Как решать кубические уравнения
Как решать кубические уравнения
Решение кубических уравнений
Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.
Решение двучленного кубического уравнения вида A x 3 + B = 0
Решение
Необходимо найти х из уравнения. Запишем:
Необходимо применить формулу сокращенного умножения. Тогда получим, что
Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0
Решение
Уравнение является возвратным. Необходимо произвести группировку. Получим, что
Ответ:
Решение кубических уравнений с рациональными корнями
Решение
3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0
A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2
Решение
Решение кубических уравнений по формуле Кардано
Полученные p и q в формулу Кардано. Получим, что
Решение
Отсюда следует, что
Производим подстановку в формулу Кордано и получим
— 343 216 3 имеет три значения. Рассмотрим их ниже.
Преобразуем при помощи формулы Кордано:
При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.
Кубические уравнения
Кубическое уравнение – уравнение вида \[<\large
где \(a\ne 0,\ b,\ c,\ d\) – некоторые числа.
для любого числа \(a\) имеют единственный корень
Пример.
\(<\color
Пример.
Сгруппируем слагаемые в левой части и разложим ее на множители: \[(5x^3-20x)-(x^2-4)=0 \quad \Leftrightarrow \quad 5x(x^2-4)-(x^2-4)=0 \quad \Leftrightarrow \quad (x^2-4)(5x-1)=0\]
В некоторых задачах полезными могут оказаться формулы сокращенного умножения:
\[\begin
Для этого можно использовать следующие утверждения:
Пример.
Подставляя по очереди каждое число в уравнение, убеждаемся, что \(x=\frac12\) является корнем (т.к. после подстановки этого числа в уравнение оно превращается в верное равенство):
\[2\cdot \left(\frac12\right)^3+5\cdot \left(\frac12\right)^2+3\cdot \frac12-3=0 \quad \Leftrightarrow \quad 0=0\]
ОДЗ: \(x\) – произвольное. Решим на ОДЗ:
ОДЗ: \(x\) – произвольное. Решим на ОДЗ:
ОДЗ: \(x\) – произвольное. Решим на ОДЗ:
ОДЗ: \(x\) – произвольное. Решим на ОДЗ:
ОДЗ: \(x\) – произвольное. Решим на ОДЗ:
Заметим, что левая часть представляет из себя куб разности: \[(2x)^3-3\cdot (2x)^2\cdot 3+3\cdot (2x)\cdot3^2-3^3=0\quad\Leftrightarrow\quad (2x-3)^3=0\quad\Leftrightarrow\quad x=\frac32.\]
Заметим, что левая часть представляет из себя куб суммы: \[(2x)^3+3\cdot (2x)^2\cdot 1+3\cdot (2x)\cdot1^2+1^3=0\quad\Leftrightarrow\quad (2x+1)^3=0\quad\Leftrightarrow\quad x=-\frac12.\]
В ЕГЭ кубические уравнения встречаются как в профильном, так и в базовом уровне. Это значит, что уметь верно решать подобные задания необходимо каждому школьнику. Некоторые могут сказать, что количество баллов в ЕГЭ за решение уравнений третьей степени невелико и тратить на них время нецелесообразно. С этим трудно согласиться. Во-первых, в ЕГЭ крайне важен каждый бал, во-вторых, уравнения третьей степени не так уж и сложны, если уделить им должное внимание в ходе подготовки. Для того чтобы учащийся мог оперативно и, главное, правильно выполнить подобные задания, стоит воспользоваться нашим образовательным ресурсом.
«Школково» — это уникальная платформа, которая позволяет выпускникам из Москвы и других регионов с любым уровнем математических знаний научиться решать кубические уравнения, а также другие виды, например, тригонометрические уравнения и эффективно подготовиться к сдаче ЕГЭ. Прежде всего мы рекомендуем вам начать с повторения или изучения теоретического материала по данной теме. «Школково» представляет вниманию учащихся из Москвы и других городов, которые готовятся к ЕГЭ, по сути, авторское пособие, в котором ясно и доступно изложен материал по теме «Кубические уравнения».
Помимо изложения основных определений и формул, вы сможете познакомиться с примерами по теме и изучить способы их решения. При этом стоит отметить, что наши специалисты подобрали весьма интересные варианты. Для того чтобы вы научились уверенно решать экзаменационные задачи, нужна тренировка. Поэтому рекомендуем вам затем перейти в раздел «Каталог» и приступить к самостоятельной работе с уравнениями третьей степени.
История и формулировки
Кубические уравнения составлялись ещё в Древней Греции и Египте. Археологами были найдены клинописные таблицы XVI века до нашей эры, содержащие описание возможного их решения. Вычислением кубов занимался Гиппократ, пытавшийся свести задачу к нахождению отрезков с помощью чертёжных инструментов. Архимед использовал для поиска ответа пересечение двух конусов.
Впервые методы решения такого рода уравнений были описаны в китайском учебнике «Математика в девяти книгах», составленном во втором столетии до нашей эры. В седьмом веке Омар Хайям на основании своих работ приходит к выводу, что решение уравнений третьей степени может иметь более одного ответа.
Математик Шараф ад-Дин публикует тракт об уравнениях, в котором описывает восемь различных типов кубических выражений, имеющих положительное решение. В своих вычислениях он использует численную аппроксимацию. Учёный не только разработал подход для решения с использованием производной функции и экстремумов, но и понял важность дискриминанта многочлена при нахождении кубов.
В 1530 году итальянский математик Никколо Тарталья разрабатывает методику решения, которой он после поделился с Джероламо Кардано. Согласно этому способу нужно было извлекать квадратный корень из отрицательного числа. Параллельно с этими исследованиями, основоположник символической алгебры Франсуа Виет, предлагает свой способ решения кубического равенства с тремя корнями. Позднее его работу описал и обосновал Рене Декарт.
Уравнением третьей степени называют выражение вида: a*y 3 + d*y 2 + c*y + n = 0. В математике оно называется кососимметрическим. Число y, значение которого необходимо найти, при подстановке превращает формулу в тождество. Называется оно корнем уравнения или просто решением. Кроме этого, y ещё является и корнем многочлена куба.
Таким образом, в кубических уравнениях стоит только одна переменная в третьей степени. Они всегда имеют три корня. При этом ответы могут быть равны друг другу и даже быть комплексными (но не более двух).
Формула квадратного уравнения
Используется при решении простейшего равенства методом разложения кубического уравнения на множители. Когда последний член равен нулю, решить такую задачу можно по методу квадратных уравнений. При n = 0, уравнение примет вид :
a*y 3 + d*y 2 + c*y + n = 0.
В полученном выражении каждый член представлен произведением на неизвестное, поэтому переменную y можно вынести за скобки: y*(d*y 2 + c) = 0. Уравнение в скобках является классическим квадратным, которое можно решать несколькими способами:
При выборе первого варианта разложение выполняют следующим образом. Например, необходимо решить равенство вида: *y 2 — 11*y — 16 = 0. Квадратный член можно записать в виде двух множителей: 3*y и y. Поэтому их можно записать сразу как произведение в скобках: (3 * + n) * (y + n) = 0. Так как определённый член можно записать в виде произведения 2*2 или 1*4, то формулу можно представить как (3 *y +1) * (y — 16).
Если раскрыть скобки, то получится равенство 3*y 2 — 12 *y + y + 16. Решением (-12*y + y) будет (-11*y). Как раз тот член, который нужен. Используя же произведение 2*2 — искомый член найти не получится.
Равенство раскладывают на два множителя: (3*y +1) (х — 16) = 0. Согласно аксиоме произведение двух членов равно нулю только тогда, когда хотя бы один из них равен нулю. Приравняв каждое выражение в скобках к нулю, можно записать два равенства: 3*y + 1 = 0 и y — 16 = 0. При решении каждого из них получится два ответа: y = 1/3 и y = 16.
Для проверки результата необходимо оба возможных решения подставить в формулу. Так как для квадратного уравнения существует только два решения, а для кубического три, то в этом случае третьим ответом будет ноль. Поэтому решением уравнения будет три корня: 0, 1/3, 16.
Разложение на множители
Если определённый член не равен нулю, то посчитать игрек при помощи квадратных уравнений невозможно. В этом случае используется метод разложения на свободные множители. Например, 2 * y 3 + 9 * y 2 +13 * y + 6 = 0. Чтобы разложить кубическое уравнение на множители и определить неизвестное, придерживаются следующего порядка:
Вычисление рационального числа операция долгая и требующая внимания. Поэтому для быстрого нахождения ответа используется деление по схеме Горнера. По этой схеме выполняют деление целых цифр на коэффициенты всех членов равенства. Если в ответе получается только целая часть, то эти числа считаются вариантами решения. Таким методом можно находить и иррациональные выражения.
Использование дискриминанта
Дискриминант степенного выражения представляет произведение квадратов разностей корней в различных сочетаниях. Другими словами, берут пару, состоящую из любых корней уравнения, вычитают друг из друга и возводят в квадрат. Это и будет один множитель. Затем берут другую пару и повторяют действия. Таким образом, перебирают все варианты.
Затем находят дельта один. Δ1 = 2 * d 3 — 9 * a * d * c + 27 * a 2 * n. Подставив значения в формулу, вычисляют Δ1:
Используя найденное, по аналогии с квадратичным равенством находят дискриминант: d 2 — 4 * a * c. Применительно к кубическому виду применяется правило, что показатель отрицательный, когда уравнение может иметь только одно решение. Если же его значение равно нулю — одно или два. Уравнение кубического вида всегда должно иметь хотя бы одно решение, так как его график должен проходить через ось икс.
Так как в примере дельта-ноль и один равны нулю, то можно использовать следующее выражение:
Исходя из этого, уравнение имеет два решения. Вычислив С, можно определить возможные решения уравнения. Заменив по мере необходимости дельты, решается равенство:
C = ((Δ 1 2 — 4 Δ 0 3 ) +Δ) / 2) ½ = (((0 — 0) + 0)/2) ½ = 0.
Корни куба определяются по формуле: u n C + Δ0/(u n C)) / 3*a, где u = (-1 + √(-3))/2, а n равно одному, двум или трём. Если подставить эти значения в равенство, и оно будет верным, то эта цифра и является возможным решением уравнения. Этот способ показательный, но довольно сложный. Но если его понять, то проблем с решением уравнений любой сложности возникнуть не должно.
