Как решить график функции

Как решить график функции

График линейной функции, его свойства и формулы

Как решить график функции

Понятие функции

Функция — это зависимость y от x, где x является независимой переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, следуя которому по значениям независимой переменной можно найти соответствующие значения функции. Вот какими способами ее можно задать:

Табличный способ помогает быстро определить конкретные значения без дополнительных измерений или вычислений.

Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.

Словесный способ.

Графический способ — наглядно. Его мы и разберем в этой статье.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

если х = 4, то у = 0 и т. д.

Для удобства результаты можно оформлять в виде таблицы:

Графиком линейной функции является прямая. Для ее построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

k и b — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты k и b.

ФункцияКоэффициент kКоэффициент b
y = 2x + 8k = 2b = 8
y = −x + 3k = −1b = 3
y = 1/8x − 1k = 1/8b = −1
y = 0,2xk = 0,2b = 0

Может показаться, что в функции y = 0,2x нет числового коэффициента b, но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа y = kx + b есть коэффициенты k и b.

Свойства линейной функции

Область определения функции — множество всех действительных чисел.

Множеством значений функции является множество всех действительных чисел.

График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.

Функция не имеет ни наибольшего, ни наименьшего значений.

Четность и нечетность линейной функции зависят от значений коэффициентов k и b:

b ≠ 0, k = 0, значит, y = b — четная;

b = 0, k ≠ 0, значит, y = kx — нечетная;

b ≠ 0, k ≠ 0, значит, y = kx + b — функция общего вида;

b = 0, k = 0, значит, y = 0— как четная, так и нечетная функция.

Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.

График функции пересекает оси координат:

ось абсцисс ОХ — в точке (−b/k; 0);

ось ординат OY — в точке (0; b).

x = −b/k — является нулем функции.

Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.

Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.

Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0 функция принимает отрицательные значения на промежутке (−∞; −b/k) и положительные значения на промежутке (−b/k; +∞).

При k 0, то этот угол острый, если k

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида у = kx + b, достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1/3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

Как решить график функции

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

если k > 0, то график наклонен вправо;

если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;

если b 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Если k > 0 и b

В задачах 7 класса можно встретить график уравнения х = а. Он представляет собой прямую линию, которая параллельна оси ОY все точки которой имеют абсциссу х = а.

Важно понимать, что уравнение х = а не является функцией, так как различным значениям аргумента соответствует одно и то же значение функции, что не соответствует определению функции.

Например, график уравнения х = 3:

Как решить график функции

Условие параллельности двух прямых:

График функции y = k1x + b1 параллелен графику функции y = k2x + b2, если k1 = k2.

Условие перпендикулярности двух прямых:

График функции y = k1x + b1 перпендикулярен графику функции y = k2x + b2, если k1k2 = −1 или k1 = −1/k2.

Точки пересечения графика функции y = kx + b с осями координат:

С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.

Координаты точки пересечения с осью OY: (0; b).

С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = −b/k.

Координаты точки пересечения с осью OX: (−b/k; 0).

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.

Поставим эти точки в координатной плоскости и соединим прямой:

Как решить график функции

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.

Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.

Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.

Как решить график функции

Вычтем из второго уравнения системы первое, и получим k = 3.

Источник

Как решать задачи на функцию

Прежде чем перейти к разбору решения задач с функциями обязательно прочитайте урок «Что такое функция в математике».

После того, как вы действительно поймете, что такое функция (возможно, придется прочитать урок не один раз) вы с бóльшей уверенностью сможете решать задания с функциями.

В этом уроке мы разберем, как решать основные типы задач на функцию и графики функций.

Как получить значение функции

Рассмотрим задание. Функция задана формулой « y = 2x − 1 »

Для того, чтобы вычислить « y » при « x = 15 » достаточно подставить в функцию вместо « x » необходимое числовое значение.

Запись решения выглядит следующим образом.

Для того, чтобы найти « x » по известному « y », необходимо подставить вместо « y » в формулу функции числовое значение.

Мы получили линейное уравнение с неизвестным « x », которое решается по правилам решения линейных уравнений.

Не забывайте про правило переноса в уравнениях.

Как и при решении линейного уравнения, чтобы найти неизвестное, сейчас требуется умножить и левую, и правую часть на « −1 » для смены знака.

Как проверить верно ли равенство для функции

Рассмотрим задание. Функция задана формулой « f(x) = 2 − 5x ».

Верно ли равенство « f(−2) = −18 »?

Чтобы проверить верно ли равенство, нужно подставить в функцию « f(x) = 2 − 5x » числовое значение « x = −2 » и сопоставить с тем, что получится при расчетах.

Когда подставляете отрицательное число вместо « x », обязательно заключайте его в скобки.

Не забывайте использовать правило знаков.

Неправильно

Как решить график функции

Правильно

Как решить график функции

С помощью расчетов мы получили « f(−2) = 12 ».

Это означает, что « f(−2) = −18 » для функции « f(x) = 2 − 5x » не является верным равенством.

Как проверить, что точка принадлежит графику функции

Рассмотрим функцию « y = x 2 −5x + 6 »

Для этой задачи нет необходимости, строить график заданной функции.

Чтобы определить, принадлежит ли точка функции, достаточно подставить её координаты в функцию (координату по оси « Ox » вместо « x » и координату по оси « Oy » вместо « y »).

Вместо « x » подставим « 1 ». Вместо « y » подставим « 2 ».

У нас получилось верное равенство, значит, точка с координатами (1; 2) принадлежит заданной функции.

Вместо « x » подставим « 0 ». Вместо « y » подставим « 1 ».

В этом случае мы не получили верное равенство. Это означает, что точка с координатами (0; 1) не принадлежит функции « y = x 2 − 5x + 6 »

Как получить координаты точки функции

С любого графика функции можно снять координаты точки. Затем необходимо убедиться, что при подстановке координат в формулу функции получается верное равенство.

Рассмотрим функцию « y(x) = −2x + 1 ». Её график мы уже строили в предыдущем уроке.

Как решить график функции

Для этого из значения « 2 » на оси « Ox » проведем перпендикуляр к графику функции. Из точки пересечения перпендикуляра и графика функции проведем еще один перпендикуляр к оси « Oy ».

Как решить график функции

Полученное значение « −3 » на оси « Oy » и будет искомым значением « y ».

Убедимся, что мы правильно сняли координаты точки для x = 2
в функции « y(x) = −2x + 1 ».

Значит, мы правильно получили координаты с графика функции.

Все полученные координаты точки с графика функции обязательно проверяйте подстановкой значений « x » в функцию.

При подстановке числового значения « x » в функцию в результате должно получиться то же значение « y », которое вы получили на графике.

При получении координат точек с графика функции высока вероятность, что вы ошибетесь, т.к. проведение перпендикуляра к осям выполняется «на глазок».

Только подстановка значений в формулу функции дает точные результаты.

Источник

Задание 9 ЕГЭ по математике. Графики функций

В 2022 году в вариантах ЕГЭ Профильного уровня появилась задание №9 по теме «Графики функций». Можно считать его подготовительным для освоения задач с параметрами.

Как формулируется задание 9 ЕГЭ по математике? По графику функции, который дается в условии, вам нужно определить неизвестные параметры в ее формуле. Возможно — найти значение функции в некоторой точке или координаты точки пересечения графиков функций.

Чтобы выполнить это задание, надо знать, как выглядят и какими свойствами обладают графики элементарных функций. Надо уметь читать графики, то есть получать из них необходимую информацию. Например, определять формулу функции по ее графику.

Вот необходимая теория для решения задания №9 ЕГЭ.

Да, теоретического материала здесь много. Но он необходим — и для решения задания 9 ЕГЭ, и для понимания темы «Задачи с параметрами», а также для дальнейшего изучения математики на первом курсе вуза.

Рекомендации:

Проверь себя: какие действия нужно сделать с формулой функции, чтобы сдвинуть ее график по горизонтали или по вертикали, растянуть, перевернуть?

Разбирая решения задач, обращай внимание на то, как мы ищем точки пересечения графиков или неизвестные переменные в формуле функции. Такие элементы оформления встречаются также в задачах с параметрами.

Задание 9 в формате ЕГЭ-2021

Линейная функция

Как решить график функции

Вычтем из первого уравнения второе:

Уравнение прямой имеет вид:

2. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

Как решить график функции

Запишем формулы функций.

Вычтем из первого уравнения второе.

Прямая задается формулой:

Найдем абсциссу точки пересечения прямых. Эта точка лежит на обеих прямых, поэтому:

3. На рисунке изображены графики двух линейных функций. Найдите абсциссу точки пересечения графиков.

Как решить график функции

Для прямой, расположенной выше, угловой коэффициент равен

Эта прямая проходит через точку (-2; 4), поэтому: эта прямая задается формулой

Для точки пересечения прямых:

Квадратичная функция. Необходимая теория

4. На рисунке изображен график функции Найдите b.

Как решить график функции

На рисунке — квадратичная парабола полученная из графика функции сдвигом на 1 вправо, то есть

Как решить график функции

6. На рисунке изображён график функции Найдите

Как решить график функции

Формула функции имеет вид:

7. На рисунке изображены графики функций и которые пересекаются в точках А и В. Найдите абсциссу точки В.

Как решить график функции

Найдем абсциссу точки B. Для точек A и B:

(это абсцисса точки A) или (это абсцисса точки B).

Степенные функции. Необходимая теория

Как решить график функции

График функции проходит через точку (2; 1); значит,

Для точек A и B имеем:

Отсюда (абсцисса точки A) или (абсцисса точки B).

