпускаются стандартными. Они рассчитаны на ток 5 (1) А и напряжение 100 В и могут устанавливаться в любые электроцепи, независимо от их тока и напряжения.
Виды реле по назначению
По назначению эти устройства бывают трех типов – управления, защиты, сигнализации.
Реле управления
Эти реле являются первичными. Монтируются непосредственно в электроцепь. Их роль – включение и выключение отдельных элементов схемы. Могут использоваться самостоятельно или в качестве комплектующих низковольтных комплектных устройств – ящиков, панелей, шкафов.
Реле защиты
Выполняют функции включения, отключения и защиты устройств, имеющих термические контакты – электродвигателей, вентиляторов. При превышении температуры термические контакты размыкаются. Оборудование может восстановить работу только после остывания термоконтактов до установленной температуры.
Сигнализации
Такие реле устанавливают в охранных системах автотранспорта, предприятий, придомовых территорий. Служат для формирования сигнала при достижении установленной величины параметра, который находится под контролем (ток, напряжение, частота, давление, температура, акустические параметры и другие).
Разновидности электромеханических реле
Наиболее распространенный вид электрических реле – электромеханические. К ним относятся: электромагнитные, индукционные, электротепловые устройства.
Электромагнитные
Один из видов электрических реле электромагнитное. В конструкции этого устройства имеются: обмотка со стальным сердечником, группа подвижных контактов, замыкающих и размыкающих управляемую электроцепь. Рассмотрим принцип их действия:
Разновидность электромагнитных реле – поляризованные, которые отличаются от нейтральных способностью реагировать на полярность управляющего сигнала. Размыкание или замыкание контактов зависит от полярности подключения электромагнита. Обладают более высокой чувствительностью, по сравнению с нейтральными реле. Такие устройства могут использоваться только в цепях постоянного тока.
Электротепловые (термические)
Тепловые реле представляют собой комплекс биметаллических пластин, для изготовления которых используются металлы с разным коэффициентом расширения при нагреве. Такие реле могут использоваться в качестве защитных устройств: при превышении температуры, установленной регулятором, контакты разъединяются, и поступление тока на потребителя прекращается.
Обычно тепловые реле используются в бытовых одно- и трехфазных сетях при подключении электрических двигателей. При увеличении нагрузки на двигатель выше установленной величины происходит нагрев биметаллического реле, которое при достижении определенной температуры размыкает электрическую цепь. Двигатель прекращает работу. После остывания биметаллических пластин цепь замыкается и двигатель возобновляет работу. Термические устройства могут оснащаться колесиком, с помощью которого регулируется температура отключения двигателя, и кнопкой принудительного запуска.
Существует разновидность термических реле, в которых биметаллические пластины заменены легкоплавящимся сплавом. Они срабатывают практически мгновенно – при достижении определенной температуры металл расплавляется и цепь размыкается. Принцип действия таких устройств похож на принцип действия предохранителей. После срабатывания такое реле, установленное непосредственно на оборудовании в качестве последней защиты от перегорания, подлежит замене.
Индукционные
Принцип действия этих устройств основан на взаимодействии между переменными магнитными потоками и токами, которые формируют переменные магнитные потоки. Индукционные приборы рассчитаны только на использование в цепях переменного тока. Существуют три типа индукционных реле – с рамкой, диском, цилиндрическим ротором («стаканом»). Эти устройства широко востребованы в системах релейной защиты и автоматики.
Другие виды электрических реле
Твердотельные
Эти электронные устройства компактны и долговечны, благодаря отсутствию трущихся механических частей. Работу механики здесь выполняют полупроводниковые элементы – биполярные и МОП-транзисторы, тиристоры, симисторы. По сравнению с твердотельными, они имеют следующие преимущества:
Однако твердотельные реле имеют не только достоинства, но и недостатки. Одним из них является слабая устойчивость к импульсным перенапряжениям, которые электромагнитным реле практически не страшны. При использовании твердотельных реле необходимо предусмотреть схемотехническое решение, которое ограничивает эти импульсы. Есть и еще минусы – нагрев при работе, наличие токов утечки, приводящих к наличию напряжения на фазном проводе даже при отключенном реле.
Твердотельные реле применяют в системах регулирования температуры, в которых в качестве нагревателей используются ТЭНы, в промышленной автоматике, телеметрии, механизмах оборудования, используемого в металлургической и химической индустрии, в медоборудовании, военной электронике.
Герконовые
Реле этого типа представляют собой герконовую катушку. Это баллон, заполненный инертным газом, или внутри которого создан вакуум. Внутри баллона располагают соединительные элементы из пермаллоя – прецизионного сплава (сплава с точно заданным химическим составом), включающего железо и никель. Эти соединительные элементы имеют вид проволоки с контактами. Их покрывают серебряным или золотым напылением. Геркон размещают в середине электрического магнита или в пределах действия его поля. При подаче тока на обмотку электромагнита образуется магнитный поток, который запирает контакты. Герконовые реле могут выполнять функции: замыкающие, переключающие, размыкающие. Преимущества этих устройств – компактные габариты, доступная цена, отсутствие трущихся частей, что продлевает срок службы. Тот факт, что контактная группа располагается в инертном газе или вакууме и надежно защищена от влаги, повышает надежность реле.
При использовании герконовых реле следует избегать:
Колба изготавливается обычно из стекла, поэтому ее нужно всячески оберегать от механических воздействий. При разбитой колбе контактная группа срабатывать не будет. Герконовые реле можно использовать только в системах, в которых параметры электропитания находятся в пределах, установленных в технической документации. При подаче слишком высоких токов произойдет размыкание контактов. Нарушения в работе герконовых реле наблюдаются и в случаях подачи тока слишком низкой частоты.
Фотоэлектронные (фотореле)
Основой фотоэлектронного реле является полупроводниковый элемент – фоторезистор, сопротивление которого изменяется в зависимости от изменения освещенности. Фотореле – прибор, широко применяемый коммунальными службами. Он надежен в работе и обеспечивает существенную экономию электроэнергии и безопасность на улицах. При повышении освещенности все осветительное оборудование отключается, а при наступлении темноты – включается. Большинство таких приборов оснащено регулятором порога срабатывания и механическим выключателем.
Виды реле по типу поступающего параметра
По этому параметру разделяют реле: тока, мощности, частоты, напряжения, давления, акустических величин, количества газа. Устройства могут быть максимальными и минимальными. Реле, которые срабатывают при превышении заданной величины, называют «максимальными», а при ее падении ниже заданного уровня – «минимальными».
Реле тока
Реле тока реагируют на резкие перепады тока и при необходимости отключают отдельную нагрузку или всю систему электроснабжения. Величина максимального тока, при которой необходимо отключить потребителей, устанавливается регулятором.
Реле напряжения
Реле напряжения реагируют на величину напряжения и включаются через трансформаторы напряжения. Используются для контроля фаз напряжения в электросетях и защиты электроприборов. Основой такого реле является контроллер быстрого реагирования, отслеживающий отклонения напряжения за установленные пределы. Общепринятый стандарт срабатывания таких реле – ниже 170 В и выше 250 В.
Реле частоты
Служат для контроля частоты переменного тока, которая должна быть равна 50 или 60 Гц в одно- и трехфазных сетях. Обычно имеют фиксированные задержки срабатывания. Пороги размыкания цепи, которая находится под контролем, можно регулировать. Режим работы этого устройства может предусматривать наличие «памяти» аварии.
Реле мощности
Устройство, ограничивающее мощность, действует аналогично ограничителю тока нагрузки. При превышении установленного порога мощности происходит отключение потребителя. Реле ограничения мощности часто оснащаются функцией автоматического повторного включения. То есть, после снижения нагрузки работа оборудования возобновляется автоматически.
Реле давления
Реле давления – важнейший прибор, используемый в насосном оборудовании для контроля перепадов давления воды, масла, нефти, воздуха. Различают два основных типа таких приборов – электромеханические и электронные.
Электромеханические реле имеют в конструкции особый элемент, реагирующий на изменение давления в системе, – гибкую мембрану, которая изгибается под напором жидкости (воздуха) в системе. Она соединяется с двумя пружинами, одна из которых настраивается на минимально допустимый напор, а вторая – на разницу между верхней и нижней границами давления в системе. При снижении давления в системе ниже минимального порога реле включает насосное оборудование, при превышении верхнего порога – отключает. Это простые и надежные устройства, но не очень удобные в эксплуатации. Оператору приходится регулярно проверять настройки и при необходимости их корректировать.
Электронные устройства имеют более сложную конструкцию. Пределы можно устанавливать очень точно и при эксплуатации контролировать их не требуется. Электронные приборы чувствительны к гидроударам, поэтому их оснащают небольшими гидробаками (объем – примерно 400 мл). Электронное реле давления устанавливается между насосным оборудованием и первой точкой водоразбора.
Реле акустические
Акустические реле реагируют на изменение акустических величин – частоты звуковой волны, ее давления или акустических характеристик материалов – коэффициентов поглощения и отражения. Принцип действия может быть механическим или электрическим. В акустических приборах механического действия предусмотрена мембрана, которая прогибается под давлением звуковых волн, и при достижении определенной величины давления происходит замыкание контакта. В состав электрических акустических приборов входят: воспринимающий орган (микрофон, фильтр), усилитель, выходное электрическое реле.
Устройства, срабатывающие на любой шум, часто используются совместно с системой освещения. Они реагируют на любой возникающий шум в помещении и дают сигнал на включение света. Обычно их устанавливают в коридорах и на лестничных площадках. Также акустические реле широко используются в охранных системах, «интеллектуальных» игрушках.
Газовые реле
Эти приборы применяются для обеспечения газовой защиты. Они представляют собой металлический корпус, врезанный в маслопровод. Реле в нормальном состоянии заполнено маслом, а его контакты находятся в разомкнутом состоянии. При повышении содержания газов они заполняют верхнюю часть реле с одновременным вытеснением масла. Поплавок, имеющийся в конструкции, с понижением уровня масла опускается, поворачивается вокруг своей оси и вызывает замыкание контактов в сигнальной цепи. Сформированный сигнал предупреждает о высокой загазованности среды.
Промежуточные реле
Часто функции промежуточных выполняют электромагнитные реле, в которых в зависимости от конструкции и области применения имеются контакты следующих типов:
Обозначение реле на схеме
На электрических схемах реле обозначается прямоугольником, от наибольших сторон которого показаны выводы питания. Функциональное назначение реле указывается на схеме буквами:
Как работает реле (4 контактное)
Всем привет, вот сижу попиваю пивко, читаю ленту и в очередной раз вижу «Собрал по схеме, не работает помогите».
Попытаюсь объяснить, как оно работает, зачем оно нужно и как его подключить.
1. Вот самое обычное 4 контактное реле
2. На нем на крышке есть схема ножек
Контакты 85 и 86 — это катушка.
Контакт 30 — общий контакт
Контакт 87 — нормально-разомкнутый контакт
Внизу сами ножки имеют такие же маркировки.
3. Как его правильно подключить
Из расшифровки контактов понятно, что пока на реле не подан управляющий сигнал (+), То контакт 30 и 87 разомкнут.
4. Принцип действия
В состоянии покоя, т.е., когда на катушке нет питания, контакт 30 разомкнут. При одновременной подаче питания на контакты 85 и 86 (на один контакт «плюс» на другой — «минус», без разницы куда что, если на реле нет маркировки диода) катушка «возбуждается», то есть срабатывает. Тогда контакт 30 соединяется с контактом 87.
5.Зачем оно нужно
Реле — электрическое устройство (выключатель), предназначенное для замыкания и размыкания различных участков электрических цепей при заданных изменениях электрических или неэлектрических входных величин.
Типы реле могут различаться по управляющему сигналу и по исполнению, не будем останавливаться на этом.ем более все это есть на той же википедии. Отметим лишь, что наибольшее распростран
:
Реле предназначено для коммутации больших токов нагрузки. Другими словами является переключателем, а еще проще — принцип работы реле — малым током (например сигналом кнопки) включать цепи с большим током. А используют реле, когда исполнительное устройство (стартер, генератор, вентилятор, обогрев зеркал, клаксон и т.д.) потребляет больший ток (до 30-40 ампер).
НАПРИМЕР: Для того чтобы с маленькой кнопочки завести двигатель, необходимо, чтобы включился стартер, который потребляет от 80 до 300 ампер. Если не использовать реле, тогда кнопка не выдержит большого тока и расплавится, также как и не предназначенная для больших токов проводка. Поэтому, делают подключение через реле (между кнопочкой и стартером устанавливают реле), которое по импульсу малого тока кнопки внутри себя замыкает мощные контакты, тем самым включая стартер.
Надеюсь кому нибудь написанное будет полезно.
Если где ошибся пишите исправлю.
Принцип работы 5-ти контактного реле
Зная, как работает реле, Вы сможете осуществить различные схемы подключения к электропроводке автомобиля.
Обычно реле имеет 5 контактов (бывают и 4-хконтактные и 7-ми и т.д.). Если Вы посмотрите на реле внимательно, то увидите, что все контакты подписаны. Каждый контакт имеет своё обозначение. 30, 85, 86, 87 и 87А. На рисунке видно где, какой контакт.
Контакты 85 и 86 — это катушка. Контакт 30 — общий контакт, контакт 87А — нормально-замкнутый контакт, контакт 87 — нормально-разомкнутый контакт.
В состоянии покоя, т.е., когда на катушке нет питания, контакт 30 замкнут с контактом 87А. При одновременной подаче питания на контакты 85 и 86 (на один контакт «плюс» на другой — «минус», без разницы куда что) катушка «возбуждается», то есть срабатывает. Тогда контакт 30 отмыкается от контакта 87А и соединяется с контактом 87. Вот и весь принцип действия. Вроде бы ничего сложного.
Реле часто приходит на выручку во время установки дополнительного оборудования.
Примеры применения реле:
В качестве блокируемой цепи может быть что угодно, лишь бы машина не заводилась при разорванной цепи (стартер, зажигание, бензонасос, питание форсунок и т.д.). Один контакт питания катушки (пусть 85) соединяем с проводом сигнализации, на котором появляется «минус» при постановке в охрану. На другой контакт катушки (пусть 86) подаём +12 Вольт при включении зажигания. Контакты 30 и 87А подцепляем в разрыв блокируемой цепи. Теперь, если попытаться завести автомобиль при включенной охране, контакт 30 разомкнётся с контактом 87А и не даст завести двигатель.
Эта схема используется, если у вас «минус» с сигнализации на блокировку выходит при постановке в охрану. Если у вас «минус» с сигнализации на блокировку выходит при снятии с охраны, тогда вместо контакта 87А используем контакт 87, т.е. разрыв цепи теперь будет на контактах 87 и 30. При таком подключении реле будет всегда в рабочем состоянии (разомкнутом) при работающем двигателе.
Инвертируем полярность сигнала (с «минуса» делаем «плюс» и наоборот). Подключаемся к слаботочным транзисторным выходам сигнализации.
Допустим, нам надо получить «минус», но у нас есть только «плюсовой» сигнал (например, у автомобиля положительные концевики, а у сигнализации нет входа положительных концевиков, а есть только вход отрицательных). На помощь опять приходит реле.
Подаём на один из контактов катушки (86) наш «плюс» (с концевиков автомобиля). На другой контакт катушки (85) и на контакт 87 подаём «минус». В итоге на выходе (контакт 30) получаем нужный нам «минус».
Если нам надо, наоборот, из «минуса» получить «плюс», то маленько меняем подключение. На контакт 86 подаём исходный «минус», а на контакты 85 и 87 подаём «плюс». В итоге на выходе (контакт 30) получаем нужный нам «плюс».
Если нам надо из слаботочного отрицательного выхода сигнализации (в сигнализации такие выходы могут называться по-разному и их назначение тоже различное: выход на 3-е зажигание, выход на открытие багажника, выход на закрытие стёкол и т.д.) сделать хороший мощный «минус» или «плюс», то тоже используем эту схему.
На контакт 85 подаём выход с сигнализации. На контакт 86 подаём «плюс». На контакт 87 подаём сигнал той полярности, который нам надо получить на выходе. В итоге на контакте 30 мы имеем ту полярность, которая на контакте 87.
Открытие багажника с брелока сигнализации.
Если в автомобиле стоит электрический привод багажника, то можно подключиться к нему автосигнализацией для открытия его с брелока сигнализации.
Если с сигнализации выходит слаботочный сигнал на открытие багажника (а чаще всего так и есть), то используем эту схему.
Прежде всего, находим провод на привод багажник, где появляется +12 Вольт при открытии багажника. Разрезаем этот провод. Тот конец разрезанного провода, который идёт к приводу, подцепляем к контакту 30. Другой конец провода подцепляем к контакту 87А. Выход с сигнализации подцепляем к контакту 86. Контакты 87 и 85 подцепляем на +12 Вольт.
Теперь, при подаче сигнала с сигнализации на открытие багажника, реле сработает и на провод электропривода багажника пойдёт «плюс». Привод сработает, и багажник откроется.
Это лишь немногие схемы подключения с использованием реле.
Электромагнитное реле
Устройство, обозначение и параметры реле
Для управления различными исполнительными устройствами, коммутации цепей, управления приборами в электронике активно применяется электромагнитное реле.
Устройство реле достаточно просто. Его основой является катушка, состоящая из большого количества витков изолированного провода.
Внутрь катушки устанавливается стержень из мягкого железа. В результате получается электромагнит. Также в конструкции реле присутствует якорь.Он закреплён на пружинящем контакте. Сам же пружинящий контакт закреплён на ярме. Вместе со стержнем и якорем ярмо образует магнитопровод.
Если катушку подключить к источнику тока, то образовавшееся магнитное поле намагничивает сердечник. Он в свою очередь притягивает якорь. Якорь укреплён на пружинящем контакте. Далее пружинящий контакт замыкается с другим неподвижным контактом. В зависимости от конструкции реле, якорь может по-разному механически управлять контактами.
Устройство реле.
В большинстве случаев реле монтируется в защитном корпусе. Он может быть как металлическим, так и пластмассовым. Рассмотрим устройство реле более наглядно, на примере импортного электромагнитного реле Bestar. Взглянем на то, что внутри этого реле.
Вот реле без защитного корпуса. Как видим, реле имеет катушку, стержень, пружинящий контакт, на котором закреплен якорь, а также исполнительные контакты.
На принципиальных схемах электромагнитное реле обозначается следующим образом.
Условное обозначение реле на схеме состоит как бы из двух частей. Одна часть (К1) – это условное обозначение электромагнитной катушки. Она обозначается в виде прямоугольника с двумя выводами. Вторая часть (К1.1; К1.2) – это группы контактов, которыми управляет реле. В зависимости от своей сложности реле может иметь достаточно большое количество коммутируемых контактов. Они разбиваются на группы. Как видим, на обозначении изображены две группы контактов (К1.1 и К1.2).
Как работает реле?
Принцип работы реле наглядно иллюстрирует следующая схема. Есть управляющая цепь. Это само электромагнитное реле K1, выключатель SA1 и батарея питания G1. Также есть исполнительная цепь, которым управляет реле. Исполнительная цепь состоит из нагрузки HL1 (лампа сигнальная), контактов реле K1.1 и батареи питания G2. Нагрузкой может быть, например, электрическая лампа или электродвигатель. В данном случае в качестве нагрузки используется сигнальная лампа HL1.
Как только мы замкнём управляющую цепь выключателем SA1, ток от батареи питания G1 поступит на реле K1. Реле сработает, и его контакты K1.1 замкнут исполнительную цепь. На нагрузку поступит напряжение питания от батареи G2 и лампа HL1 засветится. Если разомкнуть цепь выключателем SA1, то с реле K1 будет снято напряжение питания и контакты реле K1.1 вновь разомкнуться и лампа HL1 выключится.
Коммутируемые контакты реле могут иметь своё конструктивное исполнение. Так, например, различают нормально-разомкнутые контакты, нормально-замкнутые контакты и контакты на переключение (перекидные). Разберёмся с этим поподробнее.
Нормально разомкнутые контакты
Нормально разомкнутые контакты – это контакты реле, которые находятся в разомкнутом состоянии до тех пор, пока через катушку реле не потечёт ток. Говоря проще, когда реле выключено, контакты тоже разомкнуты. На схемах реле с нормально-разомкнутыми контактами обозначается вот так.
Нормально замкнутые контакты
Нормально замкнутые контакты – это контакты реле, находящиеся в замкнутом состоянии, пока через катушку реле не начнёт течь ток. Таким образом, получается, что при выключенном реле контакты замкнуты. Такие контакты на схемах изображают следующим образом.
Переключающиеся контакты
Переключающиеся контакты – это комбинация из нормально-замкнутых и нормально-разомкнутых контактов. У переключающихся контактов есть общий провод, который переключается с одного контакта на другой.
Современные широко распространённые реле, как правило, имеют переключающиеся контакты, но могут встречаться и реле, которые имеют в своём составе только нормально-разомкнутые контакты.
У импортных реле нормально-разомкнутые контакты реле обозначаются сокращением N.O. А нормально-замкнутые контакты N.C. Общий контакт реле имеет сокращение COM. (от слова common – «общий»).
Теперь обратимся к параметрам электромагнитных реле.
Параметры электромагнитных реле.
Как правило, размеры самих реле позволяют наносить на корпус их основные параметры. В качестве примера, рассмотрим импортное реле Bestar BS-115C. На его корпусе нанесены следующие надписи.
COIL 12VDC – это номинальное напряжение срабатывания реле (12V). Поскольку это реле постоянного тока, то указано сокращённое обозначение постоянного напряжения (сокращение DC обозначает постоянный ток/напряжение). Английское слово COIL переводится как «катушка», «соленоид». Оно указывает на то, что сокращение 12VDC имеет отношение к катушке реле.
Далее на реле указаны электрические параметры его контактов. Понятно, что мощность контактов реле может быть разная. Это зависит как от габаритных размеров контактов, так и от используемых материалов. При подключении нагрузки к контактам реле нужно знать мощность, на которую они рассчитаны. Если нагрузка потребляет мощность больше той, на которую рассчитаны контакты реле, то они будут нагреваться, искрить, «залипать». Естественно, это приведёт к скорому выходу из строя контактов реле.
Для реле, как правило, указываются параметры переменного и постоянного тока, которые способны выдержать контакты.
Так, например, контакты реле Bestar BS-115C способны коммутировать переменный ток в 12А и напряжение 120V. Эти параметры зашифрованы в надписи 12А 120VAC (сокращение AC обозначает переменный ток).
Также реле способно коммутировать постоянный ток силой 10А и напряжением 28V. Об этом свидетельствует надпись 10A 28VDC. Это были силовые характеристики реле, точнее его контактов.
Потребляемая мощность реле.
Таким образом, мощность реле Bestar BS-115C составляет 360 милливатт (mW).
Есть ещё один параметр – это чувствительность реле. По своей сути, это и есть мощность потребления реле во включённом состоянии. Понятно, что реле, которому требуется меньше мощности для срабатывания, является более чувствительным по сравнению с теми, которые потребляют большую мощность. Такой параметр, как чувствительность реле, особенно важен для устройств с автономным питанием, так как включенное реле расходует заряд батарей. К примеру, есть два реле с потребляемой мощностью 200 mW и 360 mW. Таким образом, реле мощностью 200 mW обладает большей чувствительностью, чем реле мощностью 360 mW.
Как проверить реле?
Электромагнитное реле можно проверить обычным мультиметром в режиме омметра. Так как обмотка катушки реле обладает активным сопротивлением, то его можно легко измерить. Сопротивление обмотки реле может варьироваться от нескольких десятков ом (Ω), до нескольких килоом (kΩ). Обычно самое низкое сопротивление обмотки имеют миниатюрные реле, которые рассчитаны на номинальное напряжение 3 вольта. У реле, номинальное напряжение которых составляет 48 вольт, сопротивление обмотки намного выше. Это прекрасно видно по таблице, в которой указаны параметры реле серии Bestar BS-115C.
Номинальное напряжение (V, постоянное) | Сопротивление обмотки (Ω ±10%) | Номинальный ток (mA) | Потребляемая мощность (mW) |
3 | 25 | 120 | 360 |
5 | 70 | 72 | |
6 | 100 | 60 | |
9 | 225 | 40 | |
12 | 400 | 30 | |
24 | 1600 | 15 | |
48 | 6400 | 7,5 |
Отметим, что потребляемая мощность всех типов реле этой серии одинакова и составляет 360 mW.
Электромагнитное реле является электромеханическим прибором. Это, наверное, является самым большим плюсом и в то же время весомым минусом.
При интенсивной эксплуатации любые механические части изнашиваются и приходят в негодность. Кроме этого, контакты мощных реле должны выдерживать огромные токи. Поэтому их покрывают сплавами драгоценных металлов, таких как платина (Pt), серебро (Ag) и золото (Au). Из-за этого качественные реле стоят довольно дорого. Если ваше реле всё-таки вышло из строя, то замену ему можно купить здесь.
К положительным качествам электромагнитных реле можно отнести устойчивость к ложным срабатываниям и электростатическим разрядам.
Электромагнитное реле
Электромагнитное реле представляют из себя изделие радиотехнической промышленности, которое используется для коммутации электрического тока.
Простейший электромагнит
В нашей жизни существуют еще и другие виды полей, невидимые для человеческого глаза. Это может быть гравитационное, электрическое или даже магнитное поле. Давайте рассмотрим, что же из себя представляет магнитное поле?
Магнитное поле образуется вокруг любого куска магнита. Не зависимо от размеров этого кусочка, этот магнит всегда будет иметь два полюса: северный (N — North) и южный (S — South). Стрелки магнитного поля начинаются с Севера и заканчиваются на Юге, но они нигде не разрываются. Даже в самом магните (доказано наукой). Как вы знаете, Земля — это тот же самый кусочек магнита очень большого размера. Она также имеет эти два полюса, покрытые льдинами. На полюсах Земли, как вы знаете, компас не работает.
Но самый смак заключается в том, что провод, по которому течет электрический ток, вокруг себя образует то же самое магнитное поле как и простой магнит. Буквой I отмечают направление тока, а В — это линии магнитного поля. Они представляют собой замкнутые круги.
Направление линий магнитного поля определяется правилом буравчика
Даже не знаю, кто первый придумал навернуть провод пружиной и пропустить через него электрический ток, но это того стоило.
В результате этого получили нечто иное, как соленоид. Если на концы такого соленоида подать электрический ток, то он будет обладать магнитными свойствами! Правильнее было бы его назвать электромагнит. Смотрите, сколько силовых линий образуется в соленоиде, при подаче на его концы электрического тока!
А если обмотать какую-нибудь железяку этими витками и подать на них напряжение, то эта железяка станет электромагнитом и будет притягивать к себе металлические предметы.
Внешний вид электромагнитного реле
Дело как раз в том, что принцип электромагнита используется в очень важном электротехническом изделии: в электромагнитном реле.
Возьмем простое электромагнитное реле
Давайте же посмотрим, что на нем написано:
TDM ELECTRIC — видимо производитель. РЭК 78/3 — название реле. Дальше идет самое интересное. Мы видим какие то полоски и цифры. Контакты с 1 по 9 — это и есть коммутационные контакты реле, 10 и 11 — это катушка реле.
Теперь обо всем по порядку. Реле состоит из коммутационных контактов. Что значит словосочетание «коммутационные контакты»? Это контакты, которые осуществляют переключение. Катушка — это медный провод, намотанный на цилиндрическую железку. В результате, соленоид превращается в электромагнит, если на его концы подать напряжение.
Еще чуть ниже мы видим такие надписи, как 5А/230 В
и 5А 24 В=. Это максимальные параметры, которые могут коммутировать контакты реле. Эти параметры желательно не превышать и брать с большим запасом. Иначе при превышении допустимых параметров контакты реле могут обгореть, либо полностью выгореть, что в свою очередь приведет к полному выходу из строя электромагнитного реле.
Когда напряжение на катушку мы НЕ подаем, то контакт 1 соединяется с 7, 2 с 8, 3 с 9
Иными словами, если достать мультиметр, то можно прозвонить контакты 1 и 7, 2 и 8, 3 и 9. Мультиметр должен показать 0 Ом.
Если же мы подаем напряжение на катушку, то группа контактов перебрасывается. В результате соединяется 4 с 7, 5 с 8, 6 с 9.
Какое же напряжение подавать на катушку? На катушке уже есть ответ. Написано 12 VDC. DC — это постоянный ток, АС — переменный. Значит, на катушку подаем 12 Вольт постоянного тока.
С другой стороны мы видим те самые контакты. Слева-направо и сверху-вниз идет нумерация контактов:
Как работает электромагнитное реле
Но как же так оно работает? Все оказывается очень просто. Давайте внимательно рассмотрим фото ниже:
При подаче на катушку напряжения, ярмо притягивается к электромагниту. На ярме находится коммутационный контакт и он движется вслед за ярмом. В результате этого, «пипочка» на коммутационном контакте перебрасывается на нижний контакт и происходит переключение.
При пропадании напряжения на катушке, пружинка оттягивает ярмо назад и реле принимает свой первозданный вид.
Как проверить электромагнитное реле
Давайте же проверим реле с помощью мультиметра и блока питания. Прозваниваем контакт 1 и 7 и смотрим, что у нас они звонятся, значит эти контакты соединены. Видно даже визуально.
Подаем напряжение на катушку 12 Вольт с блока питания и смотрим, что у нас получилось.
В результате у нас ярмо «приклеилось» к электромагниту (катушке) и потянула за собой коммутационный контакт. Цепь 1 и 7 у нас оборвалась, но зато восстановилась цепь контактов 7 и 4. Вот таким образом проверяются контакты реле.
Если контакты с налетом, то следует протереть их карандашным ластиком. Если прилично поджарились, а другого реле под рукой нет, то здесь поможет только шкурка-микронка. Но этот случай уже критический, так как наждачная бумага сдирает тонкий слой из благородного металла, которым покрыты «пипочки».
Целостность катушки реле проверяется с помощью мультиметра в режиме омметра. Для этого проверяем сопротивление катушки. Оно зависит от самого реле. У всех оно разное. Если сопротивления нет или оно очень маленькое — порядка пару Ом, то значит в катушке либо обрыв, либо короткое замыкание.
На схемах электромагнитные реле обозначаются вот так:
Также контакты обозначают уже просто цифрами. В данном случае:
11 — это общий контакт
11-12 — это нормально замкнутые контакты
11-14 — нормально разомкнутые контакты
Прямоугольником обозначается сама катушка реле, а выводы катушки обозначаются буквами A1 и A2.
При подаче напряжения на катушку в данном реле у нас контакт перекинется, то есть картина будет выглядеть следующим образом:
Без подачи напряжения:
После подачи напряжения:
Плюсы и минусы электромагнитного реле
Плюсы
Минусы
Что такое реле: разновидности, область использования, основные характеристики
На чтение: 5 минут Нет времени?
Этот прибор управления электропитанием — одно из наиболее распространенных устройств автоматизации процессов в электротехнике. Фактически, это автоматический выключатель аппаратуры, который соединяет или разъединяет электрические цепи при достижении пороговых значений определенных условий и/или внешнего воздействия. Современные реле имеют существенные конструкционные различия, особенности срабатывания и широкий диапазон разнообразных эксплуатационных характеристик. В рамках сегодняшнего обзора мы более детально рассмотрим что такое реле, каких видов они бывают, где используются и какими характеристиками обладают.
Читайте в статье
Для чего нужно реле: область применения
Реле получило широкое применение в промышленности. Его используют для автоматизации производственных процессов, а также для защиты электроустановок. На данный момент широко используются как электронные устройства под управлением микропроцессоров, так и аналоговые, рабочая схема которых состоит из резисторов, транзисторов, диодов и др. Область применения зависит от принципа действия реле и типа контролируемой величины:
Краткая историческая справка создания реле
Большинство исторических документов указывают, что первые действующие экземпляры электрических устройств аналогичных современным реле, которые использовали принцип электромагнитного действия, были получены американским физиком Джозефом Генри в 1835 году. Они стали результатом работы над усовершенствованием телеграфного аппарата, который был изобретён Дж. Генри в 1831 году. Уже в 1837 г. устройство поступило в массовое производство и получило широкое применение в телеграфии. Однако следует отметить, что первые полученные устройства являлись некоммутационными, то есть не выполняли основные функции, возложенные теперь на релейные механизмы управления.
В соответствии с другими источниками первые релейные устройства были созданы в период с 1830 по 1932 гг. русским ученым изобретателем Шиллингом П.Л. Они использовались в вызывном устройстве электромагнитного телеграфного аппарата, разработанного совместно с механиком И. А. Швейкиным, который был продемонстрирован 21 октября 1832 года. Однако большое количество электрокабелей, необходимых для функционирования этого устройства, сделали его дальнейшую эксплуатацию нецелесообразной и релейные элементы в его схеме не получили широкой известности.
Интересно! Название «реле» возникло от английского слова RELAY, которое означало процедуру замены лошадей на почтовых станциях того времени.
В качестве самостоятельного устройства, известного под своим названием, реле упоминаются в патентных заявках на телеграфный аппарат Самюэля Морзе в 1837 году.
Телеграфный аппарат Шиллинга — электромагнитный, шестимультипликаторный вариант. Производился ограниченной серией
Схема устройства электромагнитного реле и принцип работы
Самое простое реле состоит из якоря, электромагнита (сердечник и обмотка), возвратной пружины и соединяющих конструкционных элементов: основания, каркаса, ярма. При поступлении тока срабатывает электромагнит и соединяет якорь с контактом, в результате этого действия электрическая цепь оказывается замкнутой. Если подача тока прекращается или его параметры снижаются ниже определенной величины, пружина возвращает якорь в первоначальное положение, размыкая цепь. В состав современных электромагнитных реле, наряду с обязательными элементами, входят резисторы, обеспечивающие более точную работу и конденсаторы для защиты от скачков напряжения.
Основные элементы электромагнитного реле
Электрические цепи, контролируемые посредством реле, называют управляемыми, а линию, по которой поступает сигнал — управляющей. В большинстве случаев релейные соединения выступают в качестве усилителя, так как замыкают мощные питающие электроцепи при помощи подачи незначительного напряжения. То, как работает реле, зависит также от его типа: постоянного или переменного тока. Для приборов переменного тока характерно срабатывание в зависимости от частоты входящего сигнала. Устройства постоянного тока переходят в рабочее положение в двух случаях:
Более подробно о том, как работает реле, схема устройства, назначение всех элементов и область применения можно узнать из видео:
Основные технические характеристики реле
Независимо от принципа действия существуют общепринятые параметры, на которые необходимо ориентироваться при выборе устройства:
Промежуточное реле РП-25 УХЛ4220 В и его основные характеристики
Основные виды реле и их назначение
В процессе усовершенствование были разработаны множество разновидностей реле. Их номенклатура имеет довольно сложную классификацию:
Реле постоянного тока
Реле постоянного тока могут быть электромагнитными, у которых якорь притягивается к сердечнику вследствие возникновения магнитного поля в обмотке катушки, и индукционными, функционирующими под воздействием магнитного поля переменного типа, которые индуцируется непосредственно в подвижном элементе. Реле постоянного тока могут быть: нейтральными, поляризованными или комбинированными.
Преимуществом таких устройств можно считать устойчивость к помехам различного типа, перепадам напряжения и пульсации. Из недостатков следует отметить потребность в специальном блоке питания, и как следствие довольно высокая стоимость и сложность при подключении.
Реле постоянного тока используются для управления автоматикой в различных отраслях производства, транспорта (в частности железнодорожного) и т.п.
Нейтральное электромагнитное реле постоянного тока
Реле переменного тока
Реле переменного тока не нуждаются в специальном блоке питания и могут подключаться непосредственно в контролируемую электросеть переменного напряжения. Однако, они тоже не лишены определенных недостатков, к наиболее значимым относятся:
В связи с этим данная аппаратура управления используется, чаще всего, для контроля бытовых приборов и небольших промышленных установок и станков.
Реле на 220В переменного тока, малогабаритное, модель Ap-50A, используется в качестве управляющего модуля терморегулятора для теплого электрического пола
Электромагнитные
Наиболее распространенная разновидность релейных устройств. Получила широкую популярность из-за значительных преимуществ перед полупроводниковыми аналогами:
Пример! При коммутации 10 А тока в электромагнитной катушки рассеивается не более 0,5 Вт. Для сравнения, в симисторных устройствах сопоставимой коммутационной мощности на нагрев уходит до 15 Вт, что требует решать проблему охлаждения коммутационных шкафов.
Принцип работы и подключение 4 контактного реле на видео:
Однако электромагнитные релейные устройства имеют ряд определенных недостатков:
Релейная вычислительная машина РВМ-1 конструкции Н. И. Бессонова созданная в 1956 году
Электронные релейные устройства
В последнее время на замену аналоговым реле приходят электронные релейные устройства. Они имеют значительные преимущества в точности определения исходного напряжения, видов подаваемых нагрузок, мощности и в других рабочих параметрах. Получили широкое применение для подключения установок с большими силовыми нагрузками. Однако их высокая стоимость и низкая надежность не дают им полностью вытеснить аналоговые устройства.
Электронное релейное устройство управление насосным оборудованием
Реле времени
Принцип функционирования основан на механическом замедлении. Реализуется с применением маятников, электродвигателей или электромагнитного эффекта. При этом выдержка замедления для всех трех типов составляет: 1÷15 сек, до 24 часов, до 5 сек соответственно. Используется как для автоматизации процессов производства, так и в бытовых целях для задержки отключения освещения и т.п.
Двухканальное реле времени РЭВ-201
Тепловые/температурные релейные устройства
Принцип действия тепловых релейных приборов основан на воздействии температуры на биметаллическую пару контактных пластин, которые имеют различный коэффициент температурного расширения. Температурное воздействие может осуществляться как от тока нагрузки, так и от специально нагревателя. Тепловые релейные приборы используются, в основном, для защиты электрооборудования от перегрева.
Цифровое температурное реле TР-100
Обозначение реле на схеме
Обозначение релейных устройств различного типа на электрических схемах осуществляется в соответствии с нормативами ГОСТ 21.614-88 и частично ГОСТ 2.755-87.
Наиболее распространённые обозначения релейных устройств на принципиальных электрических схемах
Основные производители реле
Aleph International — более 30 лет на рынке электроники, электротехнических товаров и средств автоматизации. Продукция считается одной из наиболее надежных.
Axicom — подразделение швейцарской фирмы Alcatel Switzerland Ltd. с 1999 года входит в концерн Tyco Electronics. Производит чрезвычайно качественные изделия. Все предлагаемые на российском рынке релейные устройства полностью отвечают требованиям отечественных нормативов по электрической надежности и прочности диэлектриков;
Finder — Европейский производитель специализирующееся на выпуске реле и таймеров. Занимает 3 место в Европе по выпуску электромеханических релейных автоматов промышленного и бытового назначения. Вся продукция сертифицирована по стандартам ISO 9001 и ISO 14001.
NAiS под этой торговой маркой выпускается продукция компании Matsushita Electric Works (Япония). Изделия сертифицированы по стандартам ISO 9001:2000. Номенклатура продукции включает электромеханические и PhotoMOS реле, различные контроллеры и микровыключатели как для промышленного, так и для бытового использования.
Электромагнитное и электронное реле – где купить, цены
Цены на электромагнитные релейные устройства для бытового назначения варьируются в диапазоне 150÷450 руб. для коммутации тока с параметрами в пределах 8÷12 А напряжение 12÷48 В. Стоимость электронных устройств заметно выше и может изменяться в пределах от 1,5 до 5÷6 тыс. руб. в зависимости от их функциональности.
Приобретать рекомендуется либо в специализированных магазинах электроники, либо в интернет-магазинах, где предусмотрен возврат. Покупать устройства на рынках настоятельно не рекомендуется, так как даже для новых приборов там нарушаются условия хранения.
Мы будем рады получить ваши отзывы или вопросы о возможности использования релейной автоматики и опыту применения тех или иных средств.
Устройство и примеры применения реле, как выбрать и правильно подключить реле
Коммутация – это включение или выключение электроприбора в сеть. Для этого используют разъединители, выключатели, автоматические выключатели, реле, контакторы, пускатели. Последние три (реле, контактор и магнитный пускатель) подобны по своему строению, но предназначены для разных мощностей нагрузки. Это электромеханические коммутационные устройства. У новичков часто возникают вопросы типа:
«Для чего у реле столько контактов?»;
«Как заменить реле, если нет подобного по расположению выводов?»;
«Как подобрать реле?».
Я постараюсь ответить на все эти вопросы в статье.
Содержание статьи
Для чего нужно реле
Чтобы включить нагрузку нужно подать на её выводы напряжение, оно может быть постоянным и переменным, с разным количеством фаз и полюсов.
Напряжение можно подать несколькими способами:
Разъёмное соединение (вставить вилку в розетку или штекер в гнездо);
Разъединителем (как вы включаете свет в комнате, например);
Через реле, контактор, пускатель или полупроводниковый коммутационный прибор.
Первые два способа ограничены как по максимальной коммутационной мощности, так и по расположению точки подключения. Это удобно, если свет или прибор вы включаете выключателем или автоматом при этом и они расположены рядом друг с другом.
Для примера, приведу ситуацию, например водонагревательный бак (бойлер) – это достаточно мощная нагрузка (1 – 3 и более кВт). Ввод электроэнергии в коридоре, и там же на электрощите у вас расположен автомат включения бойлера, тогда вам нужно протянуть кабель сечением 2.5 кв. мм. На 3-5 метров. А если вам нужно включить такую нагрузку на большом расстоянии?
Для удаленного управления можно использовать такой же разъединитель, но чем больше расстояние – тем большим получится сопротивление кабеля, значит, нужно будет использовать кабеля с большим сечением, а это дорого. Да и если кабель оборвется – непосредственно на месте включить прибор уже не получится.
Для этого можно использовать реле, которое установлено непосредственно возле нагрузки, а включать его удаленно. Для этого не нужен толстый кабель, ведь сигнал управления обычно от единиц до десятков ватт, при этом может включаться нагрузка в несколько киловатт.
Выключатели и разъединители – нужны для ручного включения нагрузки, для того, чтобы управлять ею автоматически, нужно использовать реле или полупроводниковые приборы.
Сферы применения реле:
Схемы защиты электроустановок. Для автоматического ввода энергии защиты от низких и высоких напряжений, Реле тока – для срабатывания токовых защит, разрешения пуска электрических машин и пр.;
Для удаленного включения.
Как работает реле
Электромагнитное реле состоит из катушки, якоря и набора контактов. Набор контактов может быть разным, например:
Реле с одной парой контактов;
С двумя парами контактов (нормально-замкнутые – NC, и нормально-разомкнутые – NO);
С несколькими группами (для управления нагрузкой в независимых друг от друга цепях).
Катушка может быть рассчитана на разную величину постоянного и переменного тока, вы можете подобрать под свою схему, чтобы не использовать дополнительный источник для управления катушки. Контакты могут коммутировать как постоянный, так и переменный ток, величина тока и напряжения обычно указана на крышке реле.
Мощность нагрузки зависит от коммутационной способности аппарата обусловленного его конструкцией, на мощных электромагнитных коммутационных устройствах присутствует дугогасительная камера, для управления мощной резистивной и индуктивной нагрузкой, например электродвигателем.
Для поддержания магнитного поля в свободном пространстве затрачивается больше энергии, чем для его поддержания в магнитном веществе. В результате этого между телами, состоящими из магнитного материала, всегда существует сила притяжения, если они находятся во внешнем намагничивающем поле.
Зазор между ферромагнитными пружинными пластинками закрывается, когда намагничивающая сила превышает силу пружины, и, наоборот, открывается, когда сила пружины преобладает. Такое закрывание и открывание зазора можно использовать соответственно для замыкания и размыкания некоторой электрической цепи.
Когда на катушку реле подаётся ток, то силовые линии магнитного поля пронизывают её сердечник. Якорь изготовлен из материала, который магнитится и он притягивается к сердечнику катушки. На якоре может быть размещена контактная медная пластика и гибкая подводка (провод), тогда якорь находится под напряжением и по медным шинам подаётся напряжение на неподвижный контакт.
Напряжение подключается к катушке, магнитное поле притягивает якорь, он замыкает или размыкает контакты. Когда напряжение пропадает – якорь возвращается в нормальное состояние возвратной пружиной.
Могут быть и другие конструкции, например, когда якорь толкает подвижный контакт, и он переключается от нормального состояния к активному, это изображено на картинке ниже.
Переключающие контакты реле:
Итог: Реле позволяет малым током через катушку управлять большим током через контакты. Величина управляющего и коммутируемого (через контакты) напряжения может быть разная и не зависит друг от друга.
Таким образом мы получаем гальванически развязанное управление нагрузкой. Это даёт существенное преимущество перед полупроводниками. Дело в том, что сам по себе транзистор или тиристор он не развязан гальванически, даже более того непосредственно связан.
Токи базы это часть тока коммутируемой через эмиттер-коллектор цепи, в тиристоре, в принципе, ситуация подобна. Если PN-переход повреждается – напряжение включаемой цепи может попасть на цепь управления, если это кнопка – ничего страшного, а если это микросхема или микроконтроллер – они, скорее всего, тоже выйдут из строя, поэтому реализуется дополнительная гальваническая развязка через оптопару или трансформатор. А чем больше деталей – тем меньше надежность.
ремонтопригодность. вы можете провести ревизию большинства реле, например, подчистить контакты от нагара и оно заново заработает, а при определенной сноровке можно заменить катушку или подпаять её выводы если они оторвались от выходящих контактов;
полная гальваническая развязка силовой цепи и цепи управления;
низкое переходное сопротивление контактов.
Чем ниже сопротивление контактов, тем меньше теряется напряжения на них и меньше нагрев. Электронные реле выделяют тепло, чуть ниже я бегло расскажу о них.
из-за того, что конструкция по сути механическая – ограниченное число срабатываний. Хотя для современных реле оно доходит до миллионов срабатываний. Так что сомнительный момент недостаток.
скорость срабатывания. Электромагнитное реле срабатывает за доли секунды, в то время как полупроводниковые ключи могут переключаться миллионы раз в секунду. Поэтому нужно подходить с умом к выбору коммутационной аппаратуры.
при отклонениях от управляющего напряжения может быть дребезжание реле, т.е. состояние, когда ток через катушку мал, для нормального удержания якоря, и оно «жужжит» открываясь и закрываясь с большой скоростью. Это чревато скорым выходом его из строя. Отсюда вытекает следующее правило – для управления реле аналоговый сигнал должен подаваться через пороговые устройства, типа триггера Шмидта, компаратора, микроконтроллера и т.д.;
Щелкает при срабатывании.
Характеристики реле
Чтобы правильно подобрать реле нужно учесть ряд параметров, который описывает его особенности:
1. Напряжение срабатывания катушки. 12 В реле не будет устойчиво работать или не включится совсем если вы на его катушку подадите 5 В.
2. Ток через катушку.
3. Количество контактных групп. Реле может быть 1-канальным, т.е. содержать 1 коммутационную пару. А может и 3-канальным, что позволит подключать 4 полюса к нагрузке (например, три фазы 380В)
4. Максимальный ток через контакты;
5. Максимальное коммутируемое напряжение. У одного и того же реле оно различное для постоянного и переменного токов, например 220 В переменного и 30 В постоянного. Это связано с особенностями дугообразования при коммутации разных электроцепей.
6. Способ монтажа – клеммные колодки, вывод для клемм, пайка в плату или установка на DIN-рейку.
Электронные реле
Обычное электромагнитное реле при срабатывании щелкает, что может мешать вам при использовании таких приборов в бытовых помещениях. Электронное реле, или как его еще называют твердотельное реле, лишено этого недостатка, но оно выделяет тепло, т.к. в качестве ключа используется транзистор (для реле постоянного тока) или симистор (для реле переменного тока). Кроме полупроводникового ключа в электронном реле установлена обвязка для обеспечения возможности управления ключом нужным управляющим напряжением.
Такое реле для управления использует постоянное напряжение от 3 до 32, а коммутирует переменное от 24 до 380 В с током до 10 А.
малое потребление управляющего тока;
отсутствия шума при переключении;
больший ресурс (миллиард и больше срабатываний, а это в тысячу раз больше чем у электромагнитного).
может сгореть от перегрева;
если сгорит – отремонтировать не получится.
Как подключить реле
На картинке ниже хорошо изображена схема подключения реле к сети и нагрузке. На один из силовых контактов подключают фазу, на второй нагрузку, а ноль на второй вывод нагрузки.
Так собирается силовая часть. Цепь управления собирается так: источник питания, например аккумулятор или блок питания, если реле управляемое постоянным током, через кнопку подключается к катушке. Для управления реле переменного тока схема аналогична, на катушку подается переменное напряжение нужной величины.
Здесь очевидно, что напряжение управления никак не зависит от напряжения в нагрузке, тоже и с токами. Ниже вы видите схему управления активаторами центрального замка автомобиля с двухполярым управлением.
Задача следующая, чтобы активатор совершил движение вперед нужно подключить плюс и минус к его соленоиду, чтобы сдвинуть его назад – полярность нужно сменить. Это сделано с помощью двух реле с 5-ю контактами (нормально-замкнутый и нормально-разомкнутый).
Когда напряжение подаётся на левое реле, плюс подается на нижний провод (по схеме) активатора, через нормально-замкнутые контакты правого реле верхний провод активатора подключен к отрицательному выводу (к массе).
Когда напряжение подано на катушку правого реле, а левое обесточено, полярность получается обратной: плюс через нормально-разомкнутый контакт правого реле подаётся на верхний провод. А через нормально-замкнутые контактны правого реле – нижний провод активатора соединен с массой.
Этот частный случай я привел для примера того, что с помощью реле можно не только включать напряжение на нагрузку, но и осуществлять разнообразные схемы подключения и переполюсовки.
Подборка статей про электромагнитные пускатели:
Учебное видео про устройство реле и пускателей:
Как подключить реле к микроконтроллеру
Чтобы управлять нагрузкой переменного тока через микроконтроллер удобно использовать реле. Но возникает небольшая проблема: ток потребления реле зачастую превышает максимальный ток через пин микроконтроллера. Чтобы её решить – нужно усилить ток.
На схеме изображено подключение реле с катушкой на 12В. Здесь транзистор VT4 обратной проводимости, он играет роль усилителя тока, резистор R нужен для ограничения тока через базу (устанавливается так, чтобы ток был не более чем максимальный ток через пин микроконтроллера).
Резистор в цепи коллектора нужен для того, чтобы задать ток катушки, подбирается по величине тока срабатывания реле, в принципе, его можно исключить. Параллельно катушке установлен обратный диод VD2 – он нужен, чтобы всплески самоиндукции не убили транзистор и выход микроконтроллера. С диодом всплески отправятся в сторону источника питания, и энергия магнитного поля прекратит свою работу.
Ардуино и реле
Для любителей Arduino есть готовые релейные шилды и отдельные модули. Чтобы обезопасить выходы микроконтроллера в зависимости от конкретного модуля может быть реализована опторазвязка управляющего сигнала, что значительно увеличит надёжность схемы.
Схема подобного модуля вот:
Мы говорили о характеристиках реле, так вот они часто указаны в маркировке на передней крышке. Обратите внимание на фото релейного модуля:
10A 250VAC – значит что способно управлять нагрузкой переменного напряжения до 250В и с током до 10 А;
10A 30VDC – для постоянного тока напряжение в нагрузке не должно превышать 30В.
SRD-05VDC-SL-C – маркировка, зависит от каждого произовдителя. В ней мы видим 05VDC – это значит, что реле сработает от напряжения в 5В на катушке.
При этом у реле есть нормально открытый контакты, всего 1 подвижный контакт. Схема подключения к ардуине изображена ниже.
Подробнее про Ардуино для начинающих:
Заключение
Реле это классический коммутационный прибор который используется везде: пультах управления в щитовых промышленных цехов, в автоматике, для защиты оборудования и человека, для избирательного подключения конкретной цепи, в лифтовом оборудовании.
Начинающему электрику, электронщику или радиолюбителю очень важно научиться использовать реле и составлять схемы с ними, так вы можете применять их в работе и хозяйстве, реализуя релейные алгоритмы без применения микроконтроллеров. Это хоть и увеличит габариты, но значительно улучшит надежность схемы. Ведь надежность это не только долговечность, но и безотказность и ремонтопригодность!