Теорема Виета и двучлен
Выражение вида: a*y 3 + d = 0 называется двухчленным или неполным уравнением. Для его решения нужно равенство привести к виду: y 3 + d/a = 0. Затем используя формулу сокращённого умножения для суммы кубов можно записать:
(y + 3 √ d/a) * (y 2 − ( 3 √ d/a)* y + 3 √ (d/a) 2 ) = 0.
Из первого множителя и находят значение игрека. Оно будет равно 3 √ d/a, ведь второй множитель — это квадратный трёхчлен с корнями комплексного вида.
Для проверки рациональных равенств удобно применять теорему Виета. Согласно ей корни уравнения связаны с коэффициентами выражениями:
Используя теорему, некоторые уравнения можно решить даже устно. Например, y 3 + 2y — 24 = 0. Решение выполняется в следующей последовательности:
Частным случаем применения теоремы являются тригонометрические формулы для кубического равенства:
Теорему Виета можно использовать и для наивысшей, четвёртой степени, при которой ещё существует аналитическое решение.
Подробный онлайн-калькулятор
Вычисление корней требует внимательности и усердия. Чтобы быстро находить решение, нужно не только знание теории, но и практические занятия. Конечно же, знать формулы и уметь решать уравнения нужно самому.
Но при самостоятельном вычислении существует вероятность допущения ошибки. Поэтому на помощь приходят своего рода решебники-онлайн. Они умеют не только точно и быстро определять корни равенства, но и показывать подробное вычисление. Благодаря этому можно не просто получить правильный ответ, но и разобраться в решении, понять различные нюансы, проверить свои знания.
Из наиболее популярных интернет-порталов, позволяющих найти корни кубического уравнения онлайн, можно выделить: mathforyou. net, allcalc.ru, wedmath.ru, kontrolnaya-radota.ru. Воспользоваться такими сайтами-решателями сможет любой пользователь, даже не имеющий представление о методах решения уравнений.
Для этого нужно просто заполнить предлагаемые на странице поля и нажать кнопку «Рассчитать» или «Решить». Калькулятор сам на основании запрограммированных формул, чаще всего по методу Вието — Кардано, выполнит расчёт и выведет на экран ответ. Кроме этого, будет предложено подробное решение с описанием. На этих сайтах также можно посмотреть и примеры решений, формулы, теоремы.
Решения кубических уравнений с вещественными коэффициентами. Универсальные методы. Дискриминант кубического уравнения. Формула Виета для кубического уравнения.
Решения кубических уравнений с вещественными коэффициентами. Универсальные методы. Дискриминант кубического уравнения. Формула Виета для кубического уравнения.
Кубическим уравнением называется уравнение вида
Мы рассмотрим случай, когда коэффициенты являются веществеными числами.
Корни кубического уравнения. Нахождение корней (решение) кубического уравнения.
Число х называется корнем кубического уравнения (1), если при его подстановке уравнение (1) обращается в верное равенство.
Итак, возможны только 3 следующих случая:
К такому виду можно привести любое кубическое уравнение вида (1) с помощью следующей замены:
Итак, приступим к вычислению корней. Найдем следующие величины:
Дискриминант уравнения (2) в этом случае равен
Соответственно, если Q>0, то уравнения (2) и (1) будут иметь лишь 1 (вещественный) корень, y1. Подставим его в (3) и найдем х для уравнения (1). (если вас интересуют также мнимые корни, то просто вычислите еще и y2, y3 и подставьте их в (3).
Если Q 3 + ax 2 + bx +c = 0 (4)
Очевидно, любое уравнение вида (1) можно привести к виду (4), просто поделив его на коэффициент а.
Итак, алгоритм применения этой формулы:
3. a) Если S>0, то вычисляем
И наше уравнение имеет 3 корня (вещественных):
Для тех, кого интересуют также и мнимые корни:
в) Если S=0,то уравнение имеет меньше трех различных решений:
Консультации и техническая
поддержка сайта: Zavarka Team
Решение кубических уравнений
Время чтения: 12 минут
Кубическим называют уравнение, в котором только одна переменная представлена в третьей степени. Такие выражения в любом случае имеют от одного до трех корней. Значения, которые получаются при решении таких уравнений, могут быть равными друг другу или комплексными, если их не более двух.
Решение кубических уравнений – это решение уравнений, имеющих вид: \[\boldsymbol+b y^<2>+c y+d=0>\].
В уравнении такого типа a не равно 0, вместо b,c,d могут быть любые однозначные числа.
Данный вид уравнения имеет как минимум один корень – y1.
Решение таких равнений может осуществляться разными способами. Оно может преобразовываться в стандартное квадратное уравнение. В таком случае предстоит выбрать один из трех вариантов решения квадратного уравнения:
Решение кубических уравнений может осуществляться посредством формулы Кардано, а также теоремы Виета. Теорема Виета применяется для решения последней, четвертой степени.
Решение кубических уравнений с двумя членами
Уравнение будет иметь вид: \[\boldsymbol+b=0>\]
Для решения необходимо преобразовать его: \[y^<3>=b / a=0\]
Деление на a предполагает вместо нее любую цифру, кроме 0. После преобразования можно применить формулы для решения кубических уравнений, например, сокращенного умножения суммы кубов:
(y+ 3 √b/a)(y 2 — 3 √b/a*y+ 3 √(b/a) 2 )=0
В результате из первой скобки выводим:
во второй скобке получаем выражение – трехчлен:
Методы решения кубических уравнений возвратного вида
Алгоритм решения кубического уравнения возвратного вида отличается от предыдущего, так как оно выглядит следующим образом:
В этом уравнении переменные a и b – это коэффициенты.
Первым делом при решении таких уравнений в математике выполняется группировка:
В полученном выражении корень равен y=-1. Исходя из этого, чтобы получить корень квадратного трехчлена ay 2 +y(b-a)+a, потребуется найти дискриминант.
Дискриминант – произведение квадратов разностей корней в различных вариаций.
Решение кубических уравнений в составе которых рациональные корни
Предположим, что y=0. В этом случае он будет корнем уравнения, которое выглядит следующим образом:
При условии, что в уравнении свободные члены, d=0. Преобразуем уравнение и получим:
Решение кубических уравнений такого вида предполагает вынесение y за скобку. В итоге получается уравнение вида:
Рассмотрим на конкретном примере, как решить кубическое уравнение с подробным решением:
Решение:
Первым делом стоит упростить уравнение.
Получим уравнение вида:
y=0, так как является корнем выражения.
Следующий шаг – поиск корней квадратного трехчлена 5y 2 +2y+4, который мы получили после упрощения. Для поиска приравняем к нулю и будем использовать дискриминант.
В ходе решения кубического уравнения с дискриминантом получим:
Так как в ответе мы получили отрицательное значение, корней у данного трехчлена нет, значит x=0.
Если в уравнениях вида ay 3 +by 2 +cy+d=0 коэффициентами являются целые числовые значения, то при решении таких уравнений и нахождении его значения мы может получить иррациональные корни.
В случае, когда a не равно 0, при умножении на a 2 каждой составляющей уравнения происходит замещение переменных, и получается: x=ay
Каждую составляющую выражения умножаем на a 2 :
a 3 *y 3 +b*a 2 *y 2 +c*a*a*y+d*a 2 =0
Учитывая, что решение кубических уравнений с подробным решением предполагает замещение переменных x=ay, то:
x 2 +b*x 2 +c*a*x+d*a 2
Полученное уравнение является кубическим. В таких уравнениях корни могут быть разными – и целыми, и рациональными. Чтобы привести такое уравнение к тождественному равенству, потребуется подставить делители в полученное равенство. В этом случае полученный x1 будет корнем, и в то же время корнем начального уравнения:
Чтобы найти значение корней квадратного трехчлена, потребуется многочлен ay3+by2+cy+d разделить на y-y1.
Рассмотрим решение кубических уравнений такого вида на примере.
Пример:
Решить уравнение \[x 3-3 x 2-13 x+15=0\].
Решение:
Ищем первый корень перебором чисел: \[0, \pm1, \pm2, \pm3, \pm5, \pm15\] и подстановкой в уравнение. В результате находим, что 1 является корнем. Тогда делим левую часть этого уравнения на двухчлен x-1 и получаем:
Теперь, решая квадратное уравнение: \[x 2-2 x-15=0\], находим оставшиеся два корня: x1=-3 и x2=5.
Решение кубического уравнения с помощью формулы Кардано
Есть еще один способ — формула Кардано для решения кубических уравнений.
Выведенные значение Z и P подставим в формулу Кардано.
X= 3 √-P/2+√P 2 /4+Z 3 /27+ 3 √-P/2-+√P2/4+Z3/27
В итоге подбор кубических корней должен соответствовать значению –Z/3. В этом случае корни исходного уравнения будут выглядеть следующим образом:
Применить формулу Кордано можно на примере для наглядности.
Решить уравнение \[x^<3>+6 x^<2>+3 x-10=0\]
Данное уравнение легко решается и без применения формулы Кардано. Легко подобрать корень \[x=1\]. Делением \[x=1\] левой части уравнения по схеме Горнера получаем:
Следовательно, \[x^<2>+7 x+10=0\]. Решая это квадратное уравнение, получаем
А теперь найдем корни исходного уравнения по формуле Кардано. Для данного уравнения \[a=1, b=6, c=3, d=-10\]. Замена переменной \[x=y-\frac<3 a>=y-\frac<6><3>=y-2\] приводит исходное уравнение к виду \[y^<3>+p y+q=0\], где:
Вычислим дискриминант этого уравнения:
Так \[\Delta \] каноническое уравнение имеет 3 действительных корня. Поскольку \[q=0 \Rightarrow \varphi=\frac<\pi><2>=>\]
В данном случае для корней начального уравнения мы получим:
Нет времени решать самому?
Наши эксперты помогут!
Общее решение кубического уравнения, если известен один из корней
За исходное уравнение возьмем следующее:
Предположим, что a,b,c являются действительными цифровыми значениями. Известный корень пометим, как y1. В таком случае, если произвести деление начального уравнения y 3 +ay 2 +by+c=0 на y-y1 получим квадратное уравнение. При решении такого уравнения удастся найти еще два корня – y2 и y3.
Чтобы доказать это, преобразуем кубический многочлен следующим образом:
При решении таких уравнений часто допускаются ошибки. Их решение – это сложное, многократное преобразование, которое требует точного знания формул и математических законов. Чтобы избежать ошибок и погрешностей, потребуется применить не только практические навыки, но и теоретические знания. Для решения кубических уравнений можно использовать специальный онлайн калькулятор. Принцип его действия основан на формуле Кардано. В том случае, если один или несколько коэффициентов такого уравнения равны нулю, или между ними присутствует определенная зависимость, решение будет более простым.
Чтобы научиться решать подобные уравнения, необходимо рассматривать примеры и тренироваться на их решении разными способами.
Кубические уравнения. Метод деления в столбик. Примеры *
Эффективное решение существует!
После того, как вы нашли необходимые формулы и теорию для ЕГЭ по математике, рекомендуем вам перейти в раздел «Каталоги» и закрепить полученные знания на практике. Для этого достаточно выбрать задачу по данной теме и решить ее. Кроме того, справочные материалы по математике для ЕГЭ пригодятся вам и для других естественнонаучных дисциплин, таких как физика, химия и т. д.
Определение
Рассмотрим произвольное уравнение вида
\[a_nx^n+a_
Замечание
Теорема
Следствие: количество корней уравнения
Любое алгебраическое уравнение степени \(n\) может иметь не более \(n\) корней.
Замечание
В частности, квадратное уравнение действительно имеет всегда не более двух корней: два, один (или два совпадающих) или ни одного корня.
Для того, чтобы найти частное от деления одного многочлена на другой, удобно пользоваться следующим способом, который мы рассмотрим на примере.
Пример
Решение.
Будем делить многочлен на многочлен в столбик. Запишем
Рассуждая аналогично, определяем, что третье слагаемое в частном должно быть \(-x\)
Четвертое слагаемое в частном должно быть \(-3\) :
Замечание
Теорема
Доказательство
Пример
Теорема
Доказательство
1) Пусть \(n\) – четное. Подставим \(x=-1\) :
\(a_n\cdot (-1)^n+a_
2) Случай, когда \(n\) – нечетное, доказывается аналогично.
Пример
В уравнении \(x^3+2x^2-8x+5=0\) сумма коэффициентов равна нулю:
Значит, число \(x=1\) является корнем данного уравнения.
Можно разделить в столбик \(x^3+2x^2-8x+5\) на \(x-1\) :
Таким образом мы нашли все корни исходного уравнения.
Пример
Можно разделить в столбик \(x^3-x^2+x+3\) на \(x+1\) :
Замечание
Подбор корней таким образом, деление в столбик и разложение многочлена на множители помогают найти корни уравнения.
Существует еще одна очень важная теорема, позволяющая подобрать рациональный корень алгебраического уравнения, если таковой имеется.
Теорема
Если алгебраическое уравнение
Пример
\[\pm 1, \ \pm \dfrac12, \ \pm 3, \ \pm\dfrac32\]
По предыдущим теоремам можно быстро понять, что \(\pm1\) не являются корнями. Подставив \(x=-\dfrac12\) в уравнение, получим:
\[2\cdot \dfrac1<16>+5\cdot \dfrac18-\dfrac 14+5\cdot \dfrac12-3=0 \quad \Leftrightarrow \quad 0=0\]
Значит, число \(x=-\frac12\) является корнем уравнения.
\[\left(x+\frac12\right)(x-3)\cdot Q_2(x)=0 \quad \text<или>\quad (2x+1)(x-3)\cdot P_2(x)=0\] (тогда \(P_2(x)=\frac12 Q_2(x)\) ). Заметим, что второй вид записи уравнения более удобный, т.к. нам не придется при делении в столбик работать с дробями.
После деления в столбик \(2x^4-5x^3-x^2-5x-3\) на \((2x+1)(x-3)=2x^2-5x-3\) :
Замечание
Пример
Заметим, что в данном уравнении не все коэффициенты – целые числа (коэффициент при \(x\) равен \(-\frac<23>6\) ). Но мы можем преобразовать данное уравнение к нужному нам виду: необходимо умножить правую и левую части уравнения на \(6\) :
\[\pm 1, \ \pm \dfrac12, \ \pm \dfrac13, \ \pm \dfrac 16, \ \pm\dfrac18, \ \pm2, \ \pm\dfrac23, \ \pm \dfrac14, \ \pm3\quad \text<\small<и т.д.>>\]
Теорема
Любой многочлен \(P_n(x)=a_nx^n+a_
Следствие
Кубическое уравнение \(Ax^3+Bx^2+Cx+D=0\) всегда имеет как минимум один вещественный корень, т.к. его левую часть всегда можно представить как
Замечание
Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?
Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.
Кубическое уравнение
Например, Введите a=1, b=8, c=16
3 + bx 2 + cx + d = 0
Формула кубического уравнения:
Кубическое уравнение:
ax 3 + bx 2 + cx + d = 0,
где,
Формула:
term1 и r13 формула:
q = (3c — b 2 ) / 9
r = (-27d + b(9c — 2b 2 )) / 54
discriminant(Δ) = q 3 + r 2
r13 = 2 * √ (q)
Если discriminant(Δ) > 0 term1 = (b/3.0)
еще
Пример:
Вычислить корни (x1, x2, x3) уравнения третьей степени, x 3 — 4x 2 — 9x + 36 = 0
Шаг 1:
Из приведенного выше уравнения, значение a = 1, b = — 4, c = — 9 и d = 36.
Шаг 2:
Найдем значения q и r
Шаг 3:
Найдем значение дискриминанта, обозначается как знак дельта (Δ)
discriminant(Δ)= q 3 + r 2
Значение дискриминанта меньше 0
Шаг 4:
Найдем term1 и r13
r13 = 2 * √ 4.77778 = 4.371626
Шаг 5:
Подставляем значения term1 и r13 в формулу кубического уравнения
x1 = 1.33333 + 4.371626 x cos(4.77778 3 / 3) = 4
Шаг 6:
Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!
Кубические уравнения в школе
ПЕРВУШКИН БОРИС НИКОЛАЕВИЧ
ЧОУ «Санкт-Петербургская Школа «Тет-а-Тет»
Учитель Математики Высшей категории
Как решать кубические уравнения
3 метода: Решение при помощи формулы для решения квадратного уравнения. Нахождение целых решений при помощи разложения на множители. Использование дискриминанта.
Кубические уравнения имеют вид ax 3 + bx 2 + cx + d = 0. Способ решения таких уравнений известен уже несколько столетий (он был открыт в 16 веке итальянскими математиками). Решить некоторые кубические уравнения довольно сложно, но при правильном подходе (и хорошем уровне теоретических знаний) вы сможете решать даже самые сложные кубические уравнения.
Метод 1 из 3: Решение при помощи формулы для решения квадратного уравнения
1. Проверьте, имеет ли данное вам кубическое уравнение свободный член. Как отмечалось выше, кубические уравнения имеют вид ax 3 + bx 2 + cx + d = 0, где коэффициенты «b», «с» и «d» могут быть равны 0, то есть кубическое уравнение может состоять только из одного члена (с переменной в третьей степени). Сначала проверьте, имеет ли данное вам кубическое уравнение свободный член, то есть «d». Если свободного члена нет, вы можете решить данное кубическое уравнение при помощи формулы для решения квадратного уравнения.
Если свободный член есть, используйте другой метод решения (смотрите следующие разделы).
2. Так как в данном уравнении свободного члена нет, то все члены этого уравнения содержат переменную «х», которую можно вынести за скобки: x ( ax 2 + bx + c ).
3. Обратите внимание, что уравнение в скобках – это квадратное уравнение вида ax 2 + bx + c, которое можно решить при помощи формулы ( <-b +/-√ ( b 2 — 4 ac )>/2 a ). Решите квадратное уравнение, и вы решите кубическое уравнение.
4. Помните, что квадратные уравнения имеют два решения, а кубические – три решения. Вы нашли два решения квадратного, а следовательно и кубического уравнения. В случаях, когда вы выносите «х» за скобки, третье решение всегда равно 0.
Это верно, так как любое число или выражение, умноженное на 0, равно 0. Так как вы вынесли «х» за скобки, то вы разложили кубическое уравнение на два множителя («х» и квадратное уравнение), один из которых должен быть равен 0, чтобы все уравнение равнялось 0.
Метод 2 из 3: Нахождение целых решений при помощи разложения на множители
1. Проверьте, имеет ли данное вам кубическое уравнение свободный член. Описанный в предыдущем разделе метод не годится для решения кубических уравнений, в которых присутствует свободный член. В этом случае вам придется воспользоваться методом, который описан в этом или следующем разделах.
2. Найдите множители коэффициента «а» (коэффициент при x 3 ) и свободного члена «d». Множители числа – это числа, которые при перемножении дают исходное число. Например, множителями числа 6 являются числа 1, 2, 3, 6 (1*6 = 6 и 2*3 = 6).
3. Разделите множители коэффициента «а» на множители свободного члена «d». Вы получите дроби и целые числа. Целым решением данного вам кубического уравнения будет либо одно из этих целых чисел, либо отрицательное значение одного из этих целых чисел.
Деление по схеме Горнера – непростая тема; для получения дополнительной информации по ней перейдите по ссылке, указанной выше. Вот пример того, как найти одно из решений данного вам кубического уравнения при помощи деления по схеме Горнера:
Метод 3 из 3: Использование дискриминанта
1. В этом методе вы будете работать со значениями коэффициентов «а», «b», «с», «d». Поэтому лучше выписать значения этих коэффициентов заранее.
2. Вычислите Δ0 = b 2 — 3 ac . В этом методе потребуется провести несколько сложных вычислений, но если вы уясните его, вы сможете решать самые сложные кубические уравнения.
В нашем примере:
В нашем примере:
В нашем примере Δ0 = 0 и Δ1 = 0, поэтому найти Δ не составит труда.
0 = Δ, поэтому данное вам уравнение имеет одно или два решения.
5. Вычислите C = 3 √(√((Δ1 2 — 4Δ0 3 ) + Δ1)/ 2). Эта величина позволит вам найти корни кубического уравнения.
В нашем примере:
6. Корни (решения) кубического уравнения вычисляются по формуле ( b + u n C + (Δ0/ u n C )) / 3 a , где u = (-1 + √(-3))/2, а n равно либо 1, либо 2, либо 3.
Как решать кубические уравнения
Обычно кубические уравнения решают именно так: подбирают один корень, выполняют деление уголком, после чего остаётся решить только квадратное уравнение. А что делать, если у нас уравнение четвёртой степени? Тогда придётся подбирать корень два раза. После подбора первого корня и деления останется кубическое уравнение, у которого надо будет подобрать ещё один корень. Возникает вопрос. Что делать, если такие «простые» числа как `+-1`, `+-2` не являются корнями уравне ния? Неужели тогда надо перебирать всевозможные числа? Ответ на этот вопрос даёт следующее утверждение.
Умножим обе части на `q^n`, получаем:
Перенесём в правую часть, а из оставшихся слагаемых вынесем `p` за скобки:
Справа и слева в (14) записаны целые числа. Левая часть делится на `p=>` правая часть также делится на `p`. Числа `p` и `q` взаимно просты (т. к. дробь `p//q` несократимая), откуда следует, что `a_0 vdotsp`.
Аналогично доказывается, что `a_n vdotsq`. Теорема доказана.
Как правило, предлагаемые вам уравнения имеют целые корни, поэтому в большинстве задач используется следующее: если у многочлена с целыми коэффициентами есть целые корни, то они являются делителями свободного члена.
а) `x^4+4x^3-102x^2-644x-539=0`; (15)
б) `6x^4-35x^3+28x^2+51x+10=0`. (16)
Поэтому `p` может принимать значения:
Подстановкой убеждаемся, что `x=-1` является корнем уравнения. Разделим многочлен в левой части (15) уголком на `x+1` и получим:
Далее подбираем корни у получившегося многочлена третьей степени. Получаем `x=-7`, а после деления на `(x+7)` остаётся `(x+1)(x+7)(x^2-4x-77)=0`. Решая квадратное уравнение, находим окончательное разложение левой части на множители:
1) После того, как найден первый корень, лучше сначала выполнить деление уголком, и только потом приступать к поиску последующих корней. Тогда вычислений будет меньше.
2) В разложении многочлена на множители множитель `(x+7)` встретился дважды. Тогда говорят, что `(–7)` является корнем кратности два. Аналогично говорят о корнях кратности три, четыре и т. д.
б) Если уравнение имеет рациональный корень `x_0=p/q`, то `10vdotsp`, `6vdotsq`, т. е. `p in<+-1;+-2;+-5;+-10>`; `qin<1;2;3;6>`.Возможные варианты для `x_0`:
Начинаем перебирать числа из этого списка. Первым подходит число `x=5/2`. Делим многочлен в левой части (16) на `(2x-5)` и получаем
Решаем квадратное уравнение: `x^2-4x-1=0 iff x=2+-sqrt5`.
К сожалению, уравнения не всегда имеют рациональные корни. Тогда приходится прибегать к другим методам.
Разложите на множители:
а) `x^4+4=x^4+4x^2+4-4x^2=(x^2+2)^2-(2x)^2=`
Таким образом, сумму четвёртых степеней, в отличие от суммы квадратов, можно разложить на множители:
в) Вынесем `x^2` за скобки и сгруппируем:
Обозначим `x+2/x=t`. Тогда `x^2+4+4/x^2=t^2`, `x^2+4/x^2=t^2-4`, выражение в скобках принимает вид:
В итоге получаем:
Этот приём иногда используется для решения уравнений четвёртой степени; в частности, с его помощью решают возвратные уравнения (см. пример 12 е).
г)* Можно убедиться, что никакой из рассмотренных выше методов не помогает решить задачу, а именно: рациональных корней уравнение не имеет (числа `+-1` и `+-2` – не корни); вынесение числа `x^2` за скобки и группировка слагаемых приводит к выражению
Если здесь обозначить `4x-13/x=t`, то `x^2-2/x^2` через `t` рационально не выражается.
Прибегнем к методу неопределённых коэффициентов. Пусть
Попробуем подобрать коэффициенты `a`, `b`, `c`, `d` так, чтобы (17) обратилось в верное равенство. Для этого раскроем скобки в правой части и приведём подобные слагаемые:
Приравняем в (18) коэффициенты при одинаковых степенях в обеих частях уравнения. Получим систему уравнений:
Мы будем пытаться найти целочисленные решения системы (19). Найти все решения системы (19) не проще, чем решить исходную задачу, однако нахождение целочисленных решений – разумеется, если они есть – нам по силам.
Рассмотрим четвёртое уравнение. Возможны только два принципиально различных случая:
2) `b=2` и `d=-1`. Рассмотрим каждый из них. Подставляем значения `b` и `d` в первые три уравнения:
Из первого и третьего уравнений системы получаем `c=5/3`; `a=-17/3`, что не удовлетворяет второму уравнению, поэтому система решений не имеет; пара чисел `b=1` и `d=-2` не подходит.
Эта система имеет одно решение `a=-7`, `c=3`. Значит, числа `a=-7`, `b=2`, `c=3`, `d=-1` являются решением системы (19), поэтому
Далее каждый из квадратных трёхчленов можно разложить на множители.
Во многих ситуациях степень уравнения можно понизить с помощью замены переменных.
Решение кубических уравнений — методы и примеры вычислений
Всё, что окружает человека, в какой-то мере связано с математикой. Пожалуй, не одно значимое открытие в физике, химии не обходится без составления формул. Особое место при расчётах занимают кубические уравнения. Решение практических задач очень важно, поэтому необходимо уметь проводить вычисления. Существуют различные подходы, позволяющие довольно быстро найти ответ. Поэтому нужно не только знать принцип решения, но и правильно подобрать метод.
История и формулировки
Кубические уравнения составлялись ещё в Древней Греции и Египте. Археологами были найдены клинописные таблицы XVI века до нашей эры, содержащие описание возможного их решения. Вычислением кубов занимался Гиппократ, пытавшийся свести задачу к нахождению отрезков с помощью чертёжных инструментов. Архимед использовал для поиска ответа пересечение двух конусов.
Впервые методы решения такого рода уравнений были описаны в китайском учебнике «Математика в девяти книгах», составленном во втором столетии до нашей эры. В седьмом веке Омар Хайям на основании своих работ приходит к выводу, что решение уравнений третьей степени может иметь более одного ответа.
Математик Шараф ад-Дин публикует тракт об уравнениях, в котором описывает восемь различных типов кубических выражений, имеющих положительное решение. В своих вычислениях он использует численную аппроксимацию. Учёный не только разработал подход для решения с использованием производной функции и экстремумов, но и понял важность дискриминанта многочлена при нахождении кубов.
В 1530 году итальянский математик Никколо Тарталья разрабатывает методику решения, которой он после поделился с Джероламо Кардано. Согласно этому способу нужно было извлекать квадратный корень из отрицательного числа. Параллельно с этими исследованиями, основоположник символической алгебры Франсуа Виет, предлагает свой способ решения кубического равенства с тремя корнями. Позднее его работу описал и обосновал Рене Декарт.
Уравнением третьей степени называют выражение вида: a*y 3 + d*y 2 + c*y + n = 0. В математике оно называется кососимметрическим. Число y, значение которого необходимо найти, при подстановке превращает формулу в тождество. Называется оно корнем уравнения или просто решением. Кроме этого, y ещё является и корнем многочлена куба.
Таким образом, в кубических уравнениях стоит только одна переменная в третьей степени. Они всегда имеют три корня. При этом ответы могут быть равны друг другу и даже быть комплексными (но не более двух).
Формула квадратного уравнения
Используется при решении простейшего равенства методом разложения кубического уравнения на множители. Когда последний член равен нулю, решить такую задачу можно по методу квадратных уравнений. При n = 0, уравнение примет вид :
a*y 3 + d*y 2 + c*y + n = 0.
В полученном выражении каждый член представлен произведением на неизвестное, поэтому переменную y можно вынести за скобки: y*(d*y 2 + c) = 0. Уравнение в скобках является классическим квадратным, которое можно решать несколькими способами:
При выборе первого варианта разложение выполняют следующим образом. Например, необходимо решить равенство вида: *y 2 — 11*y — 16 = 0. Квадратный член можно записать в виде двух множителей: 3*y и y. Поэтому их можно записать сразу как произведение в скобках: (3 * + n) * (y + n) = 0. Так как определённый член можно записать в виде произведения 2*2 или 1*4, то формулу можно представить как (3 *y +1) * (y — 16).
Если раскрыть скобки, то получится равенство 3*y 2 — 12 *y + y + 16. Решением (-12*y + y) будет (-11*y). Как раз тот член, который нужен. Используя же произведение 2*2 — искомый член найти не получится.
Равенство раскладывают на два множителя: (3*y +1) (х — 16) = 0. Согласно аксиоме произведение двух членов равно нулю только тогда, когда хотя бы один из них равен нулю. Приравняв каждое выражение в скобках к нулю, можно записать два равенства: 3*y + 1 = 0 и y — 16 = 0. При решении каждого из них получится два ответа: y = 1/3 и y = 16.
Для проверки результата необходимо оба возможных решения подставить в формулу. Так как для квадратного уравнения существует только два решения, а для кубического три, то в этом случае третьим ответом будет ноль. Поэтому решением уравнения будет три корня: 0, 1/3, 16.
Разложение на множители
Если определённый член не равен нулю, то посчитать игрек при помощи квадратных уравнений невозможно. В этом случае используется метод разложения на свободные множители. Например, 2 * y 3 + 9 * y 2 +13 * y + 6 = 0. Чтобы разложить кубическое уравнение на множители и определить неизвестное, придерживаются следующего порядка:
Вычисление рационального числа операция долгая и требующая внимания. Поэтому для быстрого нахождения ответа используется деление по схеме Горнера. По этой схеме выполняют деление целых цифр на коэффициенты всех членов равенства. Если в ответе получается только целая часть, то эти числа считаются вариантами решения. Таким методом можно находить и иррациональные выражения.
Использование дискриминанта
Дискриминант степенного выражения представляет произведение квадратов разностей корней в различных сочетаниях. Другими словами, берут пару, состоящую из любых корней уравнения, вычитают друг из друга и возводят в квадрат. Это и будет один множитель. Затем берут другую пару и повторяют действия. Таким образом, перебирают все варианты.
Затем находят дельта один. Δ1 = 2 * d 3 — 9 * a * d * c + 27 * a 2 * n. Подставив значения в формулу, вычисляют Δ1:
Используя найденное, по аналогии с квадратичным равенством находят дискриминант: d 2 — 4 * a * c. Применительно к кубическому виду применяется правило, что показатель отрицательный, когда уравнение может иметь только одно решение. Если же его значение равно нулю — одно или два. Уравнение кубического вида всегда должно иметь хотя бы одно решение, так как его график должен проходить через ось икс.
Так как в примере дельта-ноль и один равны нулю, то можно использовать следующее выражение:
Исходя из этого, уравнение имеет два решения. Вычислив С, можно определить возможные решения уравнения. Заменив по мере необходимости дельты, решается равенство:
C = ((Δ 1 2 — 4 Δ 0 3 ) +Δ) / 2) ½ = (((0 — 0) + 0)/2) ½ = 0.
Корни куба определяются по формуле: u n C + Δ0/(u n C)) / 3*a, где u = (-1 + √(-3))/2, а n равно одному, двум или трём. Если подставить эти значения в равенство, и оно будет верным, то эта цифра и является возможным решением уравнения. Этот способ показательный, но довольно сложный. Но если его понять, то проблем с решением уравнений любой сложности возникнуть не должно.
Теорема Виета и двучлен
Выражение вида: a*y 3 + d = 0 называется двухчленным или неполным уравнением. Для его решения нужно равенство привести к виду: y 3 + d/a = 0. Затем используя формулу сокращённого умножения для суммы кубов можно записать:
(y + 3 √ d/a) * (y 2 − ( 3 √ d/a)* y + 3 √ (d/a) 2 ) = 0.
Из первого множителя и находят значение игрека. Оно будет равно 3 √ d/a, ведь второй множитель — это квадратный трёхчлен с корнями комплексного вида.
Для проверки рациональных равенств удобно применять теорему Виета. Согласно ей корни уравнения связаны с коэффициентами выражениями:
Используя теорему, некоторые уравнения можно решить даже устно. Например, y 3 + 2y — 24 = 0. Решение выполняется в следующей последовательности:
Частным случаем применения теоремы являются тригонометрические формулы для кубического равенства:
Теорему Виета можно использовать и для наивысшей, четвёртой степени, при которой ещё существует аналитическое решение.
Подробный онлайн-калькулятор
Вычисление корней требует внимательности и усердия. Чтобы быстро находить решение, нужно не только знание теории, но и практические занятия. Конечно же, знать формулы и уметь решать уравнения нужно самому.
Но при самостоятельном вычислении существует вероятность допущения ошибки. Поэтому на помощь приходят своего рода решебники-онлайн. Они умеют не только точно и быстро определять корни равенства, но и показывать подробное вычисление. Благодаря этому можно не просто получить правильный ответ, но и разобраться в решении, понять различные нюансы, проверить свои знания.
Из наиболее популярных интернет-порталов, позволяющих найти корни кубического уравнения онлайн, можно выделить: mathforyou. net, allcalc.ru, wedmath.ru, kontrolnaya-radota.ru. Воспользоваться такими сайтами-решателями сможет любой пользователь, даже не имеющий представление о методах решения уравнений.
Для этого нужно просто заполнить предлагаемые на странице поля и нажать кнопку «Рассчитать» или «Решить». Калькулятор сам на основании запрограммированных формул, чаще всего по методу Вието — Кардано, выполнит расчёт и выведет на экран ответ. Кроме этого, будет предложено подробное решение с описанием. На этих сайтах также можно посмотреть и примеры решений, формулы, теоремы.
Решения кубических уравнений с вещественными коэффициентами. Универсальные методы.
Решения кубических уравнений с вещественными коэффициентами. Универсальные методы.
Кубическим уравнением называется уравнение вида
Мы рассмотрим случай, когда коэффициенты являются веществеными числами.
Корни кубического уравнения.
Число х называется корнем кубического уравнения (1), если при его подстановке уравнение (1) обращается в верное равенство.
Итак, возможны только 3 следующих случая:
К такому виду можно привести любое кубическое уравнение вида (1) с помощью следующей замены:
Итак, приступим к вычислению корней. Найдем следующие величины:
α = (-q/2 + Q 1/2 ) 1/3
Дискриминант уравнения (2) в этом случае равен
Соответственно, если Q>0, то уравнения (2) и (1) будут иметь лишь 1 (вещественный) корень, y1. Подставим его в (3) и найдем х для уравнения (1). (если вас интересуют также мнимые корни, то просто вычислите еще и y2, y3 и подставьте их в (3).
Если Q 3 + ax 2 + bx +c = 0 (4)
Очевидно, любое уравнение вида (1) можно привести к виду (4), просто поделив его на коэффициент а.
Итак, алгоритм применения этой формулы:
3. a) Если S>0, то вычисляем
И наше уравнение имеет 3 корня (вещественных):
Линейные, квадратные и кубические уравнения
На этой странице вы узнаете:
Понятие уравнения
Главный секрет математики в том, что любую задачу можно решить уравнением. А решить уравнение – значит найти все его корни или доказать, что их нет.
Давай разберемся как это сделать.
Уравнение – это равенство, содержащее неизвестное, обозначенное буквой.
Корнем уравнения называется такое значение неизвестного, при котором уравнение становится верным равенством.
Например, число 8 будет корнем уравнения 2x — 3 = 5 + x, потому что равенство 2 * 8 — 3 = 5 + 8 верное.
Почему неизвестное обозначают через x? Арабские математики в IX веке для записи формул использовали слова. Неизвестную величину они называли “шей”, что буквально Арабские математики в IX веке для записи формул использовали слова. Неизвестную величину они называли “шей”, что буквально означает “нечто”. Выглядело это примерно так: Позднее испанские ученые переводили записи на свой язык. Они записывали неизвестное как xei, поскольку в их языке отсутствовал звук [ш]. С появлением формул слово сократилось до одной буквы x. |
Линейные уравнения
Что же такое линейное уравнение?
Линейное уравнение – это уравнение, в котором неизвестная находится в степени 1.
Вид линейного уравнения:
Стоит отметить, что а и b в таком уравнение известны, также оба этих числа можно называть коэффициентами.
Как же решить такое уравнение?
Для решения линейного уравнения нужно выразить х и найти числовое значение, то есть сделать такие преобразования, чтобы в одной части уравнения осталась только неизвестная, а в другой собралось все остальное.
Преобразования, которые можно совершать:
x — 5 = 0
x = 0 + 5
x = 5
Давайте рассмотрим решение линейного уравнения на следующем примере
2(x + 5) — 4x + 2 = 0
Значение неизвестной найдено, а значит единственное решение данного уравнения 6
С линейными уравнениями можно столкнуться и в жизни.
Допустим, нам нужно приготовить 570 грамм теста на пирожки.
Обозначим вес одной части за x. Составим и решим уравнение для получения этого количества теста:
12x + 6x + x = 570
19x = 570
x = 30
Мы узнали, что одна часть — это 30 грамм. Теперь посчитаем сколько грамм продуктов нам потребуется.
Квадратные уравнения
Мы уже знаем, что такое линейное уравнение. Но как же выглядит квадратное?
Квадратное уравнение – это уравнение, в котором неизвестная находится в степени 2.
Вид квадратного уравнения:
Стоит отметить, что а, b и с – известные числа.
Какими бывают квадратные уравнения?
Эти виды квадратных уравнений отличаются тем, что у полного квадратного уравнения есть оба коэффициента и свободный член, а у неполного может отсутствовать или второй коэффициент, или свободный член.
Решение несколько неполных квадратных уравнений на примере:
Полное квадратное уравнение может иметь 2 корня, 1 корень или не иметь корней. Количество корней зависит от дискриминанта
Что такое дискриминант?
Дискриминант в квадратном уравнении — это выражение, которое ищется по следующей формуле, где а, b и с берутся из уравнения:
D = b 2 — 4 ⋅ a ⋅ c
Как дискриминант может повлиять на количество корней уравнения? Если D > 0, то уравнение имеет 2 корня. Дискриминант нужен не только для определения количества корней, но и для их нахождения одним из способов. Способы решения квадратных уравнений: Корни квадратного уравнения находятся по этим формулам, где а и b берутся из уравнения, а D – это дискриминант: По теореме Виета корни нужно подбирать, поэтому она удобна для нахождения рациональных корней. Данная теорема заключается в связывании корней уравнения и коэффициентов многочлена системой двух уравнений. |
где а, b и с – коэффициенты квадратного уравнения
x1 и x2 – корни квадратного уравнения
Давайте рассмотрим решение квадратного уравнения на следующем примере
1 способ:
D = (-5) 2 — 4 ⋅ 2 ⋅ (-3) = 25 + 24 = 49
2 способ:
Кубические уравнения
Перейдем к последнему виду уравнений. Что же такое кубическое уравнение и как оно выглядит?
Кубическое уравнение – это уравнение, в котором неизвестная находится в степени 3.
Вид кубического уравнения:
ax 3 + bx 2 + cx + d = 0, где
х — неизвестная
а, b и с – коэффициенты при неизвестной
d – свободный член
Стоит отметить, что а, b, с и d – известные числа.
Преобразования, которые можно совершать в кубических уравнениях:
Вынесение общего множителя за скобки.
Вынесение общего множителя за скобки можно сравнить с делением фруктов в обеих тарелках на одинаковые части и вынесением такой части в отдельную тарелку.
Алгоритм:
x 3 — 2x 2 — 3x = x * x * x — 2 * x * x — 3 * x = x * (x 2 — 2x — 3)
Группировка
Алгоритм:
6x 3 + 9x 2 + 8x + 12 = (6x 3 + 9x 2 ) + (8x + 12) = 3x 2 * (2x + 3) + 4 * (2x + 3) =
= (3x 2 +4) * (2x+3)
Рассмотрим решение кубического уравнения
4x + x 3 = x 2 + 4
4x + x 3 — x 2 — 4 = 0
(4x + x 3 ) — (x 2 + 4) = 0
x * (4 + x 2 ) — (x 2 + 4) = 0
(x — 1) * (4 + x 2 ) = 0
Из этого следует, что у данного уравнения есть только одно решение x=1
Фактчек
Проверь себя
Задание 1.
Найдите корень уравнения (2x + 4) ⋅ 3 — 2x = 0
Задание 2.
Сколько корней будет у уравнения x 2 + x — 2 = 0?
Задание 3.
Найдите корни уравнения x 2 + 4x — 5 = 0
Задание 4.
Найдите корни уравнения x 2 — 5x = 0
Задание 5.
Найдите корни уравнения 12x + 4 — 12x 3 — 4x 2 =0
«Решение уравнений высших степеней». 9-й класс
Разделы: Математика
Класс: 9
Оборудование: компьютер, проектор.
1 этап работы. Организационный момент.
2 этап работы. Мотивация и выход на постановку проблемы
Уравнение одно из важнейших понятий математики. Развитие методов решения уравнений, начиная с зарождения математики как науки, долгое время было основным предметом изучения алгебры.
В школьном курсе изучения математики очень много внимания уделяется решению различного вида уравнений. До девятого класса мы умели решать только линейные и квадратные уравнения. Уравнения третьей, четвёртой и т.д. степеней называются уравнениями высших степеней. В девятом классе мы познакомились с двумя основными приёмами решения некоторых уравнений третьей и четвёртой степеней: разложение многочлена на множители и использование замены переменной.
А можно ли решить уравнения более высоких степеней? На этот вопрос мы постараемся сегодня найти ответ.
3 этап работы. Повторить ранее изученный материал. Ввести понятие уравнения высших степеней.
1) Решение линейного уравнения.
Линейным называется уравнение вида , где
по определению. Такое уравнение имеет единственный корень
.
2) Решение квадратного уравнения.
Квадратным называется уравнение вида , где
. Количество корней и сами корни определяются дискриминантом уравнения
. Для
уравнение корней не имеет, для
имеет один корень (два одинаковых корня)
, для
имеет два различных корня
.
Из рассмотренных линейных и квадратных уравнений видим, что количество корней уравнения не более его степени. В курсе высшей алгебры доказывается, что уравнение -й степени
имеет не более n корней. Что касается самих корней, то тут ситуация намного сложнее. Для уравнений третьей и четвёртой степеней известны формулы для нахождения корней. Однако эти формулы очень сложны и громоздки и практического применения не имеют. Для уравнений пятой и более высоких степеней общих формул не существует и существовать не может (как было доказано в XIX в. Н. Абелем и Э. Галуа).
Будем называть уравнения третьей, четвёртой и т.д. степеней уравнениями высших степеней. Некоторые уравнения высоких степеней удаётся решить с помощью двух основных приёмов: разложением многочлена на множители или с использованием замены переменной.
3) Решение кубического уравнения.
Решим кубическое уравнение
Сгруппируем члены многочлена, стоящего в левой части уравнения, и разложим на множители. Получим:
Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три линейных уравнения:
Итак, данное кубическое уравнение имеет три корня: ;
;
.
4) Решение биквадратного уравнения.
Очень распространены биквадратные уравнения, которые имеют вид (т.е. уравнения, квадратные относительно
). Для их решения вводят новую переменную
.
Решим биквадратное уравнение .
Введём новую переменную и получим квадратное уравнение
, корнями которого являются числа
и 4.
Вернёмся к старой переменной и получим два простейших квадратных уравнения:
(корни
и
)
(корни
и
)
Итак, данное биквадратное уравнение имеет четыре корня:
;
;
.
Попробуем решить уравнение используя выше изложенные приёмы.
4 этап работы. Привести некоторые утверждения о корнях многочлена вида , где
многочлен n-й степени
Приведём некоторые утверждения о корнях многочлена вида :
1) Многочлен -й степени
имеет не более
корней (с учётом их кратностей). Например, многочлен третьей степени не может иметь четыре корня.
2) Многочлен нечётной степени имеет хотя бы один корень. Например, многочлены первой, третьей, пятой и т.д. степени имеют хотя бы один корень. Многочлены чётной степени корней могут и не иметь.
4) Если число является корнем многочлена вида
, то этот многочлен можно представить в виде произведения
, где
многочлен (
-й степени. Другими словами, многочлена вида
можно разделить без остатка на двучлен
. Это позволяет уравнение
-й степени сводить к уравнению (
-й степени (понижать степень уравнения).
5) Если уравнение со всеми целыми коэффициентами (причём свободный член
) имеет целый корень
, то этот корень является делителем свободного члена
. Такое утверждение позволяет подобрать целый корень многочлена (если он есть).
Пример 1. Решим уравнение .
Таким образом, мы фактически разложили левую часть уравнения на множители:
Произведение множителей равно нулю, если один из множителей равен нулю. Получаем два уравнения:
Итак, данное уравнение имеет три корня:
Пример 2. Решим уравнение .
Если это уравнение имеет целый корень, то он является делителем свободного члена (9),т.е. равняется одному из чисел: ;
. Проверим:
Значит, многочлен можно представить в виде произведения
, т.е. многочлен
можно без остатка разделить на двучлен
. Выполним такое деление “уголком”:
Таким образом, мы разложили левую часть уравнения на множители:
Аналогичным образом поступим и с многочленом .
Если это уравнение имеет целый корень, то он является делителем свободного члена (9), т.е. равняется одному из чисел:
;
. Проверим:
Значит, многочлен можно представить в виде
произведения , т.е. многочлен
можно без остатка разделить на двучлен
. Выполним такое деление “уголком”:
Таким образом, мы разложили левую часть исходного уравнения на множители:
Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три уравнения:
Итак, данное уравнение имеет четыре корня:
6 этап работы. Закрепление изученного материала.
Решите уравнения высших степеней, используя способ деления многочлена на многочлен “уголком”.
7 этап работы. Вывод урока.
8 этап работы. Домашнее задание.
Дома решить уравнения высших степеней, используя способ деления многочлена на многочлен “уголком” (раздать листы с заданиями).
Линейные, квадратные, кубические уравнения
Линейные уравнения
Перенесем неизвестные слагаемые в левую часть уравнения, а известные в правую. При переносе из одной части в другую, у слагаемого меняется знак на противоположный.
Приведем подобные слагаемые.
Квадратные уравнения
Решение неполных квадратных уравнений
2. Решаем получившиеся уравнения каждое отдельно.
Вынесем х как общий множитель за скобки:
Приравняем каждый множитель к нулю и найдем корни уравнения.
$х_1 = 0 х_2 = 1,25$
При решении последнего уравнения возможны два случая:
2. $D = 0$. В данном случае решение даёт два двукратных корня:
Извлечем кубический корень из обеих частей
Соберем известные слагаемые в правой части
Дробно рациональные уравнения
Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.
Чтобы решить дробное уравнение, необходимо:
1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
2. находим общий знаменатель дробей и умножаем на него обе части уравнения
3. решаем полученное уравнение
При решении уравнения с двумя дробями можно использовать основное свойство пропорции.
Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
Воспользуемся основным свойством пропорции
Раскроем скобки и соберем все слагаемые в левой части уравнения
Решим данное квадратное уравнение первым устным способом, т.к.
О решении неполного кубического уравнения
Intro
Я публикую этот топик как обучающий. Собственно говоря, существенной новизны в материале нет, тема заезжена. Думаю, что интересным будет подход к решению задачи.
Помню, на первом курсе на занятиях по математическому анализу пришел в голову один интеграл. Преподаватель вызвал к доске, но прозвенел звонок. По дороге домой в автобусе сложился «скелет» решения кубического уравнения. Общая схема, конечно, не самая рациональная. Есть более эффективная — тригонометрическая формула Виета. Там сразу выписывается корень по виду уравнения, а, вообще, по объему вычислений все-таки лучше использовать численный метод Ньютона, поскольку степенные ряды для обратных тригонометрических функций сходятся медленно (по ним строятся вычисления таких функций в некоторых библиотеках). Вот что получилось.
1. Исходный интеграл и кубическое уравнение
Нужно найти неопределенный интеграл
Применяя метод неопределенных коэффициентов, представим знаменатель подынтегральной функции как
откуда получаем нелинейную систему алгебраических уравнений относительно неизвестных коэффициентов, для решения которой требуется найти положительный корень неполного кубического уравнения
Исследуя функцию в левой части уравнения на монотонность, можно выяснить, что она имеет максимум
Тогда из непрерывности функции следует, что исходное уравнение имеет три действительных корня, причем два отрицательных и один положительный, принадлежащий отрезку
,
.
Найдем его.
2. Поиск положительного решения
Заметим, что наше уравнение не имеет рациональных корней.
Начнем со следующего тождества, справедливость которого, наверное, многие доказывали в школе:
Преобразуем его к виду
Тогда решение кубического уравнения сводится к решению системы
причем (по условию положительности корня).
От данной системы перейдем к системе
По сути в (1) записана теорема Виета для квадратного уравнения
Дискриминант здесь отрицательный, казалось бы, можно закончить решение, но нам требуется не действительность и
, а действительность их суммы. В этом помогут комплексные числа.
Тригонометрическая форма записи корней квадратного уравнения имеет вид
,
где — мнимая единица.
Может возникнуть вопрос: в системе (1) первое уравнение было получено возведением обеих частей в куб, не вызовет ли это появление дополнительных комплексных корней? Нет, поскольку если выразить через
в исходной системе, то получится уже рассмотренное квадратное уравнение. При выражении
через
имеем тоже самое. Это и доказывает справедливость последней совокупности.
Извлечем кубический корень из и
по правилу извлечения корней из комплексных чисел. Получим
где
Выберем такую пару и
, чтобы их сумма в мнимой части комплексного числа давала 0, а действительная часть была бы отрицательной. При этом будем использовать формулы приведения (если требуется найти остальные корни уравнения, то лучше использовать формулы преобразования суммы тригонометрических функций в произведение), а также учтем, что угол
принадлежит первой четверти. Тогда
Откуда искомый корень
Если использовать тригонометрическую формулу Виета, то полученный корень запишется в более простой форме
Возникает вопрос: почему я не использовал формулу Кардано? Ведь в школах нам говорили, что для решения кубических уравнений используют ее. По своей форме она похожа на то, что сейчас проделал — в итоге придется извлекать кубический корень из комплексного числа. Кстати, именно при решении уравнений третьей степени комплексные числа впервые получили свое применение.
Замечу, что для выяснения состава корней кубического уравнения используют понятие дискриминанта (как и в случае квадратного уравнения). Вообще, понятие дискриминанта в алгебре введено для многочленов произвольной степени.
2. Пример физической задачи с кубическим уравнением
В журнале «Квант» мне как-то раз попалась интересная задачка по физике с выходом на решение кубического уравнения. Суть в следующем. Нужно определить, какую максимальную скорость может развить автомобиль массой
(вместе с человеком) при известной наибольшей мощности
двигателя?
При наибольшей скорости автомобиля его ускорение равно нулю, поскольку производная функции обращается в ноль в точке экстремума. Хотя оно равно нулю и при движении с постоянной скоростью. Тогда можно сказать так: какую максимальную постоянную скорость автомобиль может развить?
На больших скоростях пренебрегать сопротивлением воздуха уже нельзя, при этом сила лобового сопротивления выражается не по закону Стокса, а по квадратичному закону, поскольку скорость движения достаточно велика. Тогда сила тяги двигателя уравновешивается силой сопротивления воздуха и силами трения качения и скольжения, возникающими между шиной колеса автомобиля и дорожным полотном:
где — суммарный коэффициент трения,
— ускорение свободного падения,
— коэффициент аэродинамического сопротивления,
— площадь лобового сечения автомобиля, откуда и получаем неполное кубическое уравнение.
3. Вопросы и ответы
При прочтении топика у читателя могли возникнуть вопросы. Например, такие:
1. Почему автор не рассматривал полного кубического уравнения? Ответ: полное кубическое уравнение сводится к неполному заменой
где — новая переменная,
— коэффициент при
,
— коэффициент при
.
2. В начале топика был рассмотрен многочлен четвертой степени. Есть ли методы, позволяющие аналитически разрешать такие уравнения? Ответ: да, существует метод Феррари.
3. По теореме Абеля-Руффини уравнение, выше четвертой степени, не разрешимо в радикалах. А тут получается корень кубического уравнения, содержащий тригонометрические функции, который, скорее всего, нельзя выразить через радикалы, как так? Ответ: в формулировке теоремы имеется в виду общая запись корня, т.е. корни могут извлекаться и из комплексных чисел при подстановке в формулы коэффициентов уравнения.
4. После Эвариста Галуа были ли попытки получения формул корней уравнения произвольной степени? Ответ: не так давно мне попался на глаза русский перевод книги американского математика Дэвида Мамфорда «Лекции о тэта-функциях» (Мир, 1988). Там в качестве добавления приведена работа Хироси Умемура «Решение алгебраических уравнений с помощью тэта-констант», где заменяется функция извлечения корня другой функцией — модулярной функцией Зигеля, выражаемой через тэта-константы. В этой работе также освещена история исследования данного вопроса после Галуа.
5. Как я понимаю, такие формулы не применимы для использования в практических задачах решения уравнений произвольной степени. Есть ли какие-нибудь современные работы с описанием алгоритмов получения приближенных корней? Ответ: советую книгу Г.П. Кутищева «Решение алгебраических уравнений произвольной степени: Теория, методы, алгоритмы» (URSS, 2010).
6. Существуют ли современные модификации численного метода Ньютона, являющегося на сегодняшний день основным для получения приближенных решений уравнений и систем уравнений? Ответ: можно посмотреть статью Janak Raj Sharma, Rangan Kumar Guha и Rajni Sharma «An efficient fourth order weighted-Newton method for systems of nonlinear equations».
7. Имеются ли какие-нибудь частные случаи уравнений высокой степени, для которых удалось получить аналитические формулы корней? Ответ: корень Бринга для поиска действительного решения уравнения пятой степени и формула Лоуренса Глассера для неполных уравнений произвольной степени.
В заключении для начинающих рекомендую книгу С.Л. Табачникова и Д.Б. Фукса «Математический дивертисмент» (МЦНМО, 2010).
Кубические уравнения (страница 2)
Кубическое уравнение – уравнение вида \[<\large
где \(a\ne 0,\ b,\ c,\ d\) – некоторые числа.
для любого числа \(a\) имеют единственный корень
Пример.
\(<\color
Пример.
Сгруппируем слагаемые в левой части и разложим ее на множители: \[(5x^3-20x)-(x^2-4)=0 \quad \Leftrightarrow \quad 5x(x^2-4)-(x^2-4)=0 \quad \Leftrightarrow \quad (x^2-4)(5x-1)=0\]
В некоторых задачах полезными могут оказаться формулы сокращенного умножения:
\[\begin
Для этого можно использовать следующие утверждения:
Пример.
Подставляя по очереди каждое число в уравнение, убеждаемся, что \(x=\frac12\) является корнем (т.к. после подстановки этого числа в уравнение оно превращается в верное равенство):
\[2\cdot \left(\frac12\right)^3+5\cdot \left(\frac12\right)^2+3\cdot \frac12-3=0 \quad \Leftrightarrow \quad 0=0\]
Решение кубических уравнений, формулы и примеры
Время на чтение: 14 минут
История и формулировки
Кубические уравнения составлялись ещё в Древней Греции и Египте. Археологами были найдены клинописные таблицы XVI века до нашей эры, содержащие описание возможного их решения. Вычислением кубов занимался Гиппократ, пытавшийся свести задачу к нахождению отрезков с помощью чертёжных инструментов. Архимед использовал для поиска ответа пересечение двух конусов.
Впервые методы решения такого рода уравнений были описаны в китайском учебнике «Математика в девяти книгах», составленном во втором столетии до нашей эры. В седьмом веке Омар Хайям на основании своих работ приходит к выводу, что решение уравнений третьей степени может иметь более одного ответа.
Математик Шараф ад-Дин публикует тракт об уравнениях, в котором описывает восемь различных типов кубических выражений, имеющих положительное решение. В своих вычислениях он использует численную аппроксимацию. Учёный не только разработал подход для решения с использованием производной функции и экстремумов, но и понял важность дискриминанта многочлена при нахождении кубов.
В 1530 году итальянский математик Никколо Тарталья разрабатывает методику решения, которой он после поделился с Джероламо Кардано.
Согласно этому способу нужно было извлекать квадратный корень из отрицательного числа.
Параллельно с этими исследованиями, основоположник символической алгебры Франсуа Виет, предлагает свой способ решения кубического равенства с тремя корнями. Позднее его работу описал и обосновал Рене Декарт.
Уравнением третьей степени называют выражение вида: a*y 3 + d*y 2 + c*y + n = 0. В математике оно называется кососимметрическим. Число y, значение которого необходимо найти, при подстановке превращает формулу в тождество. Называется оно корнем уравнения или просто решением. Кроме этого, y ещё является и корнем многочлена куба.
Таким образом, в кубических уравнениях стоит только одна переменная в третьей степени. Они всегда имеют три корня. При этом ответы могут быть равны друг другу и даже быть комплексными (но не более двух).
Формула квадратного уравнения
Используется при решении простейшего равенства методом разложения кубического уравнения на множители. Когда последний член равен нулю, решить такую задачу можно по методу квадратных уравнений. При n = 0, уравнение примет вид :
a*y 3 + d*y 2 + c*y + n = 0.
В полученном выражении каждый член представлен произведением на неизвестное, поэтому переменную y можно вынести за скобки: y*(d*y 2 + c) = 0. Уравнение в скобках является классическим квадратным, которое можно решать несколькими способами:
При выборе первого варианта разложение выполняют следующим образом. Например, необходимо решить равенство вида: *y 2 — 11*y — 16 = 0. Квадратный член можно записать в виде двух множителей: 3*y и y.
Поэтому их можно записать сразу как произведение в скобках: (3 * + n) * (y + n) = 0.
Так как определённый член можно записать в виде произведения 2*2 или 1*4, то формулу можно представить как (3 *y +1) * (y — 16).
Если раскрыть скобки, то получится равенство 3*y 2 — 12 *y + y + 16. Решением (-12*y + y) будет (-11*y). Как раз тот член, который нужен. Используя же произведение 2*2 — искомый член найти не получится.
Равенство раскладывают на два множителя: (3*y +1) (х — 16) = 0. Согласно аксиоме произведение двух членов равно нулю только тогда, когда хотя бы один из них равен нулю. Приравняв каждое выражение в скобках к нулю, можно записать два равенства: 3*y + 1 = 0 и y — 16 = 0. При решении каждого из них получится два ответа: y = 1/3 и y = 16.
Для проверки результата необходимо оба возможных решения подставить в формулу. Так как для квадратного уравнения существует только два решения, а для кубического три, то в этом случае третьим ответом будет ноль. Поэтому решением уравнения будет три корня: 0, 1/3, 16.
Но проще и нагляднее всего использовать второй вариант. Формула корней кубического уравнения имеет вид: y = ((-d + (d 2 — 4*a*c) ½ ) / 2*a и y = ((-d — (d 2 — 4*a*c) ½ ) / 2*a.
Дробное решение и отрицательное будет являться корнями кубического равенства.
Разложение на множители
Если определённый член не равен нулю, то посчитать игрек при помощи квадратных уравнений невозможно. В этом случае используется метод разложения на свободные множители. Например, 2 * y 3 + 9 * y 2 +13 * y + 6 = 0. Чтобы разложить кубическое уравнение на множители и определить неизвестное, придерживаются следующего порядка:
Вычисление рационального числа операция долгая и требующая внимания. Поэтому для быстрого нахождения ответа используется деление по схеме Горнера. По этой схеме выполняют деление целых цифр на коэффициенты всех членов равенства. Если в ответе получается только целая часть, то эти числа считаются вариантами решения. Таким методом можно находить и иррациональные выражения.
Чтобы освоить способ Горнера, необходимо тщательно в нём разобраться. Способ заключается в делении коэффициентов многочлена без учёта степенных показателей. Вычитание заменяется сложением как при делении в столбик.
Использование дискриминанта
Дискриминант степенного выражения представляет произведение квадратов разностей корней в различных сочетаниях. Другими словами, берут пару, состоящую из любых корней уравнения, вычитают друг из друга и возводят в квадрат. Это и будет один множитель. Затем берут другую пару и повторяют действия. Таким образом, перебирают все варианты.
Затем находят дельта один. Δ1 = 2 * d 3 — 9 * a * d * c + 27 * a 2 * n. Подставив значения в формулу, вычисляют Δ1:
Используя найденное, по аналогии с квадратичным равенством находят дискриминант: d 2 — 4 * a * c.
Применительно к кубическому виду применяется правило, что показатель отрицательный, когда уравнение может иметь только одно решение. Если же его значение равно нулю — одно или два.
Уравнение кубического вида всегда должно иметь хотя бы одно решение, так как его график должен проходить через ось икс.
Так как в примере дельта-ноль и один равны нулю, то можно использовать следующее выражение:
Исходя из этого, уравнение имеет два решения. Вычислив С, можно определить возможные решения уравнения. Заменив по мере необходимости дельты, решается равенство:
C = ((Δ 1 2 — 4 Δ 0 3 ) +Δ) / 2) ½ = (((0 — 0) + 0)/2) ½ = 0.
Корни куба определяются по формуле: u n C + Δ0/(u n C)) / 3*a, где u = (-1 + √(-3))/2, а n равно одному, двум или трём. Если подставить эти значения в равенство, и оно будет верным, то эта цифра и является возможным решением уравнения. Этот способ показательный, но довольно сложный. Но если его понять, то проблем с решением уравнений любой сложности возникнуть не должно.
Теорема Виета и двучлен
Выражение вида: a*y 3 + d = 0 называется двухчленным или неполным уравнением. Для его решения нужно равенство привести к виду: y 3 + d/a = 0. Затем используя формулу сокращённого умножения для суммы кубов можно записать:
(y + 3 √ d/a) * (y 2 − ( 3 √ d/a)* y + 3 √ (d/a) 2 ) = 0.
Из первого множителя и находят значение игрека. Оно будет равно 3 √ d/a, ведь второй множитель — это квадратный трёхчлен с корнями комплексного вида.
Для проверки рациональных равенств удобно применять теорему Виета. Согласно ей корни уравнения связаны с коэффициентами выражениями:
Используя теорему, некоторые уравнения можно решить даже устно. Например, y3 + 2y — 24 = 0. Решение выполняется в следующей последовательности:
Частным случаем применения теоремы являются тригонометрические формулы для кубического равенства:
В зависимости от знака S применяется одна из следующих формул : φ = (arcos (R/Q 3/2 ))/3 и φ = (arcos (ЇRЇ/Q 3/2 ))/3.
А второе при S https://nauka.club/matematika/reshenie-kubicheskikh-uravneniy.html
Решение кубического уравнения
Уравнение представляет собой равенство, содержащее букву, значение которой нужно найти. Для обозначение неизвестных чисел наиболее часто пользуются буквами х, у, z. Кубическое уравнение — уравнение 3-го порядка вида: ax3 + bx2 + cx + d = 0, где a не равно 0.
Решить уравнение означает найти такие значения числа х, подстановка которых в уравнение дает верное равенство. Число х будет корнем уравнения.
В кубическом уравнении 3 корня, которые могут быть как вещественными, так и комплексными. Как минимум один из них является действительным корнем.
Простейшим случаем таких уравнений является двучленное кубическое уравнение вида Ах3 + В = 0. Для решения такого уравнения необходимо:
Уравнение вида Ах3 + Вх2 + Вх + А = 0 называется возвратным кубическим уравнением, А и В — коэффициенты.
Кубические уравнения с рациональными корнями
Пусть х, равное 0, будет корнем уравнения Ах3 + Вх2 + Сх + D = 0, тогда свободный член D будет равен 0, а уравнение примет вид: Ах3 + Вх2 + Сх = 0.
Выносим х за скобки, получаем уравнение: х (Ах2 + Вх + С) = 0. Корни полученного квадратного трехчлена находим через дискриминант.
Выбираем значение кубических корней, чтобы их произведение равнялось — р / 3. Корни исходного уравнения будут равняться: х = у — В1 / 3.
Быстро найти корни кубического уравнения вы можете при помощи онлайн калькулятора.
Алгебраические уравнения и способы их решения. Уравнения третьей и четвертой степени
Что делать, если вам – например, на Профильном ЕГЭ по математике – встретилось не квадратное уравнение, а кубическое? Или даже уравнение четвертой степени? Ведь для уравнений третьей, четвертой и более высоких степеней нет таких простых формул, как для квадратного уравнения.
В этой статье – способы решения сложных алгебраических уравнений. Замена переменной, использование симметрии и даже деление многочлена на многочлен.
Равносильными называются уравнения, множества решений которых совпадают. Другими словами, у них одни и те же корни.
Если приводить обе части к одному знаменателю, получим уравнение четвертой степени. Вряд ли мы с ним справимся.
Сделаем замену Тогда
С новой переменной уравнение стало проще:
Умножим обе части на 10t. Получим квадратное уравнение:
Не будем спешить раскрывать скобки. Ведь раскрыв их, мы получили бы уравнение четвертной степени.
Обычное квадратное уравнение. Замечательно!
Решая уравнения и особенно неравенства, мы будем постоянно пользоваться знаками системы и совокупности. Мы записываем решения в виде цепочки равносильных переходов. Для сложных уравнений и неравенств это единственный способ прийти к ответу и не запутаться.
5. Решите уравнение
Разложить левую часть на множители с первой попытки не удается.
Оказывается, если уравнение третьей (четвертой, пятой…) степени имеет целые корни, то находятся они среди делителей свободного члена (слагаемого, не содержащего x). В данном случае – среди целых делителей числа 24.
Немного непривычно, да? Потренируйтесь – у вас получится!
Разложить на множители? Но как? И замена не видна сразу. Посмотрим на уравнение внимательно. Его коэффициенты: 1, — 5, 4, — 5, 1.
Такое уравнение называется симметрическим.
Кубическое уравнение — это… Что такое Кубическое уравнение?
Куби́ческое уравне́ние — алгебраическое уравнение третьей степени, канонический вид которого
Для графического анализа кубического уравнения в декартовой системе координат используется кубическая парабола.
Любое кубическое уравнение канонического вида можно привести к более простому виду:
поделив его на и подставив в него замену При этом коэффициенты будут равны:
Корни уравнения
Число x, обращающее уравнение в тождество, называется корнем или решением уравнения. Оно является также корнем многочлена третьей степени, стоящего в левой части канонической записи.
Над полем комплексных чисел, согласно основной теореме алгебры, кубическое уравнение всегда имеет 3 корня (с учётом кратности).
Так как каждый вещественный многочлен нечётной степени имеет хотя бы один вещественный корень, все возможные случаи состава корней кубического уравнения исчерпывается тремя, описанными ниже. Эти случаи легко различаются с помощью дискриминанта
Итак, возможны только три случая:
Решение кубических уравнений: примеры, метод Виета-Кардано
Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.
Решение двучленного кубического уравнения вида Ax3+B=0
Результат первой скобки примет вид x=-BA3, а квадратный трехчлен — x2-BA3x+BA23, причем только с комплексными корнями.
Раскроем первую скобку и получим x=3326. Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.
Ответ: x=3326.
Решение возвратного кубического уравнения вида Ax3+Bx2+Bx+A=0
Вид квадратного уравнения — Ax3+Bx2+Bx+A=0, где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что
Корень уравнения равен х=-1, тогда для получения корней квадратного трехчлена Ax2+xB-A+A необходимо задействовать через нахождение дискриминанта.
Решить уравнение вида 5×3-8×2-8x+5=0.
Решение
Уравнение является возвратным. Необходимо произвести группировку. Получим, что
Решение кубических уравнений с рациональными корнями
Если х=0, то он является корнем уравнения вида Ax3+Bx2+Cx+D=0. При свободном члене D=0 уравнение принимает вид Ax3+Bx2+Cx=0. При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид xAx2+Bx+C=0.
Х=0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3×2+4x+2. Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что
D=42-4·3·2=-8. Так как его значение отрицательное, то корней трехчлена нет.
Ответ: х=0.
Когда коэффициенты уравнения Ax3+Bx2+Cx+D=0 целые, то в ответе можно получить иррациональные корни. Если A≠1, тогда при умножении на A2 обеих частей уравнения проводится замена переменных, то есть у=Ах:
Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y1 будет являться корнем. Значит и корнем исходного уравнения вида x1=y1A. Необходимо произвести деление многочлена Ax3+Bx2+Cx+D на x-x1. Тогда сможем найти корни квадратного трехчлена.
Отсюда видим, что у=-1 – это корень. Значит, x=y2=-12.
Далее следует деление 2×3-11×2+12x+9 на x+12 при помощи схемы Горнера:
2 | -11 | 12 | 9 | |
-0.5 | 2 | -11+2·(-0.5)=-12 | 12-12·(-0.5)=18 | 9+18·(-0.5)=0 |
После чего необходимо найти корни квадратного уравнения вида x2-6x+9. Имеем, что уравнение следует привести к виду x2-6x+9=x-32, где х=3 будет его корнем.
Ответ: x1=-12, x2,3=3.
Решение кубических уравнений по формуле Кардано
Нахождение кубических корней возможно при помощи формулы Кардано. При A0x3+A1x2+A2x+A3=0 необходимо найти B1=A1A0, B2=A2A0, B3=A3A0.
-3432163 имеет три значения. Рассмотрим их ниже.
При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.
Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter
Решения кубических уравнений с вещественными коэффициентами. Универсальные методы. Дискриминант кубического уравнения. Формула Виета для кубического уравнения
Кубическим уравнением называется уравнение вида
Мы рассмотрим случай, когда коэффициенты являются веществеными числами.
Корни кубического уравнения. Нахождение корней (решение) кубического уравнения.
Число х называется корнем кубического уравнения (1), если при его подстановке уравнение (1) обращается в верное равенство.
Итак, возможны только 3 следующих случая:
Канонической формой кубического уравнения называется уравнение вида
y3 + py + q = 0 (2)
К такому виду можно привести любое кубическое уравнение вида (1) с помощью следующей замены:
Итак, приступим к вычислению корней. Найдем следующие величины:
Дискриминант уравнения (2) в этом случае равен
Соответственно, если Q>0, то уравнения (2) и (1) будут иметь лишь 1 (вещественный) корень, y1. Подставим его в (3) и найдем х для уравнения (1). (если вас интересуют также мнимые корни, то просто вычислите еще и y2, y3 и подставьте их в (3).
Если Q0, то вычисляем
И наше уравнение имеет 3 корня (вещественных):
Кубическое уравнение
Сегодня выполняем запрос пользователя Решение кубического уравнения.
Канонический вид кубического уравнения:
Решать кубическое уравнение мы будем по формуле Виета.
Формула Виета — способ решения кубического уравнения вида
Соответственно, чтобы привести к этому виду оригинальное уравнение первым шагом все введенные коэффициенты делятся на коэффициент а:
Калькулятор ниже, а описание формулы Виета — под ним
Знаков после запятой: 2
Кстати сказать, на других сайтах почему-то для решения кубических уравнений используют формулу Кардано, однако я согласен с Википедией в том, что формула Виета более удобна для практического применения. Так что почему везде формула Кардано — непонятно, разве что лень людям Гиперболические функции и Обратные гиперболические функции реализовывать. Ну мне не лень было.
Самая удобная и увлекательная подготовка к ЕГЭ
Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.
Перенесем неизвестные слагаемые в левую часть уравнения, а известные в правую. При переносе из одной части в другую, у слагаемого меняется знак на противоположный.
Решение неполных квадратных уравнений
2. Решаем получившиеся уравнения каждое отдельно.
2. $D = 0$. В данном случае решение даёт два двукратных корня: