Прежде чем перейти к разбору темы «Как решать систему линейных неравенств» обязательно внимательно изучите урок «Как решать неравенства».
Потренируйтесь в решении неравенств, тогда с системами неравенств у вас не возникнет трудностей.
Системой неравенств называют два или более неравенства, которые объединены фигурной скобкой.
Рассмотрим пример системы неравенств.
Как видно на примере выше, систему неравенств легко определить по фигурной скобке.
Как решить систему неравенств
Чтобы решить систему неравенств нужно:
Вернемся к нашему примеру системы неравенств.
Так как оба неравенства в системе уже решены и представляют собою готовый ответ, то сразу переходим к поиску общего решения всей системы.
Для этого проведем две числовые оси (для каждого из неравенств свою). На осях заштрихуем результат решения неравенств.
Числовые оси с решениями нужно располагать друг под другом.
Числа на осях отмечают в порядке возрастания. То есть число « 2 » будет находиться левее « 5 ».
x > 2
x > 5
После того как мы построили числовые оси с решениями неравенств, необходимо провести через отмеченные на осях числа перпендикулярные прямые.
При проведении прямых через точки на осях соблюдают следующие правила:
Проведем прямые через числовые точки на осях.
Для определения ответа найдем те области решения, которые удовлетворяют ответам обоим неравенствам. Другими словами, те области, где в обоих случаях области решений заштрихованы.
Исходя из полученного анализа, мы получаем, что решением системы неравенств будет « x > 5 ». Запишем полученный ответ.
x > 2
x > 5
Рассмотрим другой пример системы неравенств.
Запись двойного неравенства используют, когда интервал решения системы неравенств лежит между числами.
Числа записываются в том же порядке, что они расположены на оси.
Другие примеры решения систем неравенств
В отличии от примеров выше, как правило, в системах неравенств перед поиском общего решения всей системы необходимо предварительно решить каждое из неравенств.
Рассмотрим и решим систему, где неравенства требуют предварительного решения.
Решим линейные неравенства по правилам, описанным в уроке «Решение линейных неравенств». Затем найдем общий ответ системы.
5(x + 1) − x > 2x + 2
4(x + 1) − 2 ≤ 2(2x + 1) − x
5x + 5 − x > 2x + 2
4x + 4 − 2 ≤ 4x + 2 − x
5x − x + 5 > 2x + 2
4x + 4 − 2 ≤ 4x + 2 − x
4x + 5 > 2x + 2
4x + 2 ≤ 3x + 2
4x − 2x > 2 − 5
4x − 3x ≤ 2 − 2
2x > −3 | (:2)
x ≤ 0
2x (:2) > −3 (:2)
x ≤ 0
x > −
3
2
x ≤ 0
x > − 1
1
2
x ≤ 0
Ответ: −1
1
2
При решении систем неравенств, в которых есть неравенства, содержащие пропорцию, используем правило пропорции.
Системы неравенств: определение, виды, примеры решения
Статья раскрывает тему неравенств, разбираются определения систем и их решения. Будут рассмотрены часто встречающиеся примеры решения систем уравнений в школе на алгебре.
Определение системы неравенств
Системы неравенств определяют по определениям систем уравнений, значит, что особое внимание уделяется записям и смыслу самого уравнения.
Системой неравенств называют запись уравнений, объединенных фигурной скобкой с множеством решений одновременно для всех неравенств, входящих в систему.
Таким же образом определение систем неравенств представлены в школьных учебниках как для использования одной переменной, так и двух.
Основные виды системы неравенств
Имеет место составление бесконечного множества систем неравенств. Их классифицируют по группам, отличающихся по определенным признакам. Неравенства подразделяют по критериям:
Количество входящих неравенств может насчитывать от двух и более. В предыдущем пункте рассматривался пример решения системы с двумя неравенствами.
Рассмотрим решение системы с четырьмя неравенствами.
Решение неравенства отдельно не говорит о решение системы в целом. Для решения системы необходимо задействовать все имеющиеся неравенства.
При записи системы могут быть задействованы уравнения разных видов и с разным количеством переменных. Чаще всего встречаются целые неравенства разных степеней. При подготовке к экзаменам могут встретиться системы с иррациональными, логарифмическими, показательными уравнениями вида:
Такая система включает в себя показательное и логарифмическое уравнение.
Решение системы неравенств
Решение системы неравенств с одной переменной – это значение переменной, которое обращает каждое неравенство заданной системы в верное числовое неравенство, то есть будет являться решением каждого имеющегося неравенства.
Рассмотрим пример решения систем уравнений с одной переменной.
Решение системы неравенств с двумя и более переменными называют значения, которые являются решением всех неравенств при обращении каждого в верное числовое неравенство.
При решении системы неравенств могут давать определенное количество ответов, а могут и бесконечное. Имеется ввиду множество решений такой системы. При отсутствии решений говорят о том, что она имеет пустое множество решений. Если решение имеет определенное число, тогда множества решений имеет конечное число элементов. Если решений много, тогда множество решений содержит бесконечное множество чисел.
Некоторые учебники дают определение частного решения системы неравенств, которое понимается как отдельно взятое решение. А общим решением системы неравенств считают все его частные решения. Такое определение используется редко, поэтому говорят «решение системы неравенств».
Данные определения систем неравенств и решения рассматриваются как пересечения множеств решений всех неравенств системы. Особое внимание стоит уделить разделу, посвященному равносильным неравенствам.
Числовое неравенство — в записи которого по обе стороны от знака находятся числа или числовые выражения.
Решение — значение переменной, при котором неравенство становится верным.
Решить неравенство значит найти множество, для которых оно выполняется.
Типы неравенств
Система неравенств
Чтобы щелкать задачки, нам пригодятся свойства числовых неравенств. Вот они:
Если а > b и b > c, то а > c. И также если а b, то а + c > b+ c (и а – c > b – c). Если же а b и c > d, то а + c > b + d. Если а 8 почленно вычесть 3 > 2, получим верный ответ 9 > 6. Если из 12 > 8 почленно вычесть 7 > 2, то полученное будет неверным.
Если а > b и c b – d. Если а d, то а – c b, m — положительное число, то mа > mb и
Обе части можно умножить или разделить на одно отрицательное число, при этом знак поменять на противоположный.
Таблица числовых промежутков
Полезна тем, что с ее помощью удобно записывать множество решений.
Смотрите бесплатные видео-уроки по теме “Неравенства” на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Неравенства
Что такое неравенство? Если взять любое уравнение и знак = поменять на любой из знаков неравенства:
≥ больше или равно,
≤ меньше или равно,
то получится неравенство.
Линейные неравенства
Линейные неравенства – это неравенства вида:
a x b a x ≤ b a x > b a x ≥ b
где a и b – любые числа, причем a ≠ 0, x – переменная.
Примеры линейных неравенств:
3 x 5 x − 2 ≥ 0 7 − 5 x 1 x ≤ 0
Решить линейное неравенство – получить выражение вида:
x c x ≤ c x > c x ≥ c
где c – некоторое число.
Последний шаг в решении неравенства – запись ответа. Давайте разбираться, как правильно записывать ответ.
Смысл выколотой точки в том, что сама точка в ответ не входит.
Смысл жирной точки в том, что сама точка входит в ответ.
Таблица числовых промежутков
Неравенство
Графическое решение
Форма записи ответа
x c
Алгоритм решения линейного неравенства
a x b a x ≤ b a x > b a x ≥ b
Примеры решения линейных неравенств:
№1. Решить неравенство 3 ( 2 − x ) > 18.
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
− 3 x > 18 − 6 − 3 x > 12 | ÷ ( − 3 )
Ответ: x ∈ ( − ∞ ; − 4 )
№2. Решить неравество 6 x + 4 ≥ 3 ( x + 1 ) − 14.
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
6 x + 4 ≥ 3 x + 3 − 14
6 x − 3 x ≥ 3 − 14 − 4
x ≥ − 15 3 ⇒ x ≥ − 5 Остается записать ответ (см. таблицу числовых промежутков).
Особые случаи (в 14 задании ОГЭ 2019 они не встречались, но знать их полезно).
№1. Решить неравенство 6 x − 1 ≤ 2 ( 3 x − 0,5 ).
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
6 x − 6 x ≤ − 1 + 1
№2. Решить неравенство x + 3 ( 2 − 3 x ) > − 4 ( 2 x − 12 ).
Решение:
Раскрываем скобки, переносим иксы влево, числа вправо, приводим подобные слагаемые.
x + 6 − 9 x > − 8 x + 48
− 8 x + 8 x > 48 − 6
Квадратные неравенства
Существует универсальный метод решения неравенств степени выше первой (квадратных, кубических, биквадратных и т.д.) – метод интервалов. Если его один раз как следует осмыслить, то проблем с решением любых неравенств не возникнет.
Для того, чтобы применять метод интервалов для решения квадратных неравенств, надо уметь хорошо решать квадратные уравнения (см. урок 4).
Алгоритм решения квадратного неравенства методом интервалов
Если получилось положительное число, знак на интервале плюс. На остальных интервалах знаки будут чередоваться.
Точки выколотые, если знак неравенства строгий.
Точки жирные, если знак неравенства нестрогий.
Если получилось отрицательное число, знак на интервале минус. На остальных интервалах знаки будут чередоваться.
Точки выколотые, если знак неравенства строгий.
Точки жирные, если знак неравенства нестрогий.
Если знак неравенства > или ≥ в ответ выбираем интервалы со знаком +.
Примеры решения квадратных неравенств:
№1. Решить неравенство x 2 ≥ x + 12.
Решение:
Приводим неравенство к виду a x 2 + b x + c ≥ 0, а затем решаем уравнение a x 2 + b x + c = 0.
a = 1, b = − 1, c = − 12
D = b 2 − 4 a c = ( − 1 ) 2 − 4 ⋅ 1 ⋅ ( − 12 ) = 1 + 48 = 49
Это значит, что знак на интервале, в котором лежит точка 10 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Ответ: x ∈ ( − 1 ; 6 )
№5. Решить неравенство x 2 4.
Решение:
Переносим 4 в левую часть, раскладываем выражение на множители по ФСУ и находим корни уравнения.
( x − 2 ) ( x + 2 ) = 0 ⇔ [ x − 2 = 0 x + 2 = 0 [ x = 2 x = − 2
x 2 − 4 = 3 2 − 4 = 9 − 4 = 5 > 0
Это значит, что знак на интервале, в котором лежит точка 3 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Ответ: x ∈ ( − 2 ; 2 )
№6. Решить неравенство x 2 + x ≥ 0.
Решение:
Выносим общий множитель за скобку, находим корни уравнения x 2 + x = 0.
x ( x + 1 ) = 0 ⇔ [ x = 0 x + 1 = 0 [ x = 0 x = − 1
x 2 + x = 1 2 + 1 = 2 > 0
Это значит, что знак на интервале, в котором лежит точка 1 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Ответ: x ∈ ( − ∞ ; − 1 ] ∪ [ 0 ; + ∞ )
Вот мы и познакомились с методом интервалов. Он нам еще пригодится при решении дробно рациональных неравенств, речь о которых пойдёт ниже.
Дробно рациональные неравенства
Дробно рациональное неравенство – это неравенство, в котором есть дробь, в знаменателе которой стоит переменная, т.е. неравенство одного из следующих видов:
f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0
Дробно рациональное неравенство не обязательно сразу выглядит так. Иногда, для приведения его к такому виду, приходится потрудиться (перенести слагаемые в левую часть, привести к общему знаменателю).
Примеры дробно рациональных неравенств:
x − 1 x + 3 0 3 ( x + 8 ) ≤ 5 x 2 − 1 x > 0 x + 20 x ≥ x + 3
Как же решать эти дробно рациональные неравенства? Да всё при помощи того же всемогущего метода интервалов.
Алгоритм решения дробно рациональных неравенств:
f ( x ) g ( x ) 0 f ( x ) g ( x ) ≤ 0 f ( x ) g ( x ) > 0 f ( x ) g ( x ) ≥ 0
В этом пункте алгоритма мы будем делать всё то, что нам запрещали делать все 9 лет обучения в школе – приравнивать знаменатель дроби к нулю. Чтобы как-то оправдать свои буйные действия, полученные точки при нанесении на ось x будем всегда рисовать выколотыми, вне зависимости от того, какой знак неравенства.
Примеры решения дробно рациональных неравенств:
№1. Решить неравенство x − 1 x + 3 > 0.
Решение:
Будем решать данное неравенство в соответствии с алгоритмом.
При нанесении нулей числителя обращаем внимание на знак неравенства. В данном случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя выколоты всегда.
Это значит, что знак на интервале, в котором лежит точка 2 будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Ответ: x ∈ ( − ∞ ; − 3 ) ∪ ( 1 ; + ∞ )
№2. Решить неравенство 3 ( x + 8 ) ≤ 5.
Решение:
Будем решать данное неравенство в соответствии с алгоритмом.
3 ( x + 8 ) − 5 \ x + 8 ≤ 0
3 x + 8 − 5 ( x + 8 ) x + 8 ≤ 0
3 − 5 ( x + 8 ) x + 8 ≤ 0
3 − 5 x − 40 x + 8 ≤ 0
− 5 x − 37 x + 8 ≤ 0
x = − 37 5 = − 37 5 = − 7,4
При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства нестрогий, значит нули числителя будут жирными. Ну а нули знаменателя выколоты всегда.
− 5 x − 37 x + 8 = − 5 ⋅ 0 − 37 0 + 8 = − 37 8 0
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
Ответ: x ∈ ( − ∞ ; − 8 ) ∪ [ − 7,4 ; + ∞ )
№3. Решить неравенство x 2 − 1 x > 0.
Решение:
Будем решать данное неравенство в соответствии с алгоритмом.
( x − 1 ) ( x + 1 ) = 0 ⇒ [ x − 1 = 0 x + 1 = 0 [ x = 1 x = − 1
При нанесении нулей числителя обращаем внимание на знак неравенства. В данному случае знак неравенства строгий, значит нули числителя будут выколотыми. Ну а нули знаменателя и так выколоты всегда.
x 2 − 1 x = 2 2 − 1 2 = 4 − 1 2 = 3 2 > 0, Это значит, что знак на интервале, в котором лежит точка 2, будет +.
Далее расставляем знаки справа налево. При переходе через найденные нулевые точки знак будет меняться на противоположный.
В ответ пойдут два интервала. Все точки будут в круглых скобках, так как они выколотые.
Ответ: x ∈ ( − 1 ; 0 ) ∪ ( 1 ; + ∞ )
Системы неравенств
Системой неравенств называют два неравенства с одной неизвестной, которые объединены в общую систему фигурной скобкой.
Пример системы неравенств:
Алгоритм решения системы неравенств
Примеры решений систем неравенств:
№1. Решить систему неравенств < 2 x − 3 ≤ 5 7 − 3 x ≤ 1
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
Точка 4 на графике жирная, так как знак неравенства нестрогий.
− 3 x ≤ − 6 | ÷ ( − 3 ), поскольку − 3 0, знак неравенства после деления меняется на противоположный.
Графическая интерпретация решения:
Точка 2 на графике жирная, так как знак неравенства нестрогий.
№2. Решить систему неравенств < 2 x − 1 ≤ 5 1 − 3 x − 2
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
Точка 3 на графике жирная, так как знак неравенства нестрогий.
Графическая интерпретация решения:
Ответ: x ∈ ( − ∞ ; − 1 )
№3. Решить систему неравенств < 3 x + 1 ≤ 2 x x − 7 >5 − x
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
Графическая интерпретация решения:
Графическая интерпретация решения:
Пересечений решений не наблюдается. Значит у данной системы неравенств нет решений.
№4. Решить систему неравенств < x + 4 >0 2 x + 3 ≤ x 2
Решение:
Будем решать данную систему неравенств в соответствии с алгоритмом.
Графическая интерпретация решения первого неравенства:
Решаем методом интервалов.
a = − 1, b = 2, c = 3
D = b 2 − 4 a c = 2 2 − 4 ⋅ ( − 1 ) ⋅ 3 = 4 + 12 = 16
Примеры решения систем линейных неравенств с одной переменной
Несколько линейных неравенств, удовлетворяющих одним и тем же решениям, образуют систему.
Рассмотрим простейший пример. Система состоит из двух неравенств, которые уже решены.
Решениями первого неравенства являются все числа, которые больше 4. Решениями второго неравенства являются все числа, которые меньше 9.
Изобразим множество решений каждого неравенства на координатной прямой и запишем ответы к ним в виде числовых промежутков:
Но дело в том, что неравенства x > 4 и x соединены знаком системы, а значит зависимы друг от друга. Им не дозволяется раскидываться решениями как им захочется. Наша задача указать решения, которые одновременно будут удовлетворять и первому неравенству и второму.
Говоря по-простому, нужно указать числа, которые больше 4, но меньше 9. Очевидно, что речь идет о числах, находящихся в промежутке от 4 до 9.
Значит решениями системы являются числа от 4 до 9. Границы 4 и 9 не включаются во множество решений системы, поскольку неравенства x > 4 и x строгие. Ответ можно записать в виде числового промежутка:
Также, нужно изобразить множество решений системы на координатной прямой.
Для системы линейных неравенств решение на координатной прямой изображают так:
Сначала указывают границы обоих неравенств:
На верхней области отмечают множество решений первого неравенства x > 4
Видим, что решение 8 удовлетворяет обоим неравенствам.
Исходя из рассмотренного примера, можно сформировать правило для решения системы линейных неравенств:
Чтобы решить систему линейных неравенств, нужно по отдельности решить каждое неравенство, и указать в виде числового промежутка множество решений, удовлетворяющих каждому неравенству.
Пример 2. Решить систему неравенств
Решениями первого неравенства являются все числа, которые больше 17. Решениями второго неравенства являются все числа, которые больше 12.
Решениями же обоих неравенств являются все числа, которые больше 17.
Изобразим множество решений системы на координатной прямой и запишем ответ в виде числового промежутка.
Для начала отметим на координатной прямой границы обоих неравенств:
На верхней области отметим множество решений первого неравенства x > 17
На нижней области отметим множество решений второго неравенства x > 12
Нас интересует область, которая отмечена штрихами с обеих сторон. В этой области и располагаются решения системы . Видно, что эта область располагается в промежутке от 17 до плюс бесконечности. Запишем ответ в виде числового промежутка:
Пример 3. Решить систему неравенств
Решим каждое неравенство по отдельности. Делать это можно внутри системы. Если испытываете затруднения при решении каждого неравенства, обязательно изучите предыдущий урок
Получили систему . На этом решение завершается. Осталось изобразить множество решений системы на координатной прямой и записать ответ в виде числового промежутка.
Как и в прошлом примере, сначала нужно отметить границы обоих неравенств, затем отметить множество решений каждого неравенства ( x > 6 и x > 3 ). Область координатной прямой, отмеченная с обеих сторон, будет промежутком, в котором располагается множество решений системы
Пример 4. Решить систему неравенств
Решим каждое неравенство по отдельности:
Изобразим множество решений системы на координатной прямой и запишем ответ в виде числового промежутка:
Пример 5. Решить неравенство
Решим каждое неравенство по отдельности:
Изобразим множество решений системы на координатной прямой и запишем ответ в виде числового промежутка:
Когда решений нет
Если неравенства, входящие в систему, не имеют общих решений, то говорят, что система не имеет решений.
Пример 1. Решить неравенство
Решим каждое неравенство по отдельности:
Решениями первого неравенства являются все числа, которые больше 7, включая число 7. Решениями второго неравенства являются все числа, которые меньше −3, включая число −3.
Видим, что у данных неравенств нет общих решений. Увидеть это наглядно позволит координатная прямая. Отметим на ней множество решений каждого неравенства:
На координатной прямой нет областей, которые отмечены штрихами с обеих сторон. Это говорит о том, что неравенства y ≥ 7 и y ≤ −3 не имеют общих решений. Значит не имеет решений система
А если не имеет решений приведённая равносильная система , то не имеет решений и исходная система
Ответ: решений нет.
Пример 2. Решить систему неравенств
Решим каждое неравенство по отдельности:
Изобразим множество решений неравенств x ≤ −3 и x ≥ 9 на координатной прямой:
Видим, что на координатной прямой нет областей, которые отмечены штрихами с обеих сторон. Значит неравенства x ≤ −3 и x ≥ 9 не имеют общих решений. А значит не имеет решений система
А если не имеет решений приведённая равносильная система , то не имеет решений и исходная система
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.
Получите невероятные возможности
Конспект урока «Решение систем неравенств с одной переменной»
Давайте решим задачу: нужно заполнить водой пустой бассейн вместимостью 3000 л. Сколько литров воды в час нужно наливать в бассейн, чтобы через 2 часа он был наполнен более половины и чтобы через 3 часа бассейн не переполнился?
Когда необходимо найти такие значения х, при которых одновременно верны два неравенства с одной переменной, их записывают совместно и говорят, что они образуют систему неравенств.
Фигурная скобка показывает, что нужно найти такие значения х, при которых оба неравенства системы обращаются в верные числовые неравенства.
Система, которую мы записали для решения задачи – это пример системы линейных неравенств с одной переменной.
Решением системы неравенствс одной переменной называется значение переменной, при котором верно каждое из неравенств системы.
В виде системы может быть записано и любое двойное неравенство.
Решить систему неравенств – значит найти все её решения или доказать, что решений нет.
Рассмотрим несколько примеров решения систем линейных неравенств с одной переменной.
Пример 1: решим систему неравенств.
Пример 2: решим систему неравенств.
Пример 3:решим систему неравенств.
Пример 4: решим двойное неравенство.
Запишем алгоритм решения систем линейных неравенств с одной переменной.
Для того чтобы решить систему неравенств, надо:
1. Решить каждое из неравенств системы.
2. Изобразить множество решений каждого неравенства на координатной прямой.
3. Найти пересечение промежутков (если оно есть) и записать в виде обозначения промежутка или в виде неравенства, задающего этот промежуток, или сделать вывод об отсутствии решения системы.
Системой линейных неравенств называется любая совокупность двух или более линейных неравенств, содержащих одну и туже неизвестную величину
Вот образцы подобных систем:
Решить систему неравенств означает установить все значения неизвестной величины, при которых реализуются все неравенство системы, либо доказать, что таких не существует.
Все решения системы неравенств формируют множество решений. Если система неравенств не реализуется ни при каких значениях х, то обозначают, что такие системы неравенств несовместимы.
Установим область определения функции .
Область определения или область допустимых значений –это множество всех х при которых функция существует.
Функция существует, когда существуют оба квадратных корня, т.е. под корнем стоит не отрицательное число.
Как рассчитать такую систему? Следует установить все x, одновременно выполняющие условия и первого и второго неравенства.
Воспроизведем на оси x множество решений первого и второго неравенства.
Промежуток пересечения двух лучей и есть наше решение. Следовательно решением данного неравенства выступают все х расположенные между двойкой и восьмеркой.
Ответ: х[2;8]
Применение такого типа отображения решения системы неравенств иногда именуют методом крыш.
Определение: Пересечением двух множеств А и В называется такое третье множество, которое включает все элементы, входящих и в А и в В. Это смысл пересечения множеств произвольной природы. Нами сейчас детально рассматриваются числовые множества, поэтому при нахождении линейных неравенств такими множествами являются лучи – сонаправленные, противонаправленные и так далее.
Выясним на реальных примерах нахождение линейных систем неравенств, как определить пересечения множеств решений отдельных неравенств, входящих в систему.
Вычислим систему неравенств:
1.
Поместим одну под другой две силовые прямые. На верхней нанесем те значения х, которые выполняют первое неравенство x>7, а на нижней – которые выступают решением второго неравенства x>10 Соотнесем результаты числовых прямых, выясним, что оба неравенства будут удовлетворятся при x>10.
2.
4.Решить систему
Откуда может взяться второе неравенство системы? Например, из неравенства x2+ 1 ≥ 0,
Графически обозначим решения каждого неравенства и найдем промежуток их пересечения.
Таким образом, если мы имеем систему, в которой одно из неравенств удовлетворяет любому значению x, то его можно отбросить.
Калькулятор онлайн. Решение систем неравенств: линейные, квадратные и дробные.
Программа для решения линейных, квадратных и дробных неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.
Причём, если в процессе решения одного из неравенств нужно решить, например, квадратное уравнение, то его подробное решение также выводится (оно заключается в спойлер).
Данная программа может быть полезна учащимся старших классов при подготовке к контрольным работам, родителям для контроля решения неравенств их детьми.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
В качестве переменной может выступать любая латинсая буква. Например: \( x, y, z, a, b, c, o, p, q \) и т.д.
Числа можно вводить целые или дробные. Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.
Правила ввода обыкновенных дробей. В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе выражений можно использовать скобки. В этом случае при решении неравенства выражения сначала упрощаются. Например: 5(a+1)^2+2&3/5+a > 0,6(a-2)(a+3)
Выберите нужный знак неравенства и введите многочлены в поля ниже.
Как решать системы линейных неравенств с одной переменной
Линейные неравенства: свойства и правила
Линейные неравенства — неравенства, записанные в виде:
В перечисленных выражениях a и b являются какими-либо числами, а отлично от нуля, х играет роль неизвестной переменной.
Линейные неравенства с одной переменной:
Заметим, что в приведенных примерах, которые можно встретить в контрольной работе, отсутствуют неизвестные, возведенные в квадрат, куб и другие степени. Также выражения не содержат операции деления на х, и переменная не расположена под знаком корня.
Система неравенств с одной переменной представляет собой совокупность, в которую включены несколько неравенств, содержащие одинаковую переменную.
Решением системы неравенств с одной переменной является значение, которое принимает переменная, и каждое из неравенств становится верным.
Решить систему неравенств — определить все решения данной системы, либо доказать их отсутствие.
При решении самостоятельно или на уроке задач с неравенствами, содержащими одну переменную, полезно знать свойства числовых неравенств:
Какой-либо член неравенства допускается перенести в другую часть неравенства при условии изменения знака на противоположный.
В качестве примера применения данного правила можно разобрать действие с неравенством:
Выполним перенос слагаемых, содержащих переменную, влево. Свободные члены оставим в правой части:
Все части неравенства допустимо умножать или делить на одинаковое число, большее нуля. Результатом подобных действий является неравенство, которое равносильно исходному неравенству.
С помощью записанного правила выполним деление неравенства на 3:
Знак неравенства не изменился по той причине, что деление осуществлялось на число, большее нуля.
Попробуем поделить обе части неравенства, записанного ниже, на число 7:
Здесь знак неравенства остается без изменений, так как общий делитель является положительным числом.
Рассмотрим пример неравенства:
Заметим, что в процессе деления был изменен знак неравенства на противоположный.
Алгоритм решения линейных неравенств графическим способом
Линейные неравенства могут быть записаны в виде систем. Тогда решать подобные примеры следует, руководствуясь следующим алгоритмом:
Несовместимая система представляет собой систему, у которой нет решений.
Системы линейных неравенств с одной переменной имеют вид:
Рассмотрим решение системы неравенств:
Перенесем точечные множества на координатную прямую и получим ответ:
Многие неравенства можно решать графическим методом. Смысл такого способа поиска решений заключается в определении промежутков для последующего их изображения на графике.
Метод интервалов
Рассмотрим неравенство с переменной:
А ( х ) > 0 ( А ( х ) 0 )
Разложим записанное неравенство на линейные множители:
A ( x ) = ( k 1 x + b 1 ) ( k 2 x + b 2 ) … ( k n x + b n )
В таком случае для решения неравенства допускается применить метод интервалов. В основе данного способа свойства функции. Рассмотрим его применение на примере неравенства:
А ( х ) > 0 ( А ( х ) 0 )
где A ( x ) = ( k 1 x + b 1 ) ( k 2 x + b 2 ) … ( k n x + b n )
Определим корни уравнения А ( х ) = 0 :
Отметим корни на координатной прямой:
Заметим, что знак неравенства будет изменяться при переходе через корни:
Определить знак на каждом интервале можно с помощью выбора некого значения х = х0. Это значение следует подставить в левую часть неравенства, чтобы определить знак. Далее нужно отметить промежутки, в рамках которых неравенство выполняется.
Использование равносильных преобразований
Важно, что при a больше нуля, знак сохраняется без изменений. Когда a имеет отрицательное значение, следует изменить знак на противоположный.
Здесь а = 4 и b = 16. Коэффициент при неизвестном отличен от нуля, что позволяет использовать в решении рассмотренный алгоритм.
Выполним перенос 16 вправо и изменим его знак на противоположный:
Разделим неравенство на 4:
4 x ÷ 4 ≤ − 16 ÷ 4 ⇒ x ≤ − 4
Тогда следует определить, является ли верным полученное неравенство:
Возможно два варианта:
Заметим, что х может иметь любое значение, так как:
Примеры решения заданий
Требуется решить неравенство:
Требуется найти решения неравенства:
3 x + 2 > 2 ( x + 3 ) + x
Избавимся от скобок справа:
3 x + 2 > 2 x + 6 + x
Полученное неравенство не является верным. Это означает, что начальное неравенство не имеет решений.
Ответ: решения отсутствуют.
Дано неравенство, которое нужно решить:
Избавимся от скобок слева:
Полученное в результате неравенство является верным. Поэтому начальное неравенство также верно при любом значении х.
Решить систему линейных неравенств с одной переменной:
5 x + 6 ≤ 1 2 x + 1 ≥ 3
Следует решать каждое неравенство отдельно:
Используя координатную прямую, объединим полученные решения:
В данной публикации мы рассмотрим, что такое система линейных неравенств, как она решается методом интервалов на числовой оси. Также разберем практические примеры по этой теме.
Определение системы неравенств
Для решения системы неравенств необходимо иметь навыки, позволяющие справиться с линейными неравенствами. Мы подробно рассмотрели этот вопрос в отдельной публикации.
Система неравенств – это два или более неравенства, объединенные фигурной скобкой. Например:
Т.е. она чем-то похожа на систему уравнений, в которых “равно” заменено на один из знаков сравнения (“больше”, “меньше”, “больше или равно”, “меньше или равно”).
Примечание: в системе линейных неравенств все они, соответственно, являются линейными. Обычно неизвестная переменная в них всего одна (чаще всего обозначается как “x” ).
Решение системы линейных неравенств
Алгоритм состоит из двух основных шагов:
Пример 1 Давайте попробуем решить систему, приведенную выше.
Теперь отметим на числовой оси полученные результаты, разделив области решений разными цветами для удобства восприятия.
Нам нужен участок, где присутствуют оба решения. Как мы видим на рисунке, он начинается с числа 10 включительно.
Пример 2 Найдем решение системы неравенств ниже:
Перенесем найденные решения на числовую ось и нарисуем соответствующие им интервалы:
В этой статье собрана начальная информация о системах неравенств. Здесь дано определение системы неравенств и определение решения системы неравенств. А также перечислены основные виды систем, с которыми наиболее часто приходится работать на уроках алгебры в школе, и приведены примеры.
Навигация по странице.
Что такое система неравенств?
Системы неравенств удобно определить аналогично тому, как мы вводили определение системы уравнений, то есть, по виду записи и смыслу, вложенному в нее.
Система неравенств – это запись, представляющая собой некоторое число записанных друг под другом неравенств, объединенных слева фигурной скобкой, и обозначающая множество всех решений, являющихся одновременно решениями каждого неравенства системы.
Основные виды систем неравенств
Понятно, что можно составить бесконечно много различных систем неравенств. Чтобы не заблудиться в этом многообразии, их целесообразно рассматривать по группам, имеющим свои отличительные признаки. Все системы неравенств можно разбить на группы по следующим критериям:
По числу неравенств, входящих в запись, различают системы двух, трех, четырех и т.д. неравенств. В предыдущем пункте мы привели пример системы , которая является системой двух неравенств. Покажем еще пример системы четырех неравенств .
Отдельно скажем, что нет смысла говорить о системе одного неравенства, в этом случае по сути речь идет о самом неравенстве, а не о системе.
Что называется решением системы неравенств?
Решением системы неравенств с одной переменной называется такое значение переменной, обращающее каждое из неравенств системы в верное числовое неравенство, другими словами, являющееся решением каждого неравенства системы.
Аналогично можно ввести определение решения системы неравенств с двумя, тремя и большим числом переменных:
Решением системы неравенств с двумя, тремя и т.д. переменными называется пара, тройка и т.д. значений этих переменных, которая одновременно является решением каждого неравенства системы, то есть, обращает каждое неравенство системы в верное числовое неравенство.
Системы неравенств могут не иметь решений, могут иметь конечное число решений, а могут иметь и бесконечно много решений. Часто говорят о множестве решений системы неравенств. Когда система не имеет решений, то имеет место пустое множество ее решений. Когда решений конечное число, то множество решений содержит конечное число элементов, а когда решений бесконечно много, то и множество решений состоит из бесконечного числа элементов.
Из введенных в этой статье определений системы неравенств и ее решений следует, что решение системы неравенств представляет собой пересечение множеств решений всех неравенств этой системы.
Отдельный интерес представляет процесс поиска решений систем неравенств, но прежде чем переходить к нему полезно будет узнать про равносильные системы неравенств.
Совокупности уравнений, неравенств, систем: определение, как решить
В данной статье мы сформулируем общее понятие совокупностей неравенств, уравнений и их систем, а также их комбинации. Кроме определений здесь, как обычно, есть решения задач, наглядно поясняющие тот или иной фрагмент текста.
Понятие совокупности
Проанализировав несколько учебников, выберем наиболее удачное определение:
Совокупность уравнений представляет собой несколько уравнений, записанных друг под другом и объединенных квадратной скобкой. Значение этой записи таково: совокупность объединяет такие значения переменных, при которых хотя бы одно из входящих в нее уравнений превращается в верное равенство.
Сравним между собой понятие совокупности и понятие системы:
Вот примеры совокупности уравнений:
Понятие совокупности неравенств формулируется схожим образом.
Совокупность неравенств представляет собой несколько неравенств, записанных друг под другом и объединенных квадратной скобкой. Она включает в себя решения, которые подходят хотя бы для одного из неравенств, входящих в состав совокупности.
Приведем пример такой записи:
Схожее определение для этого понятия упоминается в учебнике Мордковича.
В качестве примера смешанных совокупностей приведем две:
Что такое решение совокупности
Решение совокупности с одной переменной представляет собой значение этой переменной, которое является решением хотя бы одной составляющей совокупности (уравнения, неравенства).
Возьмем еще один пример, посложнее. У нас есть совокупность:
Также нужно отметить следующее: объединение решений всех компонентов совокупности также есть решение совокупности. Напомним, что решение системы представляет собой пересечение решений ее компонентов.
В продолжение темы мы советуем вам материал «Равносильные совокупности».
Системы линейных неравенств и выпуклые множества точек
Понятие системы линейных неравенств
Выберем полуплоскость решений неравенства. Для этого в неравенство подставим координаты начала (0; 0) :
,
получим , т. е. координаты начала удовлетворяют данному неравенству. Следовательно, решением неравенства является полуплоскость, содержащая в себе начало координат, т. е. левая (она же нижняя) полуплоскость.
Если бы данное неравенство было строгим, то есть имело бы вид
,
то точки граничной прямой не являлись бы решением, так как они не удовлетворяют неравенству.
Теперь рассмотрим систему линейных неравенств с двумя неизвестными:
Каждое из неравенств этой системы на плоскости определяет полуплоскость. Система линейных неравенств называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет решений. Решением системы линейных неравенств называется любая пара чисел (), удовлетворяющая всем неравенствам данной системы.
Пример 2. Решить систему линейных неравенств
Решение. Итак, требуется найти многоугольник решений этой системы неравенств. Построим граничную прямую для первого неравенства, то есть прямую , и граничную прямую для второго неравенства, то есть прямую .
Делаем это пошагово, как было показано в теоретической справке и в примере 1, тем более, что в примере 1 строили граничную прямую для неравенства, которое является первым в данной системе.
Пример 3. Решить систему линейных неравенств
Решение. Построим граничные прямые, соответствующие неравенствам системы. Делаем это, выполняя шаги, данные в теоретической справке, для каждого неравенства. Теперь определим полуплоскости решений для каждого неравенства (рисунок 3).
Всё описанное выше о системах линейных неравенств с двумя неизвестными относится и к системе неравенств с любым числом неизвестных, с той лишь разницей, что решением неравенства с n неизвестными будет совокупность n чисел (), удовлетворяющих всем неравенствам, а вместо граничной прямой будет граничная гиперплоскость n-мерного пространства. Решением будет многогранник решений (симплекс), ограниченный гиперплоскостями.
Так же, как и в двухмерном пространстве (на плоскости), каждое из неравенств системы определяет n-мерное полупространство. Пересечение всех этих полупространств образует многогранник решений. Но изобразить этот многогранник (называемый симплексом) геометрически невозможно. Лишь в случае, когда число неизвестных не больше трёх, то есть в действительном пространстве, многогранник решений можно изобразить геометрически.
Множество решений линейных неравенств геометрически составляет выпуклый многогранник или выпуклое множество точек.
Выпуклые множества точек
Как уже отмечалось, системы линейных неравенств играют важную роль в линейном программировании. Теоремы линейного программирования содержат такие понятия, как выпуклые множества и крайние точки. Разберёмся бегло, о чём речь.
Выпуклые множества обладают важным свойством, которое устанавливается следующей теоремой.
Через любую внутреннюю точку выпуклого множества можно провести отрезок, для которого она является внутренней, а сам отрезок целиком принадлежит этому множеству. Но есть точки (для выпуклого многоугольника это его вершины), для которых такое построение выполнить нельзя: нет ни одного отрезка, для которого вершина являлась бы внутренней, а отрезок целиком бы принадлежал мноргоугольнику.
Точка выпуклого множества называется угловой (или крайней), если через неё нельзя провести ни одного отрезка, состоящего только из точек данного множества и для которого она была бы внутренней.
Понятие системы неравенств с одной переменной и его решения
Решением системы неравенств с одной переменной является такое множество значений этой переменной, которое превращает каждое из неравенств в верное числовое неравенство.
Алгоритм решения системы неравенств с одной переменной
Подробно о числовой прямой и видах числовых промежутков на ней рассказано в §16 данного справочника. Здесь мы изобразим числовые промежутки как решения неравенств на более простых примерах.
Шаг 1. Найти множество частных решений для каждого из неравенств системы. Если хотя бы одно из частных решений является пустым множеством, вся система неравенств не имеет решений; перейти к шагу 4.
Шаг 4. Работа завершена.
Если в системе неравенств есть несколько неравенств со знаком «больше», то из них останется одно неравенство по принципу «больше большего».
Пример 3*. У космического пирата Шутзема несколько затруднительное финансовое положение и только 510 астротугриков в кармане. Однако ему нужно пополнить запасы топлива и продовольствия. Одна капсула с топливом стоит 50 астротугриков, а одна капсула с едой – 30 астротугриков. Какой вариант покупок есть у Шутзема на всю сумму без сдачи, если топлива нужно не менее 4 капсул, а еды – не менее 5?
По условию задачи:
Изобразим полученные полуплоскости графически и найдём их пересечение.
Решение совокупностей неравенств с одной переменной
Понятие совокупности неравенств с одной переменной и его решения
Решением совокупности неравенств с одной переменной является такое множество значений этой переменной, которое превращает хотя бы одно из неравенств в верное числовое неравенство.
Алгоритм решения совокупности неравенств с одной переменной
Шаг 1. Найти множество решений для каждого из неравенств системы. Если какое-либо частное решение является пустым множеством, отбросить его, но продолжить решение.
Шаг 2. Начертить друг под другом числовые прямые, число которых равно числу полученных непустых частных решений. Начала отсчёта числовых прямых должны находиться на общем перпендикуляре, единичный отрезок должен совпадать.
Шаг 3. На числовых прямых изобразить полученные частные решения, на отдельной прямой найти их объединение – это и будет общим решением совокупности.
Неравенства могут образовывать сложные конструкции условий из вложенных систем и совокупностей. Раскрытие скобок при упрощении таких конструкций подчиняется законам логики и правилам операций над множествами (см. §10 данного справочника).
Примеры
Пример 1. Решите совокупности неравенств:
Пример 2. Решите неравенство:
Произведение слева будет отрицательным, если сомножители будут иметь разные знаки. Получаем совокупность двух систем неравенств:
Произведение слева будет положительным (или равным 0), если сомножители будут иметь одинаковые знаки (или равными 0).
Получаем совокупность двух систем неравенств:
Для нижнего неравенства получаем совокупность:
Возвращаемся к исходной переменной
В 9 классе для решения подобных неравенств будет предложен очень эффективный метод интервалов, который позволяет значительно упростить ход решения.
На уроке Уравнение прямой на плоскости мы рассмотрели общее уравнение прямой . Уравнение – хорошо, в жизни пригодится, но не менее важно знать геометрический смысл линейных неравенств двух переменных. Принципиальное отличие от неравенств с одной переменной состоит в размерности. Если в примерах статьи Область определения функции существуют только «иксы» и только ось абсцисс, то сейчас добавляются «игреки» и поле деятельности расширяется до всей координатной плоскости. Далее по тексту словосочетание «линейное неравенство» понимаем в двумерном смысле, который прояснится через считанные секунды.
Помимо аналитической геометрии, материал актуален для ряда задач математического анализа, экономико-математического моделирования, поэтому рекомендую проштудировать данную лекцию со всей серьёзностью.
Линейные неравенства
Различают два типа линейных неравенств:
1) Строгие неравенства: .
2) Нестрогие неравенства: .
Какой геометрический смысл этих неравенств? Если линейное уравнение задаёт прямую, то линейное неравенство определяет полуплоскость.
Для понимания нижеследующей информации нужно знать разновидности прямых на плоскости и уметь строить прямые. Если возникнут трудности в этой части, прочитайте справку Графики и свойства функций – параграф про линейную функцию.
Начнём с простейших линейных неравенств. Голубая мечта любого двоечника – координатная плоскость, на которой нет ничегошеньки:
Как известно, ось абсцисс задаётся уравнением – «игрек» всегда (при любом значении «икс») равняется нулю
Рассмотрим неравенство . Как его понимать неформально? «Игрек» всегда (при любом значении «икс») положителен. Очевидно, что данное неравенство определяет верхнюю полуплоскость – ведь там и находятся все точки с положительными «игреками».
В том случае, если неравенство нестрогое , к верхней полуплоскости дополнительно добавляется сама ось .
Аналогично: неравенству удовлетворяют все точки нижней полуплоскости, нестрогому неравенству соответствует нижняя полуплоскость + ось .
На втором шаге рассмотрим неравенства, в которых отсутствует одна из переменных.
Отсутствует «игрек»:
Или отсутствует «икс»:
С такими неравенствами можно разобраться двумя способами, пожалуйста, рассмотрите оба подхода. Попутно вспомним-закрепим школьные действия с неравенствами, уже разобранные на уроке Область определения функции.
Решить линейные неравенства:
Что значит решить линейное неравенство?
Решить линейное неравенство – это значит найти полуплоскость, точки которой удовлетворяют данному неравенству (плюс саму прямую, если неравенство нестрогое). Решение, как правило, графическое.
Удобнее сразу выполнить чертёж, а потом всё закомментировать:
а) Решим неравенство
Способ весьма напоминает историю с координатными осями, которую мы рассмотрели выше. Идея состоит в преобразовании неравенства – чтобы в левой части оставить одну переменную без всяких констант, в данном случае – переменную «икс».
Правило: В неравенстве слагаемые переносятся из части в часть со сменой знака, при этом знак САМОГО неравенства не меняется (например, если был знак «меньше», то так и останется «меньше»).
Переносим «пятёрку» в правую часть со сменой знака:
Правило: Обе части неравенства можно умножить (разделить) на ПОЛОЖИТЕЛЬНОЕ число, при этом знак неравенства не меняется.
Умножаем обе части неравенства на :
Теперь чертим прямую (синяя пунктирная линия). Прямая проведена пунктиром по той причине, что неравенство строгое, и точки, принадлежащие данной прямой, заведомо не будут входить в решение.
Каков смысл неравенства ? «Икс» всегда (при любом значении «игрек») меньше, чем . Очевидно, что этому утверждению удовлетворяют все точки левой полуплоскости. Данную полуплоскость, в принципе, можно заштриховать, но я ограничусь маленькими синими стрелочками, чтобы не превращать чертёж в художественную палитру.
Это универсальный способ. ЧИТАЕМ ОЧЕНЬ ВНИМАТЕЛЬНО!
Сначала чертим прямую . Для ясности, кстати, уравнение целесообразно представить в виде .
Теперь выбираем любую точку плоскости, не принадлежащую прямой. В большинстве случаев, самая лакомая точка, конечно . Подставим координаты данной точки в неравенство :
Получено неверное неравенство (простыми словами, неправда), значит, точка не удовлетворяет неравенству .
Ключевое правило нашей задачи: – Если какая-либо точка полуплоскости (не принадлежащая прямой) не удовлетворяет неравенству, то и ВСЕ точки данной полуплоскости не удовлетворяют данному неравенству. – Если какая-либо точка полуплоскости (не принадлежащая прямой) удовлетворяет неравенству, то и ВСЕ точки данной полуплоскости удовлетворяют данному неравенству.
Можете протестировать: любая точка справа от прямой не будет удовлетворять неравенству .
Какой вывод из проведённого опыта с точкой ? Деваться некуда, неравенству удовлетворяют все точки другой – левой полуплоскости (тоже можете проверить).
б) Решим неравенство
Преобразуем неравенство:
Правило: Обе части неравенства можно умножить (разделить) на ОТРИЦАТЕЛЬНОЕ число, при этом знак неравенства МЕНЯЕТСЯ на противоположный (например, если был знак «больше либо равно», то станет «меньше либо равно»).
Умножаем обе части неравенства на :
Начертим прямую (красный цвет), причём, начертим сплошной линией, так как неравенство у нас нестрогое, и прямая заведомо принадлежит решению.
Проанализировав полученное неравенство , приходим к выводу, что его решением является нижняя полуплоскость (+ сама прямая).
Подходящую полуплоскость штрихуем либо помечаем стрелочками.
Начертим прямую . Выберем произвольную точку плоскости (не принадлежащую прямой), например, и подставим её координаты в наше неравенство :
Получено верное неравенство, значит, точка удовлетворяет неравенству , и вообще – ВСЕ точки нижней полуплоскости удовлетворяют данному неравенству.
Здесь подопытной точкой мы «попали» в нужную полуплоскость.
Решение задачи обозначено красной прямой и красными стрелочками.
Лично мне больше нравится первый способ решения, поскольку второй таки более формален.
Решить линейные неравенства:
Это пример для самостоятельного решения. Постарайтесь решить задачу двумя способами (к слову, это хороший способ проверки решения). В ответе в конце урока будет только итоговый чертёж.
Думаю, после всех проделанных в примерах действий вам придётся на них жениться не составит труда решить простейшее неравенство вроде и т.п.
Переходим к рассмотрению третьего, общего случая, когда в неравенстве присутствуют обе переменные:
Как вариант, свободный член «цэ» может быть нулевым.
Найти полуплоскости, соответствующие следующим неравенствам:
Решение: Здесь используется универсальный метод решения с подстановкой точки.
а) Построим уравнение прямой , при этом линию следует провести пунктиром, так как неравенство строгое и сама прямая не войдёт в решение.
Выбираем подопытную точку плоскости, которая не принадлежит данной прямой, например, , и подставим её координаты в наше неравенство:
Получено неверное неравенство, значит, точка и ВСЕ точки данной полуплоскости не удовлетворяют неравенству . Решением неравенства будет другая полуплоскость, любуемся синими молниями:
б) Решим неравенство . Сначала построим прямую. Это сделать несложно, перед нами каноничная прямая пропорциональность . Линию проводим сплошняком, так как неравенство нестрогое.
Выберем произвольную точку плоскости, не принадлежащую прямой . Хотелось бы снова использовать начало координат, но, увы, сейчас оно не годится. Поэтому придётся работать с другой подругой. Выгоднее взять точку с небольшими значениями координат, например, . Подставим её координаты в наше неравенство:
Получено верное неравенство, значит, точка и все точки данной полуплоскости удовлетворяют неравенству . Искомая полуплоскость помечена красными стрелочками. Кроме того, в решение входит сама прямая .
Найти полуплоскости, соответствующие неравенствам:
Это пример для самостоятельного решения. Полное решение, примерный образец чистового оформления и ответ в конце урока.
Разберём обратную задачу:
а) Дана прямая . Определить полуплоскость, в которой находится точка , при этом сама прямая должна входить в решение.
б) Дана прямая . Определить полуплоскость, в которой находится точка . Сама прямая не входит в решение.
Решение: здесь нет необходимости в чертеже, и решение будет аналитическим. Ничего трудного:
а) Составим вспомогательный многочлен и вычислим его значение в точке : . Таким образом, искомое неравенство будет со знаком «меньше». По условию прямая входит в решение, поэтому неравенство будет нестрогим:
б) Составим многочлен и вычислим его значение в точке : . Таким образом, искомое неравенство будет со знаком «больше». По условию прямая не входит в решение, следовательно, неравенство будет строгим: .
Ответ:
Творческий пример для самостоятельного изучения:
Даны точки и прямая . Среди перечисленных точек найти те, которые вместе с началом координат лежат по одну сторону от заданной прямой.
Небольшая подсказка: сначала нужно составить неравенство, определяющее полуплоскость, в которой находится начало координат. Аналитическое решение и ответ в конце урока.
Системы линейных неравенств
Система линейных неравенств – это система, составленная из линейных неравенств. …Обожаю такие определения, прямо в стиле известного политика и боксёра :).Вот уж действительно просто и доступно! А если серьёзно, то не хочется приводить громоздкое определение и систему в общем виде, лучше сразу перейдём к насущным вопросам:
Что значит решить систему линейных неравенств?
Решить систему линейных неравенств – это значит найти множество точек плоскости, которые удовлетворяют каждому неравенству системы.
В качестве простейших примеров рассмотрим системы неравенств, определяющих координатные четверти прямоугольной системы координат («рисунок двоечников» находится в самом начале урока):
Система неравенств задаёт первую координатную четверть (правая верхняя). Координаты любой точки первой четверти, например, и т.д. удовлетворяют каждому неравенству данной системы.
Аналогично: – система неравенств задаёт вторую координатную четверть (левая верхняя); – система неравенств задаёт третью координатную четверть (левая нижняя); – система неравенств задаёт четвёртую координатную четверть (правая нижняя).
Система линейных неравенств может не иметь решений, то есть, быть несовместной. Снова простейший пример: . Совершенно очевидно, что «икс» не может одновременно быть больше трёх и меньше двух.
Решением системы неравенств может являться прямая, например: . Лебедь, рак, без щуки, тянут воз в две разные стороны. Да воз и ныне там – решением данной системы является прямая .
Но самый распространённый случай, когда решением системы является некоторая область плоскости. Область решений может быть не ограниченной (например, координатные четверти) либо ограниченной. Ограниченная область решений называется многоугольником решений системы.
Решить систему линейных неравенств
На практике в большинстве случаев приходится иметь дело с нестрогими неравенствами, поэтому оставшуюся часть урока водить хороводы будут именно они.
Решение: то, что неравенств многовато, пугать не должно. Сколько может быть неравенств в системе? Да сколько угодно. Главное, придерживаться рационального алгоритма построения области решений:
1) Сначала разбираемся с простейшими неравенствами. Неравенства определяют первую координатную четверть, включая границу из координатных осей. Уже значительно легче, так как область поиска значительно сузилась. На чертеже сразу отмечаем стрелочками соответствующие полуплоскости (красные и синие стрелки)
2) Второе по простоте неравенство – здесь отсутствует «игрек». Во-первых, строим саму прямую , а, во-вторых, после преобразования неравенства к виду , сразу становится понятно, что все «иксы» меньше, чем 6. Отмечаем зелёными стрелками соответствующую полуплоскость. Ну что же, область поиска стала ещё меньше – такой не ограниченный сверху прямоугольник.
3) На последнем шаге решаем неравенства «с полной амуницией»: . Алгоритм решения мы подробно рассмотрели в предыдущем параграфе. Вкратце: сначала строим прямую, потом с помощью подопытной точки находим нужную нам полуплоскость.
Встаньте, дети, встаньте в круг: Область решений системы представляет собой многоугольник , на чертеже он обведён малиновой линией и заштрихован. Перестарался немного =) В тетради область решений достаточно либо заштриховать, либо жирнее обвести простым карандашом.
Любая точка данного многоугольника удовлетворяет КАЖДОМУ неравенству системы (для интереса можете проверить).
Ответ: решением системы является многоугольник .
При оформлении на чистовик неплохо бы подробно расписать, по каким точкам вы строили прямые (см. урок Графики и свойства функций), и как определяли полуплоскости (см. первый параграф данного урока). Однако на практике в большинстве случаев вам зачтут и просто правильный чертёж. Сами же расчёты можно проводить на черновике или даже устно.
Помимо многоугольника решений системы, на практике, пусть и реже, встречается открытая область. Попытайтесь разобрать следующий пример самостоятельно. Хотя, точности ради, пыток тут никаких – алгоритм построения такой же, просто область получится не ограниченной.
Решить систему
Решение и ответ в конце урока. У вас, скорее всего, будут другие буквенные обозначения вершин полученной области. Это не принципиально, главное, правильно найти вершины и правильно построить область.
Не редкость, когда в задачах требуется не только построить область решений системы, но и найти координаты вершин области. В двух предыдущих примерах координаты данных точек были очевидны, но на практике всё бывает далеко не айс:
Решить систему и найти координаты вершин полученной области
Решение: изобразим на чертеже область решений данной системы. Неравенство задаёт левую полуплоскость с осью ординат, и халявы тут больше нет. После расчётов на чистовике/черновике или глубоких мыслительных процессов, получаем следующую область решений:
Область решений представляет собой многоугольник . Теперь нужно найти координаты вершин полученной области. Здесь ясно прорисовались координаты только двух точек: . Остаётся решить вопрос с точками .
Нетрудно заметить, что вершины являются точками пересечением прямых. Как найти точку пересечения двух прямых, мы рассмотрели на уроке Задачи с прямой на плоскости.
Найдём координаты вершины : Примечание: из второго уравнения системы почленно вычтено первое уравнение. Более подробно о методе можно прочитать в статье Как решить систему уравнений?
Найдём координаты точки : Примечание: второе уравнение системы умножено на 3, затем уравнения сложены почленно.
Для красоты координаты точек тоже можно найти аналитическим методом:
Ответ: область решений системы представляет собой многоугольник с вершинами в точках .
Кто из вас попадёт в «десятку»? Заключительный пример урока для самостоятельного решения:
Найти область решений системы и координаты вершин полученной области
И опять же, буквенные обозначения вершин многоугольника у нас могут отличаться. У меня будет точка «цэ», а у вас эта же вершина может быть обозначена через «дэ».
Мы рассмотрели примеры средней степени сложности, чего вполне достаточно. В ряде задач, например, в задаче линейного программирования коэффициенты неравенств обычно велики, и приходится возиться (иногда долго) с подбором масштаба и построением самих прямых.
Решения и ответы:
Пример 2: Ответ:
Пример 4: Решение: а) Построим прямую . Выберем произвольную точку плоскости, не принадлежащую данной прямой, например, и подставим её координаты в неравенство: Получено неверное неравенство, значит, неравенство задаёт полуплоскость, которой не принадлежит точка , при этом прямая не входит в решение. б) Построим прямую . Выберем произвольную точку плоскости, не принадлежащую данной прямой, например, и подставим её координаты в неравенство: Получено верное неравенство, значит, неравенство задаёт полуплоскость, в которой находится точка , при этом прямая входит в решение. Ответ:
Пример 6: Решение: Составим многочлен и вычислим его значение в точке : , следовательно, искомые точки должны удовлетворять неравенству (а значит, и условию ). Вычислим значения многочлена в каждой из пяти точек: Условию удовлетворяют точки . Ответ: в одной полуплоскости с началом координат лежат точки .
Пример 8: Решение: изобразим на чертеже область решений, соответствующую заданной системе линейных неравенств: Ответ: область решений системы ограничена ломаной и лучами .
Пример 10: Решение: изобразим на чертеже область решений данной системы неравенств: Область решений представляет собой многоугольник . Найдём координаты вершин полученной области: Ответ: область решений системы представляет собой многоугольник с вершинами в точках .
Автор: Емелин Александр
(Переход на главную страницу)
«Всё сдал!» — онлайн-сервис помощи студентам
Zaochnik.com – профессиональная помощь студентам,
cкидкa 17% на первый зaкaз, при оформлении введите прoмoкoд: 5530-xr4ys