Как решить график функции

Функция задана формулой:

Ее график проходит через точку (4; 5); значит,

Как решить график функции

Показательная функция. Необходимая теория

11. На рисунке изображён график функции Найдите

Как решить график функции

График функции проходит через точки (-3; 1) и (1; 4). Подставив по очереди координаты этих точек в формулу функции получим:

Поделим второе уравнение на первое:

Подставим во второе уравнение:

Как решить график функции

График функции проходит через точку Это значит, что

Логарифмическая функция. Необходимая теория

13. На рисунке изображён график функции Найдите

Как решить график функции

График функции проходит через точки (-3; 1) и (-1; 2). Подставим по очереди эти точки в формулу функции.

Вычтем из второго уравнения первое:

или — не подходит, так как (как основание логарифма).

Как решить график функции

Тригонометрические функции. Необходимая теория

15. На рисунке изображён график функции Найдите

Как решить график функции

График функции сдвинут на 1,5 вверх; Значит, Амплитуда (наибольшее отклонение от среднего значения).

16. На рисунке изображён график функции

Как решить график функции

На рисунке — график функции Так как

График функции проходит через точку A Подставим и координаты точки А в формулу функции.

Так как получим:

17. На рисунке изображен график периодической функции у = f(x). Найдите значение выражения

Как решить график функции

Функция, график которой изображен на рисунке, не только периодическая, но и нечетная, и если то

Друзья, мы надеемся, что на уроках математики в школе вы решаете такие задачи. Для углубленного изучения темы «Функции и графики» (задание 9 ЕГЭ по математике), а также задач с параметрами и других тем ЕГЭ — рекомендуем Онлайн-курс для подготовки к ЕГЭ на 100 баллов.

Источник

Элементарные функции и их графики

Понятие функции — одно из ключевых в математике. О нём подробно рассказано в статье «Что такое функция».

И конечно, в задачах части 2 Профильного ЕГЭ по математике без них не обойтись. А если вы выбрали технический или экономический вуз — первая же лекция по матанализу будет посвящена именно элементарным функциями и их графикам.

Но это не всё. Математические функции, изучением которых мы занимаемся, — это не что-то такое выдуманное или существующее только в замкнутом пространстве учебника. Они являются отражением реальных взаимосвязей и процессов, происходящих в природе и обществе.

Существует всего пять типов элементарных функций:

2. Показательные
Это функции вида y = a x

4. Тригонометрические
В их формулах присутствуют синусы, косинусы, тангенсы и котангенсы.

Элементарными они называются потому, что из них, как из элементов, получаются все остальные, встречающиеся в школьном курсе. Например, y = x 2 · e x — произведение квадратичной и показательной функций; y = sin(a x ) — сложная функция, то есть комбинация двух функций — показательной и тригонометрической.

Графики и свойства основных элементарных функций следует знать наизусть.

Показательная функция y = a x

a > 1Как решить график функции
0 1Как решить график функции
0 2 + 5? Об этом — статья «Преобразования графиков функций».

Обратите внимание: уравнения, которые вы решаете, обычно относятся к одному из этих пяти типов. Для каждого типа — свои способы решения. Это и понятно: они основаны на тех или иных свойствах функций.

Почему в уравнении 3 x = 3 5 мы можем «отбросить» основания и записать, что x = 5? Да потому что показательная функция y = 3 x возрастает и каждое значение принимает только один раз.

Почему уравнение имеет бесконечно много решений, которые записываются в виде серии: Как решить график функции, где n — целое? Потому что функция y = sinx — периодическая, то есть каждое свое значение принимает бесконечно много раз.

Зная графики элементарных функций, вы уже не запутаетесь с ОДЗ уравнений и неравенств. Вы сможете решать сложные задачи графически — а это часто во много раз легче и быстрее, чем аналитически.

Есть еще и такие уравнения, где слева и справа стоят функции разных типов. Для их решения есть графический способ, а также специальные приемы, о которых рассказывается в статье «Метод оценки».

Источник

Задания с графиками функций в ОГЭ

Функция – это такая вещь, которая связывает две (или более) переменных между собой. Другими словами, функция помогает найти одну переменную, если мы знаем значение второй переменной. Например, если у нас в кармане есть 100 рублей, а шоколадка стоит 50 рублей, то мы можем купить 2 шоколадки. Если у нас в кармане есть 200 рублей, то мы можем купить 4 шоколадки. В этом случае первая переменная – это сумма, которая есть в кармане, а вторая переменная – количество шоколадок, которые мы можем купить. Стоимость шоколадки составляет 50 рублей, она не зависит от того сколько у нас денег, поэтому эта величина является постоянной.

Можно составить функцию для этого случая: у = 50 • х, где у – деньги в кармане, х – количество шоколадок.

Естественно функции бывают более сложными. Но для решения заданий ОГЭ по математике достаточно знать как выглядят графики основных функций.

1. Функция вида y = kx + b (прямая линия)

2. Функция вида y = ax 2 + bx +c (парабола)

Число а отвечает за то, в какую сторону (вверх или вниз) направлены ветви параболы (я еще называю веселый смайлик и грустный смайлик). Если a > 0, то веселый смайлик, если a
Как решить график функции

Число b отвечает за то в какую сторону (вправо или влево) смещена точка начала параболы (точка перегиба) относительно оси y. Если b > 0, то график смещен влево, если b

Число c – это точка пересечения графика с осью y. Если c >0, то график пересекает ось y выше начала координат, если c
Как решить график функции
Как решить график функции

3. Функция вида y = k/x + b (гипербола)

Эта функция по виду напоминает функцию прямой, за тем исключением, что х находится в знаменателе. Это как раз и является ее отличительной особенностью. Число k отвечает за расположение функции по четвертям, если k > 0, то ветви гиперболы располагаются в первой и третьей четвертях, если k

Как решить график функции
Число а отвечает за сдвиг всей функции вниз (а 0).

Как решить график функции

4. Функция вида y = a (прямая)

В этом случае функция выглядит как прямая, параллельная оси х. Например у = 2, это прямая линия, которая проходит параллельно оси х и пересекает ось у в точке 2.

Как решить график функции
5. Функция вида y = √x

Источник

Что такое функция

Понятие «функция» пронизывает все сферы математики и не только.

Мы все знаем, что функция записывается как \( \displaystyle y=f\left( x \right)\), но можешь ли ты ответить, что обозначает эта формула?

Если да, то ты большой молодец!

А если нет, – не страшно! Сейчас быстренько во всем разберемся!

Функции — коротко о главном

Определение функции:

Функцией называется правило \( \displaystyle f\), по которому каждому элементу \( \displaystyle x\) множества \( \displaystyle X\) ставится в соответствие единственный элемент \( \displaystyle y\) множества \( \displaystyle Y\).

Свойства и способы задания:

Допустимые значения аргумента, или область определения функции \( \displaystyle D\left( y \right)\) – это то, что связано с возможными \( \displaystyle x\), при которых функция имеет смысл.

Область значений функции \( \displaystyle E\left( y \right)\) – это то, какие значения принимает \( \displaystyle y\), при допустимых значениях \( \displaystyle x\).

Существует 4 способа задания функции:

Основные виды функций:

Сейчас все это разберем подробнее.

Что такое функция — человеческим языком

Так вот, функция отражает зависимость величин друг от друга: то есть при изменении одного числа \( \displaystyle x\), по некоторому закону \( \displaystyle f\left( x \right)\) изменяется \( \displaystyle y\).

Зависимость, или взаимосвязь – вот ключевые слова при определении понятия функции.

Попробуй самостоятельно придумать несколько примеров из жизни, где четко проявляется зависимость одного от другого.

И?… Не можешь придумать ни один пример? Как так! Смотри:

Допустим автомобиль движется со средней скоростью \( \displaystyle 110\) км/ч, как тогда выразить зависимость пути \( \displaystyle S\) от времени \( \displaystyle t\)?

\( \displaystyle S=110\cdot t\)

То есть чем больше времени автомобилист проведет за рулем, тем больше расстояние он преодолеет на своем автомобиле. Чем не зависимость?

Что в этом случае будет \( \displaystyle y\), что \( \displaystyle x\), и как будет выражено в итоге \( \displaystyle f\left( x \right)\)?

Проведем параллели между физической формулой и привычной нам записью функции \( \displaystyle y=f\left( x \right)\):

Разобрался что к чему? Теперь перейдем на математический язык.

Что такое функция — на языке математики

Итак. Еще раз смотрим на нашу формулу:

\( \displaystyle y=f\left( x \right)\)

Слева стоит \( \displaystyle y\) – это и есть функция. За этой буквой может быть все что угодно: температура, скорость, сила, путь – неважно! \( \displaystyle y\) – зависимая величина.

Она может зависеть от множества критериев. Например, как в нашем случае, зависимость пути от времени, проведенном в дороге при движении с постоянной скоростью.

Справа у нас стоит \( \displaystyle x\). Эта величина переменная, или, как говорят математики, «аргумент».

Логично, что чем больше времени проведет автомобилист в дороге, тем большее расстояние он проедет (конечно, если скорость будет постоянна, и он не встрянет намертво в пробках).

Справа у нас также есть \( \displaystyle f\), за этим скрываются все действия, совершаемые над \( \displaystyle x\).

В нашем случае мы говорим, что \( \displaystyle S=\nu \cdot t\), а так как \( \displaystyle \nu =110\)км/ч, то под \( \displaystyle f\) скрывается умножение на \( \displaystyle 110\), вот мы и получаем – \( \displaystyle f\left( x \right)=110\cdot x\).

Теперь, думаю, тебе все понятно?

Подведем итог:

Теперь, когда ты понял суть понятия «функция» и знаешь, что такое переменная величина, а что постоянная, посмотрим на определение функции, каким его дают математики.

Определение функции

Функцией называется правило \( \displaystyle f\), по которому каждому элементу \( \displaystyle x\) множества \( \displaystyle X\) ставится в соответствие единственный элемент \( \displaystyle y\) множества \( \displaystyle Y\).

Вроде и \( \displaystyle x\) есть… и \( \displaystyle y\) есть, и даже правило \( \displaystyle f\) есть, но что это за множества такие?

«О них мы ни слова не говорили!» – воскликнешь ты. Не паникуй! 🙂 Множества – это очень просто, сейчас все-все проясним!

Область определения функции

Вернемся к нашему примеру.

Автомобилист едет с постоянной скоростью и проезжает расстояние, которое зависит от того, сколько времени он провел в пути. Все верно?

Разбираемся дальше. Мы говорили, что \( \displaystyle x=t\), это как раз и есть время, проведенное в пути.

Каким оно может быть? Ты сейчас можешь быть крайней удивлен такой постановкой вопроса, но все же, каким может быть это время?

Правильно, чисто теоретически от \( \displaystyle 0\) до \( \displaystyle +\infty \).

Вот ты сам и определил для нашего конкретного случая множество \( \displaystyle X\), а иначе говоря, допустимые значения аргумента или область определения функции \( \displaystyle D\left( y \right)\).

Запомнить очень легко: что определяет нашу функцию? От чего зависит игрек, и что мы меняем?

Функцию определяет икс! Соответственно, область определения – это возможные значения \( \displaystyle x\).

Теперь давай рассматривать, что такое множество \( \displaystyle Y\).

Область значений функции

Думаю, ты сам ответишь, что путь не может быть отрицательным, так что \( \displaystyle y=S\) в нашей с тобой придуманной функции так же может принимать значения в промежутке от \( \displaystyle 0\) до \( \displaystyle +\infty \).

Это называется областью значений функции \( \displaystyle E\left( y \right)\), то есть множество \( \displaystyle Y\), которые существуют для данной функции.

Итак, сделаем небольшой вывод по последнему:

Допустимые значения аргумента, или область определения функции \( \displaystyle D\left( y \right)\) – это то, что связано с возможными \( \displaystyle x\), при которых функция имеет смысл.

Область значений функции \( \displaystyle E\left( y \right)\) – это то, какие значения принимает \( \displaystyle y\), при допустимых значениях \( \displaystyle x\).

Давай потренируемся находить области определения функции и ее допустимые значения.

Область определения функции по графикам

Как решить график функции

Решение

Обязательно пробуй сначала решать самостоятельно!

Все верно? Молодец! Что-то не понятно? Спрашивай в комментариях!

Теперь попробуем найти область значения фунции.

Области значений функции по графикам

Как решить график функции

Еще раз поработаем с графиками, только теперь чуть-чуть посложнее…

Области значений и определения функции по графикам

Как решить график функции

Решение:

(Б) \( \displaystyle D\left( y \right)=\left( 1;+\infty \right)\)
\( \displaystyle E\left( y \right)=\left\< 1 \right\>\).

Область определения функции по формулам (аналитически)

С графиками, я думаю, ты разобрался. Теперь попробуем в соответствии с формулами найти область определения функции (если ты не знаешь, как это сделать, прочитай раздел про ОДЗ — область допустимых значений).

Справился? Смотри ответы:

Еще один важный момент

Еще раз повторю определение и сделаю на нем акцент:

Функцией называется правило \( \displaystyle f\), по которому каждому элементу \( \displaystyle x\) множества \( \displaystyle X\) ставится в соответствие единственный элемент \( \displaystyle y\) множества \( \displaystyle Y\).

Заметил? Слово «единственный» – это очень-очень важный элемент нашего определения. Постараюсь объяснить тебе на пальцах.

Допустим, у нас есть функция, заданная прямой. \( \displaystyle y=5x+3\). При \( \displaystyle x=0\), мы подставляем данное значение в наше «правило» и получаем, что \( \displaystyle y=3\).

Одному значению \( \displaystyle x\) соответствует одно значение \( \displaystyle y\). Мы даже можем составить таблицу различных значений и построить график данной функции, чтобы убедится в этом.

А вот и график с нашими отмеченными точками:

Как решить график функции

Как ты убедился – графиком является прямая, в которой одному значению \( \displaystyle x\) соответствует одно значение \( \displaystyle y\) (данный факт показан красными линиями).

Соответственно, данная зависимость подходит под определение функции.

А что ты скажешь о такой зависимости: \( \displaystyle y=2<^<2>>-4-1\), то есть параболы? Является ли она функцией? Давай составим также табличку значений:

Дело в том, что, при расчёте для \( \displaystyle x=0\), мы получили один игрек. И при расчёте с \( \displaystyle x=2\) мы получили один игрек. Так что все верно, парабола является функцией.

Посмотри на график:

Как решить график функции

Разобрался? Если нет, вот тебе жизненный пример сооовсем далекий от математики!

Допустим, у нас есть группа абитуриентов, познакомившихся при подаче документов, каждый из которых в разговоре рассказал, где он живет:

Как решить график функции

Согласись, вполне реально, что несколько ребят живут в одном городе, но невозможно, чтобы один человек жил в нескольких городах одновременно. Это как бы логичное представление нашей «параболы» – нескольким разным икс соответствует один и тот же игрек.

Теперь придумаем пример, когда зависимость не будет функцией. Допустим, эти же ребята рассказывали, на какие специальности они подали документы:

Как решить график функции

Здесь у нас совершенно другая ситуация: один человек может спокойно подать документы как на одно, так и на несколько направлений. То есть одному элементу \( \displaystyle x\) множества \( \displaystyle X\) ставится в соответствие несколько элементов \( \displaystyle y\) множества \( \displaystyle Y\). Соответственно, это не функция.

Проверим твои знания на практике. Определи по рисункам, что является функцией, а что нет:

Как решить график функции

Разобрался? А вот и ответы:

Почему? Да вот почему:

Как решить график функции

На всех рисунках кроме В) и Е) на один \( \displaystyle x\) приходится несколько \( \displaystyle y\)!

Уверена, теперь ты с легкостью отличишь функцию от «НЕ функции», скажешь, что такое аргумент и что такое зависимая переменная, а так же определишь область допустимых значений аргумента и область определения функции.

Приступаем к следующему разделу – как задать функцию?

4 способа задать функцию

Задать функцию — это значит определить правило, по которому по значениям переменной можно найти ее значения.

Разберемся во всем по порядку, а начнем с аналитического способа.

Аналитический способ заданий функции

Аналитический способ – это и есть задание функции с помощью формулы. Это самый универсальный и исчерпывающий и однозначный способ.

Если у тебя есть формула, то ты знаешь о функции абсолютно все – ты можешь составить по ней табличку значений, можешь построить график, определить, где функция возрастает, а где убывает, в общем, исследовать ее по полной программе.

Рассмотрим функцию \( \displaystyle f\left( x \right)=<^<3>>-3<^<2>>+-2\). Чему равно \( \displaystyle f\left( 2 \right)\)?

«Что это значит?» – спросишь ты. Сейчас объясню.

Напомню, что в записи \( \displaystyle f(x)\) выражение в скобках называется аргументом.

И этот аргумент может быть любым выражением, не обязательно просто \( \displaystyle x\). Соответственно, каким бы ни был аргумент (выражение в скобках), мы его запишем вместо \( \displaystyle x\) в выражении \( \displaystyle f(x)\).

В нашем примере получится так:

Пример из ЕГЭ

Найдите значение выражения \( \displaystyle \frac\), при \( \displaystyle f\left( x \right)=<<5>^>\).

Уверена, что сначала ты испугался, увидев такое выражение, но в нем нет абсолютно ничего страшного!

Что же нужно сделать в нашем примере? Вместо \( \displaystyle f\left( x-15 \right)\) надо написать \( \displaystyle <<5>^>\), а вместо – \( \displaystyle f\left( x-18 \right)-<<5>^>\):

А дальше, используя свойства степени (можешь лишний раз одним глазком заглянуть в соответствующую тему – не помешает), а именно:

сократить получившееся выражение:

Теперь попробуй самостоятельно найти значение следующих выражений:

Справился? Сравним наши ответы:

Мы привыкли, что функция имеет вид \( \displaystyle y=f\left( x \right)\), даже в наших примерах мы задаем функцию именно таким образом, однако аналитически можно задать функцию в неявном виде, например \( \displaystyle 5x+2y-3=0\). Попробуй построить эту функцию самостоятельно.

Вот как строила ее я.

Какое уравнение мы в итоге вывели? Правильно! Линейное, а это значит, что графиком будет прямая линия. Сделаем табличку, чтобы определить, какие точки принадлежат нашей прямой:

А теперь строим по данным точкам график:

Как решить график функции

Вот так из неявной формулы получилась линейная функция.

А теперь посмотри следующую формулу: \( \displaystyle <^<2>>=x\). Является ли она функцией? Согласись, вызывает затруднение…

Попробуй подставить различные значения \( \displaystyle x\) и посмотреть, какой \( \displaystyle y\) им соответствует.

Вот как раз то, о чем мы говорили… Одному \( \displaystyle x\) соответствует несколько \( \displaystyle y\). Попробуем нарисовать то, что получилось:

Как решить график функции

Является ли то, что у нас получилось функцией? Правильно, нет! Почему? Попробуй ответить на этот вопрос с помощью рисунка. Что у тебя вышло?

Как решить график функции

«Потому что одному значению \( \displaystyle x\) соответствует несколько значений \( \displaystyle y\)!»

Какой вывод мы можем из этого сделать?

Правильно, функция не всегда может быть выражена явно, и не всегда то, что «замаскировано» под функцию является функцией!

Табличный способ задания функции

Как следует из названия, этот способ представляет собой простую табличку. Да, да. Наподобие той, которой мы с тобой уже составляли. Например:

Как ты уже знаешь, в первой строчке мы ставим значение аргумента, а во второй строчке – соответствующие ему значение функции. Таким образом, в таблице каждому иксу соответствует одно значение игрека.

Заметь, в последней приведенной табличке невозможно четко определить правило, по которому игрек зависит от икс. Так тоже бывает и в этом нет ничего страшного, просто мы не можем вот так сразу взять и определить правило.

Если тебя это смущает, приведу в пример другую таблицу:

Здесь ты сразу подметил закономерность – игрек в три раза больше чем икс.

А теперь задание на «очень хорошо подумать»: как ты считаешь, равносильная ли функция, заданная в виде таблицы, функции \( \displaystyle y=3x\)?

Не будем долго рассуждать, а будем рисовать!

Итак. Рисуем функцию, заданную обоими способами:

Как решить график функции

Видишь разницу? Дело совсем не в отмеченных точках! Присмотрись внимательнее:

Как решить график функции

Теперь увидел? Когда мы задаем функцию табличным способом, мы на графике отражаем только те точки, которые есть у нас в таблице и линия (как в нашем случае) проходит только через них.

Когда мы задаем функцию аналитическим способом, мы можем взять любые точки, и наша функция ими не ограничивается. Вот такая вот особенность. Запоминай!

Графический способ построения функции

Графический способ построения функции не менее удобен. Мы рисуем нашу функцию, а другой заинтересованный человек может найти чему равен игрек при определенном икс и так далее.

Графический и аналитический способы одни из самых распространенных.

Однако, здесь нужно помнить о чем мы с тобой говорили в самом начале – не каждая «загогулина» нарисованная в системе координат является функцией! Вспомнил? На всякий случай скопирую тебе сюда определение, что функцией является:

Как правило, люди обычно называют именно те три способа задания функции, которые мы разобрали – аналитический (с помощью формулы), табличный и графический, напрочь забывая о том, что функцию можно словесно описать.

Как это? Да очень просто!

Словесный способ задания функции

Как же описать функцию словесно?

Возьмем наш недавний пример – \( \displaystyle y=3x\).

Данную функцию можно описать «каждому действительному значению икс соответствует его утроенное значение». Вот и все. Ничего сложного.

Ты, конечно, возразишь: «Есть настолько сложные функции, которые словесно задать просто невозможно!» Да, есть и такие, но есть функции, которые описать словесно легче, чем задать формулой.

Например: «каждому натуральному значению икс соответствует разница между цифрами, из которых он состоит, при этом за уменьшаемое берется наибольшее цифра, содержащиеся в записи числа».

Теперь рассмотрим, как наше словесное описание функции реализуется на практике:

Пусть \( \displaystyle x=256\)

Наибольшая цифра в данном числе – \( \displaystyle 6\), соответственно, \( \displaystyle 6\) – уменьшаемое, тогда:

Основные виды функций

Теперь перейдем к самому интересному – рассмотрим основные виды функций, с которыми ты работал/работаешь и будешь работать в курсе школьной и институтской математики, то есть познакомимся с ними, так сказать и дадим им краткую характеристику.

А еще будет полезно узнать про то, как строятся графики функций. Загляни сюда:

Линейная функция

Функция вида \( \displaystyle y=kx+b\), где \( \displaystyle k\), \( \displaystyle b\) – действительные числа.

Графиком данной функции служит прямая, поэтому построение линейной функции сводится к нахождению координат двух точек.

Положение прямой на координатной плоскости зависит от углового коэффициента \( \displaystyle k=tg\alpha \).

Как решить график функции

Область определения функции (aka область допустимых значений аргумента) – \( \displaystyle D\left( y \right)-\mathbb\).

Область значений – \( \displaystyle E\left( y \right)-\mathbb\).

Квадратичная функция

Функция вида \( \displaystyle y=a<^<2>>+bx+c\), где \( \displaystyle a\ne 0\)

Графиком функции является парабола, при \( \displaystyle a 0\) — вверх.

Многие свойства квадратичной функции зависят от значения дискриминанта. Дискриминант вычисляется по формуле \( \displaystyle D=<^<2>>-4ac\)

Положение параболы на координатной плоскости относительно значения \( \displaystyle D\) и коэффициента \( \displaystyle a\) показаны на рисунке:

Как решить график функции

Область определения – \( \displaystyle D\left( y \right)=\mathbb\)

Область значений \( \displaystyle E\left( y \right)\) зависит от экстремума данной функции (точки вершины параболы) и коэффициента \( \displaystyle a\) (направления ветвей параболы)

Обратная пропорциональность

Функция, задаваемая формулой \( \displaystyle y=\frac\), где \( \displaystyle k\ne 0\)

Число \( \displaystyle k\) называется коэффициентом обратной пропорциональности.

В зависимости от того, какое значение \( \displaystyle k\), ветви гиперболы находятся в разных квадратах:

Как решить график функции

Бонус: Вебинары из нашего курса подготовки к ЕГЭ по математике

Элементарные функции и их графики (ЕГЭ 18. Задача с параметром)

Задачи с параметром из ЕГЭ зачастую предполагают исследование функций или хотя бы знание их свойств.

Чтобы научиться исследовать функции, для начала лучше всего научиться строить их графики.

На этом уроке мы рассмотрим основные элементарные функции, научимся строить их графики и узнаем, как на них влияют разные параметры (коэффициенты в функциях).

Преобразования графиков функций (ЕГЭ 18. Задачи с параметром)

Научились строить график какой-то функции? А что, если я теперь поменяю один из коэффициентов? Или «заключу» часть функции в модуль?

Можно ли не строить для этого новый график, а просто передвинуть/растянуть старый?

Можно! И на этом уроке мы научимся производить такие трансформации.

Благодаря таким трансформациям мы станем понимать, как выглядят графики функций при всех значениях параметра и научимся решать задачи из ЕГЭ на эту тему.

Источник

Как решить график функции

Длина отрезка на координатной оси находится по формуле:

Как решить график функции

Длина отрезка на координатной плоскости ищется по формуле:

Как решить график функции

Для нахождения длины отрезка в трёхмерной системе координат используется следующая формула:

Как решить график функции

Как решить график функции

Функция – это соответствие вида y = f(x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой переменной величины x (аргумента или независимой переменной) соответствует определенное значение другой переменной величины, y (зависимой переменной, иногда это значение просто называют значением функции). Обратите внимание, что функция подразумевает, что одному значению аргумента х может соответствовать только одно значение зависимой переменной у. При этом одно и то же значение у может быть получено при различных х.

Область определения функции – это все значения независимой переменной (аргумента функции, обычно это х), при которых функция определена, т.е. ее значение существует. Обозначается область определения D(y). По большому счету Вы уже знакомы с этим понятием. Область определения функции по другому называется областью допустимых значений, или ОДЗ, которую Вы давно умеете находить.

Область значений функции – это все возможные значения зависимой переменной данной функции. Обозначается Е(у).

Функция возрастает на промежутке, на котором большему значению аргумента соответствует большее значение функции. Функция убывает на промежутке, на котором большему значению аргумента соответствует меньшее значение функции.

Промежутки знакопостоянства функции – это промежутки независимой переменной, на которых зависимая переменная сохраняет свой положительный или отрицательный знак.

Нули функции – это такие значения аргумента, при которых величина функции равна нулю. В этих точках график функции пересекает ось абсцисс (ось ОХ). Очень часто необходимость найти нули функции означает необходимость просто решить уравнение. Также часто необходимость найти промежутки знакопостоянства означает необходимость просто решить неравенство.

Функцию y = f(x) называют четной, если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Как решить график функции

Это означает, что для любых противоположных значений аргумента, значения четной функции равны. График чётной функции всегда симметричен относительно оси ординат ОУ.

Функцию y = f(x) называют нечетной, если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Как решить график функции

Это означает, что для любых противоположных значений аргумента, значения нечетной функции также противоположны. График нечётной функции всегда симметричен относительно начала координат.

Сумма корней чётной и нечетной функций (точек пересечения оси абсцисс ОХ) всегда равна нулю, т.к. на каждый положительный корень х приходится отрицательный корень –х.

Важно отметить: некоторая функция не обязательно должна быть четной либо нечетной. Существует множество функций не являющихся ни четными ни нечетными. Такие функции называются функциями общего вида, и для них не выполняется ни одно из равенств или свойств приведенных выше.

График линейной функции

Линейной функцией называют функцию, которую можно задать формулой:

Как решить график функции

Как решить график функции

Графики других функций

Степенной функцией называют функцию, заданную формулой:

Как решить график функции

Приведем несколько примеров графиков степенных функций:

Как решить график функции

Обратно пропорциональной зависимостью называют функцию, заданную формулой:

Как решить график функции

В зависимости от знака числа k график обратно пропорциональной зависимости может иметь два принципиальных варианта:

Как решить график функции

Показательной функцией с основанием а называют функцию, заданную формулой:

Как решить график функции

В зависимости от того больше или меньше единицы число a график показательной функции может иметь два принципиальных варианта (приведем также примеры, см. ниже):

Как решить график функции

Логарифмической функцией называют функцию, заданную формулой:

Как решить график функции

В зависимости от того больше или меньше единицы число a график логарифмической функции может иметь два принципиальных варианта:

Как решить график функции

График функции y = |x| выглядит следующим образом:

Как решить график функции

Как решить график функции

Графики периодических (тригонометрических) функций

Функция у = f(x) называется периодической, если существует такое, неравное нулю, число Т, что f(x + Т) = f(x), для любого х из области определения функции f(x). Если функция f(x) является периодической с периодом T, то функция:

Как решить график функции

где: A, k, b – постоянные числа, причем k не равно нулю, также периодическая с периодом T1, который определяется формулой:

Как решить график функции

Как решить график функции

Как решить график функции

График функции y = cosx называется косинусоидой. Этот график изображен на следующем рисунке. Так как и график синуса он бесконечно продолжается вдоль оси ОХ влево и вправо:

Как решить график функции

Как решить график функции

График функции y = tgx называют тангенсоидой. Этот график изображен на следующем рисунке. Как и графики других периодических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Как решить график функции

Как решить график функции

Ну и наконец, график функции y = ctgx называется котангенсоидой. Этот график изображен на следующем рисунке. Как и графики других периодических и тригонометрических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Как решить график функции

Как решить график функции

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

Как решить график функцииКак решить график функции

ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.

Источник

Алгебра

Как решить график функции

Функции и графики

Как решить график функции Как решить график функции

План урока:

Понятие функции

Понятие функции в школьной программе впервые встречается в 7 классе, поэтому настоятельно рекомендуем перечитать посвященный этой теме урок. Напомним, что функцией (в учебной литературе может использоваться сокращение ф-ция) называется соответствие между элементами двух множеств или, другими словами, зависимость между двумя величинами. Чаще всего в алгебре рассматриваются числовые ф-ции, которые заданы аналитически, то есть формулой. В качестве примера можно привести запись

Здесь х – это независимая переменная, или аргумент, а у – зависимая величина, или просто функция. Принципиально важно, что каждому значению аргумента соответствует только одно значение зависимой величины. Часто в математике используют запись

Она читается как «игрек равен эф от икс» и означает, что величина у как-то зависит от х. По сути, она равноценна записи

Если в скобках стоит конкретное число, то запись означает значение ф-ции при этом значении аргумента.

у (10) = 4•10 2 = 400

У каждой ф-ции есть область допустимых значений (используется сокращение ОДЗ), или область определения функции. Это те значения аргумента, при которых ф-ция определена. Здесь возможны два случая. В первом область определения указывается прямо. Например, если рассматривается функция у = х 4 при значениях х от 1 до 3, то и областью определения будет всё множество чисел от 1 до 3. Для обозначения области определения используется запись D(y) или D(f). При изучении неравенств мы уже познакомились с такими объектами, как числовые промежутки. Именно с их помощью указывают ОДЗ.

Пример. Постройте график функции у = х, если D(y) = [– 3; 4].

Решение. Ф-ция у = х – это линейная функция, мы уже умеем строить их графики (они представляют собой прямую линию). Выглядеть он будет так:

Как решить график функции

Однако в условии также есть запись D (y) = [– 3; 4], которая означает, что ф-ция определена только при х от – 3 до 4. С учетом этого условия график несколько преобразится:

Как решить график функции

Грубо говоря, часть графика, которая не входит в область определения, просто «отрезана».

Значительно чаще область определения явно не указывается. В этом случае предполагается, что ф-ция определена во всех точках числовой прямой, в которых ее вообще возможно вычислить. Например, ф-цию у = 9х 3 – 47 можно вычислить при любом значении х, поэтому ее область определения – вся числовая прямая, то есть D(y) = (– ∞; + ∞).

А когда же вычислить функцию невозможно? К этому уроку нам известны две таких ситуации:

Например, вычислить ф-цию у = 5/х при х = 0 невозможно, поэтому ее область определения – вся числовая прямая, кроме нуля, то есть

Как решить график функции

имеет область определения D(y) = [5; + ∞), так как при х 2 при D(y) = [– 2; 2] областью значений будет промежуток [0; 4], то есть Е(у) = [0; 4]. Это видно из графика функции:

Как решить график функции

Ещё раз напомним, что область определения и область значения функции указываются с помощью числовых промежутков.

Теперь перейдем к тем понятиям, которые не изучались ранее. Первое из них – это нули функции. Так называют те значения аргумента, при которых функция обращается в ноль.

Как решить график функции

есть два нуля, х = 4 и х = 5. Убедиться в этом можно подстановкой:

у(4) = 4 2 – 9•4 + 20 = 0

у (5) = 5 2 – 9•5 + 20 = 0

Для нахождения нулей ф-ции у = f(x) надо просто решить уравнение

Например, чтобы найти нули приведенной выше функции

надо решить уравнение

Сделаем это, ведь мы уже умеем решать квадратные уравнения:

D = (– 9) 2 – 4•1•20 = 1

Как решить график функции

На графике нули ф-ции – это те точки, в которых график пересекает ось Ох:

Как решить график функции

Ещё одно новое понятие – промежутки знакопостоянства. Так называют промежутки числовой прямой, на которых ф-ция либо только положительна, либо только отрицательна. Для наглядности покажем их на графике:

Как решить график функции

Пусть есть ф-ция у = f(x). Для нахождения промежутков знакопостоянства необходимо решить неравенства f(x)>0 и у = f(x) 0:

Получаем, что функция положительна на промежутке (12; + ∞).

Аналогично решив неравенство 3х – 36 2 – 5х. Найдите такое значение величины а, для которого выполняется условие у(а) = у(а + 2).

Решение. Очевидно, что у(а) = а 2 – 5а. Теперь вычислим у(а + 2):

у(а + 2) = (а + 2) 2 – 5(а + 2) = а 2 + 4а + 4 – 5а – 10 = а 2 – а – 6.

Теперь приравняем значения у(а) и у(а + 2):

а 2 – 5а = а 2 – а – 6

а 2 – 5а – а 2 + а = – 6

Убедимся, что мы нашли требуемое значение а:

у(1,5) = 1,5 2 – 5•1,5 = 2,25 – 7,5 = – 5,25

у(1,5 + 2) = у(3,5) = 3,5 2 – 5•3,5 = 12,25 – 17,5 = – 5,25

Растяжение и сжатие графиков функций

Пусть на координатной плоскости есть точка А с координатами (х0; у0). Куда переместится эта точка, если ее ордината (то есть у0) увеличится, например, в два или в три раза? Она отодвинется от оси Ох. Если же ее ордината уменьшится, то точка приблизится к оси. Наконец, если ордината поменяет знак, то точка, изначально, лежащая выше оси, окажется ниже её. Проиллюстрируем это на картинке:

Как решить график функции

Пусть есть пара функций у(х) и g = k•у(х), где k– какое-то постоянное число (константа), не равная нулю. Примерами таких пар являются:

Посмотрим, как связаны графики таких функций. На рисунке красным цветом показана функция у(х), а синим g = 2у(x):

Как решить график функции

При любом значении аргумента выполняется условие g(х) = 2у(х). Это значит, что ордината (координата у) каждой точки графика g(х) вдвое больше, чем ордината соответствующей точки графика у(х). В частности, отрезок АА2 вдвое длиннее отрезка АА1:

Аналогично можно записать, что

Таким образом, график g(x) выглядит так, будто бы график у(х) «растянули» в 2 раза. Каждая точка «переезжает» на новое место, сдвигаясь по вертикали. Так, если точка А1 имела координаты (– 6; 2), то при растяжении графика функции она получит координаты (– 6; 4), то есть ее координата у увеличится вдвое. Точка B1 имела координаты (2; – 2), а в графике g(х) занимает позицию (2; – 4).

Убедимся в этом на примере ф-ций у = х 2 и g = 2х 2 :

В общем случае говорят, что график функции g(х) = ky(x) получается растяжением графика у(х) в k раз.

Пример. Функция у(х) задана графически:

Как решить график функции

Постройте график функции g(х) = 3у(х).

Решение. Каждую точку отодвинем от оси Ох, увеличив координату у точек в 3 раза:

Как решить график функции

Как решить график функции

При сжатии графика каждая точка параболы приближается к оси Ох, при этом ордината точек уменьшается вдвое. Так, точка А2 с координатами (3; 9) переходит в точку А1 с координатами (3; 4,5).

Отдельно стоит рассмотреть случай, при котором коэффициент k является отрицательным. В этом случае график отображается симметрично относительно оси Ох. Те точки, которые имели изначально положительную ординату и находились выше Ох, в результате получают отрицательную ординату и оказываются ниже оси Ох. Покажем на рисунке графики ф-ций у = х 2 и у = – х 2 (то есть k =– 1):

Как решить график функции

Если же, например, коэффициент k = – 2, то надо и растянуть график, и перевернуть его относительно оси Ох. В частности, так выглядит график у = – 2х 2 :

Как решить график функции

Параллельный перенос графиков функций

Теперь посмотрим, как передвинется отдельная точка на координатной плоскости, если к ее ординате добавить какое-нибудь число. Если это число положительное, то точка поднимется выше, а если отрицательное, то она опустится:

Как решить график функции

Это означает, что если к какой-нибудь функции добавить некоторое число, то график функции переместится вверх или вниз. Для примера построим графики функций у = х 2 + 2 и у = х 2 – 5:

Как решить график функции

Параллельный перенос возможен не только в вертикальном, но и в горизонтальном направлении. Для такого перемещения надо изменить абсциссу точки, а не ординату:

Как решить график функции

Аналогично может сдвинуться не только точка, но и целый график функции. Если вместо аргумента х подставить в ф-цию величину (х +n), то график сместится на n единиц влево.

у(0) = 0 2 = 0 и g(– 3) = g(– 3 + 3) 2 = 0 2 = 0

у(– 1) = (– 1) 2 = 1 и g(– 4) = g(– 4 + 3) 2 = (– 1) 2 = 1

у(– 2) = (– 2) 2 = 4 и g(– 5) = g(– 5 + 3) 2 = (– 2) 2 = 4

Как решить график функции

Точка А1 сдвинулась влево на 3 единицы и перешла в точку А2. Аналогично точка В1 отобразилась в точку В2.

Пусть в общем случае есть функции у = у(х) и g(x) = у(х +n), где n – некоторое постоянное число. Значение у(х) в точке х0 обозначается как у0. Теперь найдем значение g(x) в точке (х0 – n):

Получили, то же самое значение, что и у у(х). Покажем это на рисунке:

Как решить график функции

Рассмотрим теперь случай, когда график сдвигается вправо. Для этого из аргумента исходной функции надо вычесть какое-то число. На рисунке показаны графики функций у = 2х и у = 2(х – 4):

Как решить график функции

Каждая точка исходного графика (например, А1) «переехала» на 4 единицы вправо.

Надо понимать, что иногда один график можно получить из другого в несколько переходов. Пусть надо построить график у = – (х – 4) 2 + 5. Его можно получить из обычной параболы у = х 2 в три шага.

Как решить график функции

Как решить график функции

Последний шаг – это построение графика у = – (х – 4) 2 + 5. Его можно получить, подняв предыдущий график на 5 единиц вверх:

Как решить график функции

Гипербола и обратная пропорциональность

Как решить график функции

Найдем область определения функции у = 1/х. Ясно, что аргумент не может равняться нулю, так как иначе получим деление на ноль:

При любых других значениях х значение у вычислить можно, а потому областью определения будет промежуток (– ∞; 0)⋃(0;+ ∞).

При положительных значениях аргумента ф-ция также будет положительной:

При отрицательных х величина у будет становиться отрицательной:

у(– 10) = 1:(– 10) = – 0,1

Это означает, что график ф-ции будет располагаться в I и III четвертях.

Можно заметить, что чем больше х, тем ближе у к нулю:

И наоборот, чем ближе х к нулю, тем больше у:

При этом у не может равняться нулю. Действительно, дробь равна нулю только тогда, когда ее числитель равен нулю. Однако варьируя х, мы меняем только знаменатель, а в числителе остается единица. Поэтому областью значений функции у = х – 1 является промежуток (– ∞; 0)⋃(0;+ ∞).

Для построения графика найдем некоторые точки графика и занесем их в таблицу. Мы построим две таблицы – одну для положительных х, другую для отрицательных:

Как решить график функции

Теперь можно посмотреть и на сам график:

Как решить график функции

Первое, что бросается в глаза – это то, что график не представляет собой единую, непрерывную линию. Он разбит на две ветви, одна из которых располагается в III четверти, а другая – в I четверти. Такой «разрыв» связан с тем, что ноль не входит в область определения ф-ции.

Также можно заметить симметричность графика. Действительно, одна из ветвей является симметричным отображением второй ветви.

Построенный нами график называется гиперболой.

На координатной плоскости есть две прямые линии, к которым гипербола приближается, но при этом он не касается их. Это оси Ох и Оу. Для наглядности покажем их штриховой линией:

Как решить график функции

В математике подобные линии называют асимптотами функции. Горизонтальная асимптота прямая соответствует линии х = 0, а вертикальная асимптота линии у = 0.

Зная, как выглядит график у = 1/х, мы можем построить и другие, схожие с ним графики для ф-ций у = k/х, где k– это некоторое число. Их можно получить из гиперболы, используя сжатие и растяжение графиков. Если коэффициент k больше единицы, то график «отдаляется» от осей Ох и Оу:

Как решить график функции

Все эти линии являются примерами гипербол. Если коэффициент k отрицательный, то графики переворачиваются относительно оси Ох и занимают II и IV четверти:

Как решить график функции

Все приведенные зависимости вида у = k/х называют обратными пропорциональностями.

Как решить график функции

Примерами обратной пропорциональности являются ф-ции:

Как решить график функции

Обратная пропорциональность очень часто встречается в жизни. Так, время, затрачиваемое на поездку на автомобиле, обратно пропорционально средней скорости движения. Количество товара, которое можно купить на одну зарплату, обратно пропорционально стоимости этого товара.

Дробно-линейная функция

Теперь рассмотрим несколько более сложные ф-ции, чьи графики, однако, также представляют собой гиперболу. Пусть есть ф-ция вида

Как решить график функции

Как будет выглядеть ее график? Для ответа на этот вопрос выполним преобразование:

Как решить график функции

Здесь мы в числителе и знаменателе добавили и сразу вычли слагаемое 2.Этот прием помог нам выделить целую часть из дроби. В результате мы получили ф-цию, график которой можно получить с помощью двух параллельных переносов графика у = 6/х. Сначала график сместится на две единицы вправо:

Как решить график функции

На следующем шаге график поднимется на единицу вверх:

Как решить график функции

Стоит обратить внимание, что при таком передвижении гиперболы передвигаются и асимптоты графика гиперболы:

Как решить график функции

Как решить график функции

представляет собой дробь, являющуюся отношением двух линейных многочленов, х + 3 и х – 2. В математике подобные ф-ции называют дробно-линейными функциями. В качестве примеров дробно-линейных функций можно привести:

Как решить график функции

Как решить график функции

Из любой дробно-линейной функции можно выделить целую часть. Покажем это на нескольких примерах:

Как решить график функции

Во всех этих случаях график дробно-линейной функции можно построить с помощью двух параллельных переносов гиперболы.

Как решить график функции

Однако есть одно исключение. Иногда при выделении из дроби целой части дробной части не остается вовсе, то есть линейные полиномы можно сразу сократить. Например:

Как решить график функции

Графиком таких функций являются прямые горизонтальные линии. Однако на них должна быть одна «исключенная». Действительно, пусть надо построить график ф-ции

Как решить график функции

Проведя преобразования, получим

Как решить график функции

то есть у = 2. Однако в знаменателе дроби не может стоять ноль. Если же подставить в дробь х = – 2, то получим деление на ноль:

Как решить график функции

Поэтому график ф-ции будет выглядеть так:

Как решить график функции

Итак, по итогам урока мы узнали:

Источник

Решение уравнений и неравенств (с помощью графиков)

Многие задания, которые мы привыкли вычислять чисто алгебраически, можно решить намного легче и быстрее!

С помощью графиков функций!

Ты скажешь: «Как так? Чертить что-то, да и что чертить?» Поверь мне, иногда это удобнее и проще.

Приступим? Начнем с решения уравнений!

Решение уравнений и неравенств с помощью графиков — коротко о главном

Более подробно о построении графиков функций смотри в теме «Функции».

Решение уравнений с помощью графиков

Решение линейных уравнений

Как ты уже знаешь, графиком линейного уравнения является прямая линия, отсюда и название данного вида.

Линейные уравнения достаточно легко решать алгебраическим путем – все неизвестные переносим в одну сторону уравнения, все, что нам известно – в другую и вуаля! Мы нашли корень.

Сейчас же я покажу тебе, как это сделать графическим способом.

Итак, у тебя есть уравнение: \( \displaystyle 2 -10=2\)

Вариант 1, и самый распространенный – перенести неизвестные в одну сторону, а известные в другую, получаем:

Обычно дальше мы делим правую часть на левую, и получаем искомый корень, но мы с тобой попробуем построить левую и правую части как две различные функции в одной системе координат.

Иными словами, у нас будет:

А теперь строим. Что у тебя получилось?

Как решить график функции

Как ты думаешь, что является корнем нашего уравнения? Правильно, координата \( \displaystyle x\) точки пересечения графиков:

Как решить график функции

Наш ответ: \( \displaystyle x=6\)

Вот и вся премудрость графического решения. Как ты с легкостью можешь проверить, корнем нашего уравнения является число \( \displaystyle 6\)!

Вариант 2

Как я говорила выше, это самый распространенный вариант, приближенный к алгебраическому решению, но можно решать и по-другому. Для рассмотрения альтернативного решения вернемся к нашему уравнению:

\( \displaystyle 2 -10=2\)

В этот раз не будем ничего переносить из стороны в сторону, а построим графики напрямую, так, как они сейчас есть:

Как решить график функции

Что является решением на этот раз? Все верно. То же самое: координата \( \displaystyle x\) точки пересечения графиков:

Как решить график функции

И снова наш ответ: \( \displaystyle x=6\).

Как ты видишь, с линейными уравнениями все предельно просто. Настало время рассмотреть что-нибудь посложнее… Например, графическое решение квадратных уравнений.

Решение квадратных уравнений

Итак, теперь приступим к решению квадратного уравнения. Допустим, тебе нужно найти корни у этого уравнения:

Конечно, ты можешь сейчас начать считать через дискриминант, либо по теореме Виета, но многие на нервах ошибаются при умножении или возведении в квадрат, особенно, если пример с большими числами, а калькулятора, как ты знаешь, у тебя на экзамене не будет…

Поэтому давай попробуем немного расслабиться и порисовать, решая данное уравнение.

Графически найти решения данного уравнения можно различными способами. Рассмотрим различные варианты, а уже ты сам выберешь, какой больше всего тебе понравится.

Вариант 1. Напрямую

Просто строим параболу по данному уравнению: \( \displaystyle <^<2>>+2 -8=0\)

Чтобы сделать это быстро, дам тебе одну маленькую подсказку: удобно начать построение с определения вершины параболы. Определить координаты вершины параболы помогут следующие формулы:

Ты скажешь «Стоп! Формула для \( \displaystyle y\) очень похожа на формулу нахождения дискриминанта» да, так оно и есть, и это является огромным минусом «прямого» построения параболы, чтобы найти ее корни.

Тем не менее, давай досчитаем до конца, а потом я покажу, как это сделать намного (намного!) проще!

Посчитал? Какие координаты вершины параболы у тебя получились? Давай разбираться вместе:

Точно такой же ответ? Молодец!

И вот мы знаем уже координаты вершины, а для построения параболы нам нужно еще … точек. Как ты думаешь, сколько минимум точек нам необходимо? Правильно, \( \displaystyle 3\).

Ты знаешь, что парабола симметрична относительно своей вершины, например:

Как решить график функции

Соответственно, нам необходимо еще две точки по левой или правой ветви параболы, а в дальнейшем мы эти точки симметрично отразим на противоположную сторону:

Как решить график функции

Возвращаемся к нашей параболе.

Мне удобней работать с положительными, поэтому я рассчитаю при \( \displaystyle x=0\) и \( \displaystyle x=2\).

При \( \displaystyle x=0\):

При \( \displaystyle x=2\):

Теперь у нас есть три точки, и мы спокойно можем построить нашу параболу, отразив две последние точки относительно ее вершины:

Как решить график функции

Как ты думаешь, что является решением уравнения?

Правильно, точки, в которых \( \displaystyle y=0\), то есть \( \displaystyle x=2\) и \( \displaystyle x=-4\). Потому что \( \displaystyle <^<2>>+2 -8=0\).

И если мы говорим, что \( \displaystyle y=<^<2>>+2 -8\), то значит, что \( \displaystyle y\) тоже должен быть равен \( \displaystyle 0\), или \( \displaystyle y=<^<2>>+2 -8=0\).

Просто? Это мы закончили с тобой решение уравнения сложным графическим способом, то ли еще будет!

Конечно, ты можешь проверить наш ответ алгебраическим путем – посчитаешь корни через теорему Виета или Дискриминант.

Что у тебя получилось? То же самое?

Вот видишь! Теперь посмотрим совсем простое графическое решение, уверена, оно тебе очень понравится!

Вариант 2. С разбивкой на несколько функций

Возьмем все тоже наше уравнение: \( \displaystyle <^<2>>+2 -8=0\), но запишем его несколько по-другому, а именно:

Можем мы так записать? Можем, так как преобразование равносильно. Смотрим дальше.

Построим отдельно две функции:

Построил? Сравним с тем, что вышло у меня:

Как решить график функции

Как ты считаешь, что в данном случае является корнями уравнения? Правильно! Координаты по \( \displaystyle x\), которые получились при пересечении двух графиков: \( \displaystyle <_<1>>=<^<2>>\) и \( \displaystyle <_<2>>=8-2x\), то есть:

Как решить график функции

Соответственно, решением данного уравнения являются:

Что скажешь? Согласись, этот способ решения намного легче, чем предыдущий, и даже легче, чем искать корни через дискриминант!

А если так, попробуй данным способом решить следующее уравнение.

Что у тебя получилось? Сравним наши графики:

Как решить график функции

По графикам видно, что ответами являются:

Теперь посмотрим уравнения чууууть-чуть посложнее, а именно решение смешанных уравнений, то есть уравнений, содержащих функции разного вида.

Решение смешанных уравнений

Теперь попробуем решить следующее уравнение:

Конечно, можно привести все к общему знаменателю, найти корни получившегося уравнения, не забыв при этом учесть ОДЗ, но мы попробуем решить графически, как делали во всех предыдущих случаях.

В этот раз давай построим 2 следующих графика:

Осознал? Теперь займись построением.

Вот что вышло у меня:

Как решить график функции

Глядя на этот рисунок, скажи, что является корнями нашего уравнения \( \displaystyle \frac<3>-x+2=0\)?

Правильно, \( \displaystyle <_<1>>=-1\) и \( \displaystyle <_<2>>=3\). Вот и подтверждение:

Как решить график функции

Попробуй подставить наши корни в уравнение. Получилось?

Все верно! Согласись, графически решать подобные уравнения – одно удовольствие!

Попробуй самостоятельно графическим способом решить уравнение:

Даю подсказку: перенеси часть уравнения в правую сторону, чтобы с обоих сторон оказались простейшие для построения функции. Намек понял? Действуй!

Теперь посмотрим, что у тебя вышло:

\( \displaystyle 2<^<3>>=x+1\), соответственно:

Как решить график функции

Как ты уже давно у себя записал, корнем данного уравнения является \( \displaystyle <_<1>>=1\).

Прорешав такое количество примеров, уверена, ты понял, как можно легко и быстро решать уравнения графическим путем. Настало время разобраться, как решать подобным способом системы.

Решение систем уравнений с помощью графиков

Графическое решение систем, по сути, ничем не отличается от графического решения уравнений.

Мы будем строить два графика, и их точки пересечения будут являться корнями данной системы.

Один график – одно уравнение, второй график – другое уравнение. Все предельно просто!

Начнем с самого простого – решение систем линейных уравнений.

Решение систем линейных уравнений

Допустим, у нас есть следующая система:

Для начала преобразуем ее таким образом, чтобы слева было все, что связано с \( \displaystyle y\), а справа – что связано с \( \displaystyle x\). Иными словами, запишем данные уравнения как функцию в привычном для нас виде:

А теперь просто строим две прямые. Что в нашем случае является решением? Правильно! Точка их пересечения! И здесь необходимо быть очень-очень внимательным! Подумай, почему?

Намекну: мы имеем дело с системой, в системе есть и \( \displaystyle x\), и \( \displaystyle y\)… Смекаешь?

Все верно! Решая систему, мы должны смотреть обе координаты, а не только \( \displaystyle x\), как при решении уравнений!

Записал? Теперь давай все сравним по порядку:

Как решить график функции

И ответы: \( \displaystyle x=1\) и \( \displaystyle y=-1\). Сделай проверку – подставь найденные корни в систему и убедись, правильно ли мы ее решили графическим способом?

Все сошлось? Идем дальше!

Решение систем нелинейных уравнений

А что если вместо одной прямой, у нас будет квадратное уравнение? Да ничего страшного! Просто ты вместо прямой построишь параболу! Не веришь? Попробуй решить следующую систему:

Какой наш следующий шаг? Правильно, записать так, чтобы нам было удобно строить графики:

А теперь так вообще дело за малым – построил быстренько и вот тебе решение! Строим:

Как решить график функции

Графики получились такими же? Теперь отметь на рисунке решения системы и грамотно запиши выявленные ответы!

Все сделал? Сравни с моими записями:

Как решить график функции

При \( \displaystyle <_<1>>=-1\), \( \displaystyle <_<1>>=0\).

При \( \displaystyle <_<2>>=2\), \( \displaystyle <_<2>>=-3\).

Все верно? Молодец! Ты уже щелкаешь подобные задачи как орешки! А раз так, дадим тебе систему посложнее.

Решите систему уравнений: \( \displaystyle \left\< \beginy=<^<2>>+2x+2;\\y-<^<3>>=2.\end \right.\)

Что мы делаем? Правильно! Записываем систему так, чтобы было удобно строить:

Немного тебе подскажу, так как система выглядит ну очень не простой! Строя графики, строй их «побольше», а главное, не удивляйся количеству точек пересечения.

Итак, поехали! Выдохнул? Теперь начинай строить!

Ну как? Красиво? Сколько точек пересечения у тебя получилось? У меня три! Давай сравнивать наши графики:

Как решить график функции

Так же? Теперь аккуратно запиши все решения нашей системы:

При \( \displaystyle <_<1>>=-1\), \( \displaystyle <_<1>>=1\).

При \( \displaystyle <_<2>>=0\), \( \displaystyle <_<2>>=2\).

При \( \displaystyle <_<3>>=2\), \( \displaystyle <_<3>>=10\).

А теперь еще раз посмотри на систему:

Представляешь, что ты решил это за каких-то 15 минут?

Согласись, математика – это все-таки просто, особенно когда, глядя на выражение, не боишься ошибиться, а берешь и решаешь! Ты большой молодец!

Решение неравенств с помощью графиков

Решение линейных неравенств

После последнего примера тебе все по плечу! Сейчас выдохни – по сравнению с предыдущими разделами этот будет очень-очень легким!

Начнем мы, как обычно, с графического решения линейного неравенства. Например, вот этого:

Неравенство нестрогое, поэтому \( \displaystyle 4\) — не включается в промежуток, и решением будут являться все точки, которые находятся правее \( \displaystyle 4\), так как \( \displaystyle 5\) больше \( \displaystyle 4\), \( \displaystyle 6\) больше \( \displaystyle 4\) и так далее:

Как решить график функции

Ответ: \( x\in \left( 4;+\infty \right)\)

Вот и все! Легко? Давай решим простое неравенство с двумя переменными:

Решение неравенства с двумя переменными

\( 2 -3 Как решить график функции

Такой график у тебя получился? А теперь внимательно смотрим, что там у нас в неравенстве? Меньше? Значит, закрашиваем все, что находится левее нашей прямой.

А если было бы больше Правильно, тогда закрашивали бы все, что находится правее нашей прямой. Все просто.

Как решить график функции

Все решения данного неравенства «затушеваны» синим цветом. Вот и все, неравенство с двумя переменными решено. Это значит, что координаты \( \displaystyle x\) и \( \displaystyle y\) любой точки из закрашенной области и есть решения.

Решение квадратных неравенств

Теперь будем разбираться с тем, как графически решать квадратные неравенства.

Но прежде, чем перейти непосредственно к делу, давай повторим некоторый материал, касающийся квадратной функции \( \displaystyle a<^<2>>+bx+c=0\).

Что показывает нам знак при коэффициенте \( \displaystyle a\)? Верно, куда направлены ветви параболы – вверх или вниз (не помнишь? Почитай теорию «Квадратичная функция»).

А за что у нас отвечает дискриминант? Правильно, за положение графика относительно оси \( \displaystyle Ox\) (если не помнишь этого, то тогда точно прочти теорию о квадратичных функциях).

В любом случае, вот тебе небольшая табличка-напоминалка:

Как решить график функции

Симметрично отражаем наши точки на другую ветвь параболы:

Как решить график функции

Так как в нашем неравенстве стоит знак строго меньше, то конечные точки мы исключаем – «выкалываем».

Согласись, это намного быстрее.

Рассмотрим еще один способ решения, который упрощает и алгебраическую часть, но главное не запутаться.

Вариант 3

Ответ: \( \displaystyle \left[ 2;4 \right]\).

Решение смешанных неравенств

Теперь перейдем к более сложным неравенствам!

\( \displaystyle 4x Как решить график функции

У тебя так же? Отлично!

Теперь расставим точки пересечения и цветом определим, какой график у нас по идее должен быть больше, то есть \( \displaystyle <_<2>>=<^<3>>\).

Смотри, что получилось в итоге:

Как решить график функции

А теперь просто смотрим, в каком месте у нас выделенный график находится выше, чем график \( \displaystyle <_<1>>=4x\)? Смело бери карандаш и закрашивай данную область! Она и будет решением нашего сложного неравенства!

Как решить график функции

Это и есть ответ!

Ну вот, теперь тебе по плечу и любое уравнение, и любая система, и уж тем более любое неравенство!

Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике

В следующих вебинарах вы сможете отработать навык решения уравнений, неравенств и систем алгебраическим способом.

Решение линейных уравнений (алгебраически)

Цель урока — научиться решать линейные уравнения любого уровня сложности. Линейные уравнения – основа всей алгебры. Научитесь решать линейные уравнения, и вам будет намного проще осваивать всё остальное.

Приёмы, которые мы узнаем на этом уроке, применяются не только в линейных, но во всех типах уравнений, от квадратных до логарифмических. Все приёмы будем разбирать на конкретных примерах и сразу же отрабатывать.

Мы решим разберём все возможные типы линейных уравнений, решив 65 уравнений.

ЕГЭ №15. Решение уравнений и неравенств методом интервалов

В этом видео мы узнаем (вспомним) метод интервалов, поймём как и почему он работает. Вспомним, как решать квадратные, рациональные неравенства, а также неравенства с модулем и иррациональные.

Источник

График функции.

Графиком функции y = f(x) называется множество всех точек, у которых абсциссы принадлежат области определения функции, а ординаты равны соответствующим значениям функции.

Как решить график функцииКак решить график функции

На рис. 45 и 46 приведены графики функций у = 2х + 1 и у = х 2 — 2х.

Строго говоря, следует различать график функции (точное математическое определение которого было дано выше) и начерченную кривую, которая всегда дает лишь более или менее точный эскиз графика (да и то, как правило, не всего графика, а лишь его части, расположенного в конечной части плоскости). В дальнейшем, однако, мы обычно будем говорить «график», а не «эскиз графика».

С помощью графика можно находить значение функции в точке. Именно, если точка х = а принадлежит области определения функции y = f(x), то для нахождения числа f(а) (т. е. значения функции в точке х = а) следует поступить так. Нужно через точку с абсциссой х = а провести прямую, параллельную оси ординат; эта прямая пересечет график функции y = f(x) в одной точке; ордината этой точки и будет, в силу определения графика, равна f(а) (рис. 47).

Как решить график функции

Источник

Общая схема исследования и построения графика функции

п.1. Алгоритм исследования и построения графика функции

1. Найти область определения функции, классифицировать точки разрыва
2. Исследовать функцию на четность и периодичность
3. Провести анализ асимптотического поведения функции (наличие вертикальных, горизонтальных и наклонных асимптот) (см. §41 данного справочника)
4. Взять первую производную. Определить критические точки, интервалы монотонности, точки экстремума
5. Взять вторую производную. Определить критические точки 2-го порядка, интервалы выпуклости и точки перегиба
6. Найти точки пересечения функции с осями координат (если уравнение \(f(x)=0\) не имеет аналитического решения, указать количество точек пересечения с осью OX)
7. Построить график функции

п.2. Примеры

Пример 1. Постройте график функции \(y=2x^3-6x^2-18x+7\)
1) Область определения \(x\in\mathbb\)
Точек разрыва нет

4) Первая производная \begin f'(x)=2\cdot 3x^2-6\cdot 2x-18\cdot 1+0=6x^2-12x-18=6(x^2-2x-3)=\\ =6(x-3)(x+1)\\ f'(x)=0\ \text<при>\ \left[ \begin x=3\\ x=-1 \end \right. \end Критические точки: \(x=-1\) и \(x=3\)
Составляем таблицу:

\(x\)\((-\infty;-1)\)-1(-1;3)3\((3;+\infty)\)
\(f'(x)\)>000
\(f(x)\)\(\nearrow\)max\(\searrow\)min\(\nearrow\)

Функция возрастает при \(x\in(-\infty;-1)\cup(3;+\infty)\)
Функция убывает при \(x\in(-1;3)\)
Точка максимума \(x=-1;\ y_=f(-1)=-2-6+18+7=17\)
Точка минимума \(x=3;\ y_=f(3)=54-54-54+7=-47\)

5) Вторая производная: \begin f»(x)=(6x^2-12x-18)’=6\cdot 2x-12\cdot 1-0=12x-12=12(x-1)\\ f»(x)=0\ \text<при>\ x=1 \end Критическая точка 2-го порядка: \(x=1\)
Составляем таблицу:

Функция выпуклая вверх при \(x\in(-\infty;1)\)
Функция выпуклая вниз при \(x\in(1;+\infty)\)
Точка перегиба \(x=1;\ f(1)=2-6-18+7=-15\)

\(x\)\((-\infty;-3)\)-3(-3;0)0\((0;3)\)3\((3+\infty)\)
\(f'(x)\)>000
\(f(x)\)\(\nearrow\)max\(\searrow\)\(\varnothing\)\(\searrow\)min\(\nearrow\)

Функция возрастает при \(x\in(-\infty;-3)\cup(-3;+\infty)\)
Функция убывает при \(x\in(-3;0)\cup(0;3)\)
Точка максимума \(x=-3;\ y_=f(-3)=-1-1=-2\)
Точка минимума \(x=3;\ y_=f(3)=1+1=2\)

5) Вторая производная: \begin f»(x)=\frac13\left(1-\frac<9>\right)’=\frac13\left(0+\frac<9\cdot 2>\right)=\frac<6> \end Вторая производная нулей не имеет.
Критическая точка 2-го порядка: \(x=0\)
Составляем таблицу:

Функция выпуклая вверх при \(x\in(-\infty;0)\)
Функция выпуклая вниз при \(x\in(0;+\infty)\)
Точек перегиба нет.

7) График
Как решить график функции

Пример 3*. Постройте график функции \(y=\frac<(x-1)^3>\)
Сколько корней имеет уравнение \(\frac<(x-1)^3>=a\)?

\(x\)\((-\infty;-2)\)-2(-2;1)1\((1;2)\)2\((2+\infty)\)
\(f'(x)\)0\(\varnothing\)>000\(\varnothing\)0
\(f(x)\)\(\cap\)перегиб\(\cup\)\(\varnothing\)\(\cap\)перегиб\(\cup\)

7) График
Как решить график функции

Ответ:
\(a\lt\frac49\cup a\gt 4\), один корень
\(a=\left\<\frac49;1;4\right\>\), два корня
\(\frac<12><27>\lt 1\lt 1\cup 1\lt a\lt 4\), три корня

Пример 4*. Постройте график функции \(y=sin^4⁡x+cos^4⁡x\), используя правила преобразования тригонометрических функций и с помощью стандартной процедуры исследования функции

1) Область определения \(x\in\mathbb\)

Получаем график:
Как решить график функции
Продолжим стандартное исследование функции.

3) Асимптоты
1. Вертикальных асимптот нет, т.к. нет точек разрыва 2-го рода.
2. Горизонтальных асимптот нет, т.к. нет пределов на бесконечности.
3. Наклонных асимптот нет, т.к. на бесконечности отношение ограниченной тригонометрической функции к бесконечному x дает \(k=0\).

4) Первая производная:
Исследуем промежуток, равный одному периоду \(T=\frac\pi 2,\ 0\leq x\leq\frac\pi 2\) \begin f'(x)=(sin^4 x+cos^4 x)’=\left(\frac<3+cos4x><4>\right)’=0-\frac14\cdot 4\cdot sin4x=-sin4x\\ sin4x=0\Rightarrow 4x=\pi k\Rightarrow x=\frac<\pi k> <4>\end Критические точки: \(x=\frac<\pi k><4>\). На периоде \(T=\frac\pi 2\) получаем три точки \(x=\left\<0;\frac\pi 4;\frac\pi 2\right\>\)

\(x\)0\(\left(0;\frac\pi 4\right)\)\(\frac\pi 4\)\(\left(\frac\pi 4;\frac\pi 2\right)\)\(\frac\pi 2\)
\(f'(x)\)000
\(f(x)\)1
max
\(\searrow\)\(\frac12\)
min
\(\nearrow\)1
max

Функция убывает при \(x\in\left(\frac<\pi k><2>;\frac\pi 4+\frac<\pi k><2>\right)\)
Функция возрастает при \(x\in\left(\frac\pi 4+\frac<\pi k><2>;\frac\pi 2+\frac<\pi k><2>\right)\)
Точки минимума \(x=\frac\pi 4+\frac<\pi k><2>;\ y_=\frac12\)
Точки максимума \(x=\frac<\pi k><2>;\ y_=1\)

5) Вторая производная: \begin f»(x)=(-sin4x)’=-4cos4x\\ cos4x=0\Rightarrow 4x=\frac\pi 2+\pi k\Rightarrow x=\frac\pi 8+\frac<\pi k> <4>\end Критические точки 2-го порядка: \(x=\frac\pi 8+\frac<\pi k><4>\).
На периоде \(T=\frac\pi 2\) получаем две точки \(x=\left\<\frac\pi 8;\frac<3\pi><8>\right\>\)

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *