Как сделать квантовый двигатель

Есть ряд исследований в современном мире, которые изначально обречены на недоверчивое отношение со стороны официальной науки: например в области антигравитации или ХЯС (холодного ядерного синтеза). Но, необходимо учитывать и то, что такими исследованиями занимаются самые настоящие ученые, такие как Владимир Семенович Леонов, кандидат технических наук, лауреат Правительственной премии в области науки и техники, научный руководитель и главный конструктор НПО «Квантон».

Как сделать квантовый двигатель

Как сделать квантовый двигатель

Альберт Эйнштейн начинал разработку Единой теории поля, так вот, Леонов, в своей работе, двигался именно в этом направлении. Учитывал он и то, что таблица Менделеева, несмотря на всеобщее применение, является только упрощенной системой, не учитывающей ряд элементов (хотя сам Менделеев предполагал их наличие). Леонов осмеливается говорить об элементе, условно называемым им «квантон» (Менделеев говорил об этом элементе как о нулевом, и называл «Ньютоний»). Не признаваемый наукой «эфир» невозможно объяснить без использования понятия квантона, убежден Леонов.

Как сделать квантовый двигатель

Квантон в проекции

Тут впору начинать разговор о «не научности» и даже мошенничестве, если бы не одно – экспериментальная модель квантового двигателя Леонова была продемонстрирована в 2014 году в РАН и признана работоспособной.

Как сделать квантовый двигатель

Масса экспериментального двигателя составляла пятьдесят четыре килограмма, и при потреблении одного кВт электроэнергии он создавал импульс вертикальной тяги порядка пятиста-семиста кгс. По расчетам он способен на вертикальное движение с ускорением порядка десяти G. Кстати говоря – современные двигатели, применяемые в ракетоносителях, на один кВт создают тягу только 0, 1 кгс. Цифры, в сопоставлении, звучат ошеломительно.

Все же построенный и проходящий экспериментальные проверки в НАСА и других лабораториях двигатель EmDrive, который тоже признавался долгое время «невозможным» и «несоздаваемым» проигрывает двигателю Леонова на порядки.

Сам изобретатель, рассказывая о принципе работы, говорит, что на классические схемы фотонных двигателей он не похож. Тут все глубже и интересней – вместо аннигиляции вещества (либо антивещества) для создания тяги используется энергия гравитационных волн. Современная наука не поддерживает обсуждение таких явлений, потому что объяснить их не может, а понятие эфира вводить вообще отказывается.

Как сделать квантовый двигатель

Первый свой экспериментальный двигатель изобретатель показывал еще в 2009. Тогда устройство передвигалось только горизонтально, с помощью периодических импульсов. Разумеется, к изобретению отнеслись скептически, но Леонов не сдался и усовершенствовал свой механизм.

Как сделать квантовый двигатель

Говоря о получении энергии для своего двигателя, Владимир Семенович опирается на использование установок ХЯС – Андреа Росси и похожих (тоже весьма неохотно принимаемых миром). Но они работают, даже в супердержавах, США и Китае, проводят эксперименты, несмотря на официальное научное неприятие.

Найдены возможные дубликаты

Масса экспериментального двигателя составляла пятьдесят четыре килограмма, и при потреблении одного кВт электроэнергии он создавал импульс вертикальной тяги порядка пятиста-семиста кгс.

Академия наук не смогла точно замерить тягу? На базаре бы весы одолжили.

А внутре у ней неонка, а еще думатель

таблица Менделеева, несмотря на всеобщее применение, является только упрощенной системой, не учитывающей ряд элементов (хотя сам Менделеев предполагал их наличие)

можешь пояснить, какие именно элементы не учитываются?

Эфир. Но не тот эфир, который диметилэфир, а тот, который межзвездный. И теплород.

это тот теплород, который получается из межзвездного эфира под воздействием торсионных полей?

Но ведь в таблице и правда показано далеко не все. Например, по ней не догадаешься о существовании изотопов.

таблица Менделеева, несмотря на всеобщее применение, является только упрощенной системой, не учитывающей ряд элементов (хотя сам Менделеев предполагал их наличие)

я попросил уточнить, какие именно элементы таблица не учитывает

а тебя немного не туда понесло

данный объект называется «Периодическая система химических элементов»

и в ней расставлены химические элементы согласно неким правилам

дейтерий и тритий, о которых ты вспомнил, с химической точки зрения, являются водородом, и в химических реакциях ведут себя как водород

и, согласно периодическому закону, располагаются на месте водорода

поэтому ты тут мимо кассы проходишь

А оно должно там показываться? Ну ты хоть погугли что такое периодический закон и зачем он вообще нужен.

Есть правила по которым составлена таблица, а есть объективная реальность. Таблицу составляли для химических реакций, а не для физических опытов. Например, дейтерий и тритий занимают тоже место, что и водород, но на практике оказываются применимыми там, где обычный водород не подходит.

Это всеравно, что я сделаю таблицу из десяти элементов по их цветам, потому что использую их для росписи стен, и мне не важно, что в одну категорию попадут сразу тысячи различных красителей. Можно сказать «в этой таблице есть все элементы», но правильно будет «для любого элемента можно найти место в этой таблице» и разница в этих понятиях огромная.

Таблицу составляли для химических реакций, а не для физических опытов.

Увидел рен тв и решил ознакомиться с этим материалом в другом месте.

патент 2001-2002 он сказки рассказывает уже 17 лет

Пусть укажет цену 1-й партии коммерческих образцов и куда платить, хоть бы даже на Авито.

Если, конечно, не приукрашивает свои достижения.

Пусть хоть один рабочий образец для начала представит.

вы серьезно, суко? квантон являющийся недостающим элементом таблицы менделеева необходим для обьяснения недоказанного эфира?

наличие патента вообще не говорит ничего. Я могу пойти и заплатив пени зарегестрировать патент на пустую металическую коробку изукрашенную святыми письменами и назвать это святым двигателем.

Такой двигатель уже существует. Молитвенный барабан крутится за счет находящихся вокруг него буддистов.

это тот же чувак, что и лазерные 3д телевизоры изобретал.

Один раз не пидораз!

Нефть состоит из динозавров!

(уберите пробелы и подчеркивания из домена)

не учитывающей ряд элементов (хотя сам Менделеев предполагал их наличие).

Вот с этого места по подробнее, пожалуйста!

Водкород, пивчантий, портвейнин

Как сделать квантовый двигатель

Квантовая революция происходит прямо сейчас. Как квантовые компьютеры повлияют на наше будущее

Сейчас, на наших глазах происходит вторая квантовая революция. Первая подарила нам лазер, CD, флеш-память и магнитно-резонансный томограф. Главным открытием сегодня должен стать квантовый компьютер.

Как сделать квантовый двигатель

Уже на протяжении нескольких лет ученые работают над его созданием.

Как сделать квантовый двигатель

Это возможно благодаря явлению квантовой суперпозиции и квантовой запутанности для передачи и обработки данных.

В 2015 году Google тестировал машину D-Wave. Специально придуманную для теста задачу компьютер решил в 100 млн раз быстрее обычного одноядерного процессора. Теперь компания использует ее для расчета своих новых алгоритмов. А Volkswagen пытается решить проблему пробок в Пекине с использованием квантовых вычислений.

Но создание и внедрение такого компьютера в современную реальность несет и некоторые проблемы

Проблемы, возникнувшие с появлением квантовых компьютеров

Как сделать квантовый двигатель

«Квантовая гонка вооружений»

Гонка «квантовых вооружений» в мире начнется через несколько лет, заявил глава Внешэкономбанка (ВЭБ) Сергей Горьков, передает «РИА Новости».

Квантовые вычислительные системы будут созданы в промежутке от 3 до 10 лет. Сегодня над осуществлением этой цели работает множество компаний по всему миру.

В июле 2017 года стало известно, что физики из Российского квантового центра в сотрудничестве с коллегами из Гарварда создали программируемый квантовый компьютер на базе 51 кубита. Кубиты представляют собой основной элемент квантовых компьютеров, состоят из квантовых объектов — ионов, охлажденных атомов или фотонов — и одновременно, за один такт, способны делать множество вычислений.

Источник

Квантовый двигатель Владимира Леонова

Антигравитационный квантовый двигатель Владимира Леонова.

Как сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигатель

Максимальная скорость космического аппарата с квантовым двигателем Владимира Леонова может достигать 1000 км/с против 18 км/с у ракеты. Полет до Марса на космическом корабле с квантовым двигателем в режиме ускорения ±1g составит всего 42 часа, причем с полной компенсацией невесомости, до Луны — 3,6 часа. Квантовый двигатель Владимира Леонова дает возможность работы в космосе, в атмосфере, на земле и под водой.

Технология находится в процессе разработки и ожидает финансирования!

Квантовый двигатель Владимира Леонова:

Квантовый двигатель Владимира Леонова – двигатель, тяга которого создается за счет деформации квантованного пространства–времени градиентными электромагнитными системами (активаторами). Двигатель назван по имени его изобретателя – В.С. Леонова.

В марте 2018 года были проведены испытания прототипа квантового двигателя Владимира Леонова. При этом масса испытуемого аппарата составляла 125 кг. В ходе проведенных испытаний прототипа сила тяги составляла от 110 до 500 кг (от 1100 до 5000 Н).

В основе работы квантового двигателя лежит теория Суперобъединения, созданная В.С. Леоновым. Она оперирует такими понятиями как квант пространства–времени (квантона) (Рис. 1 и 2) и энергия сверхсильного электромагнитного взаимодействия (СЭВ).

Как сделать квантовый двигатель

Рис. 1. Квантовая структура космического вакуума в виде квантонов

Как сделать квантовый двигатель

а) – объединение электричества (е + и е – ) и магнетизма (g + и g – ) в электромагнитный квадруполь (вид сверху),

б) – квантон в проекции (повернут в пространстве),

в) – знакопеременная электромагнитная суперструна из квантонов внутри квантового пространства и времени

Квантон – это нулевой недостающий элемент в таблице Менделеева (атом вакуума Ньютоний), без участия которого не могут формироваться остальные элементы. Квантон как квант пространства-времени является носителем сверхсильного электромагнитного взаимодействия (СЭВ), которое можно представить в виде силовой упругой энергетической сетки, пронизывающей всю Вселенную (Рис. 3). Размеры квантона на десять порядков меньше атомного ядра, но он концентрирует энергию, намного превышающую ядерную.

Квантовая гравитация рассматривает силы тяготения как результат деформации (искривления по Эйнштейну) силовой сетки поля СЭВ (рис. 3), создавая градиент энергии в виде силы FT тяготения.

Как сделать квантовый двигатель

Рис. 3. Силовая сетка поля сильного электромагнитного взаимодействия (СЭВ)

Извлечение энергии сверхсильного электромагнитного взаимодействия (СЭВ) в квантовом двигателе происходит в результате создания неуравновешенной силы (момента) при деформации квантованного пространства–времени градиентными электромагнитными системами (активаторами). Таким образом, квантовый двигатель отталкивается от глобального поля сверхсильного электромагнитного взаимодействия (СЭВ) за счет деформации в нужном направлении (искривления по Эйнштейну) квантованного пространства-времени, создавая искусственною силу тяготения (тяги).

Квантовый двигатель Владимира Леонова имеет следующие преимущества :

– ракета с реактивным двигателем массой в 100 тонн в лучшем случае несет 5 тонн (до 5 %) полезного груза. Аппарат с квантовым двигателем в 100 тонн будет иметь квантовый двигатель с реактором в 10 тонн, то есть полезная нагрузка аппарата с квантовым двигателем составляет 90 тонн, это уже 900 % против 5 % у реактивных двигателей,

– максимальная скорость космического аппарата с квантовым двигателем может достигать 1000 км/с против 18 км/с у ракеты,

– имея длительный импульс тяги, аппарат с квантовым двигателем может двигаться с ускорением,

– полет до Марса на космическом корабле с квантовым двигателем в режиме ускорения ±1g составит всего 42 часа, причем с полной компенсацией невесомости, до Луны — 3,6 часа,

– к вантовый двигатель Владимира Леонова дает возможность работы в космосе, в атмосфере, на земле и под водой,

– возможность летать самолетам на высотах 50–100 км,

– снижение сопротивления самолета в полете и расхода традиционного топлива на порядки, за счет того, что самолет летит по сути дела по инерции,

– при переходе на топливо холодного ядерного синтеза, самолет сможет летать годами без дозаправки,

– заправка 1 кг никеля в реактор холодного ядерного синтеза позволит легковому автомобилю пробегать 10 миллионов километров без дозаправки, а это – 25 расстояний до Луны,

– к вантовый двигатель Владимира Леонова в отличие от ракетного двигателя не греет атмосферу и космос продуктами сгорания топлива,

– дает возможность создать подводный аппарат, который сможет выходить из воды и летать как над водной поверхностью и в атмосфере, так и уходить в космос.

Применение квантового двигателя Леонова:

– автомобили, железнодорожный и морской транспорт, подводные аппараты, авиация, космические межпланетные корабли,

– электроснабжение жилых секторов,

Сравнительные характеристики двигателей:

Тип двигателя:Удельная сила тяги на 1 кВт мощности:
Современный ракетный жидкостный реактивный двигательдо 0,7 ньютон (0,07 кгс)
К вантовый двигатель Владимира Леоноваот 115 до 400 ньютонов (от 11,7 до 40,8 кгс)

Источник энергии для питания квантового двигателя:

К вантовый двигатель Владимира Леонова должен иметь мощный источник энергии. Таким источником энергии является реактор холодного ядерного синтеза (ХЯС), работающий на никеле.

Ссылки на источники:

Ниже указаны ссылки на источники:

Примечание: описание технологии на примере квантового двигателя Владимира Леонова.

© Фото https://www.pexels.com, https://pixabay.com, http://quanton.ru

Как сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигательКак сделать квантовый двигатель

леонов россия успешно испытала испытан антигравитационный двигатель россия леонова принцип
владимир семенович леонов квантовый двигатель владимира леонова миф или реальность на авто
квантовые двигатели испытания
владимир леонов антигравитационный двигатель
принцип антигравитационного двигателя
купить квантовый гравитационный двигатель для межзвездного корабля
история создания антигравитационных двигателей

Источник

Двигатель квантового сгорания

Как справиться с энтропией

Люди научились строить очень мощные двигатели внутреннего сгорания, но не научились главному — существенному повышению их КПД. Предел на этом пути ставит второй закон термодинамики, утверждающий, что энтропия системы неизбежно растет. Но нельзя ли преодолеть этот предел с помощью квантовой физики? Оказалось, что можно, но для этого необходимо было понять, что энтропия субъективна, а тепло и работа — далеко не единственно возможные формы энергии. Подробнее о том, что такое квантовые двигатели, как они устроены и на что способны, читайте в нашем материале.

За 300 лет развития технологии расчета, проектирования и конструирования двигателей проблема создания машины с большим коэффициентом полезного действия (КПД) так и не была решена, хоть и является критичной для многих областей науки и техники.

Квантовая физика, открытая в начале XX века, преподнесла нам уже немало сюрпризов в мире технологий: атомная теория, полупроводники, лазеры и, наконец, квантовые компьютеры. Эти открытия основываются на необычных свойствах субатомных частиц, а именно, на квантовых корреляциях между ними — сугубо квантовом способе обмена информацией.

И кажется, квантовая физика готова удивить нас еще раз: годы развития квантовой термодинамики позволили физикам показать, что квантовые тепловые двигатели могут иметь высокую эффективность на малых масштабах, недоступную для классических машин.

Давайте разберемся, что такое квантовая термодинамика, как работают тепловые машины, какие улучшения дает квантовая физика и что необходимо сделать для создания эффективного двигателя будущего.

Классические тепловые двигатели

В своей книге 1824 года «Размышления о движущей силе огня» 28-летний французский инженер Сади Карно придумал, как паровые двигатели могут эффективно преобразовывать тепло в работу, заставляющую двигаться поршень или крутиться колесо.

К удивлению Карно, эффективность идеального двигателя зависела только от разницы температур между источником тепла двигателя (нагревателем, как правило — огнем) и теплоотводом (холодильником, как правило — окружающим воздухом).

Карно понял, что работа — это побочный продукт естественного перехода тепла от горячего тела к холодному.

Как сделать квантовый двигатель

Схема работы теплового двигателя

В тепловых двигателях используется следующий цикл. Тепло Q1 подводится из нагревателя с температурой t1 к рабочему телу, часть тепла Q2 отводится к холодильнику с температурой t2, t1 > t2.

Работа, произведенная тепловым двигателем, равна разности между подведенным и отведенным теплом: A = Q1Q2, а КПД η будет равен η = A/Q1.

Карно показал, что КПД любой тепловой машины не может превосходить КПД идеальной тепловой машины, работающей по его циклу с теми же самыми температурами нагревателя и холодильника ηCarnot = (t1t2)/t1. Создание эффективной тепловой машины — это максимальное приближение реального КПД η к идеальному ηCarnot.

Сади Карно умер от холеры восемь лет спустя — прежде, чем смог увидеть, как уже в XIX веке его формула эффективности превратилась в теорию классической термодинамики — набор универсальных законов, связывающих температуру, тепло, работу, энергию и энтропию.

Классическая термодинамика описывает статистические свойства систем, сводя микропараметры, такие как положения и скорости частиц, к макропараметрам: температуре, давлению и объему. Законы термодинамики оказались применимы не только к паровым машинам, но и к Солнцу, черным дырам, живым существам и всей Вселенной.

Это теория настолько простая и общая, что Альберт Эйнштейн считал, что она «никогда не будет свергнута». Однако с самого начала термодинамика занимала исключительно странное положение среди других теорий мироздания.

«Если бы физические теории были людьми, термодинамика была бы деревенской ведьмой, — писала несколько лет назад физик Лидия дель Рио. — Другие теории находят ее странной, отличной от остальных, но все приходят к ней за советом и никто не осмеливается ей противоречить».

Термодинамика никогда не претендовала на то, чтобы быть универсальным методом анализа окружающего мира, скорее, она путь к эффективному использованию этого мира.

Термодинамика рассказывает нам, как максимально использовать ресурсы, такие как горячий газ или намагниченный металл, для достижения конкретных целей, будь то движение поезда или форматирование жесткого диска.

Ее универсальность происходит от того, что она не пытается понять микроскопические детали отдельных систем, а только заботится о том, чтобы определить, какие операции легко реализовать в этих системах, а какие трудно.

Такой подход может показаться странным для ученых, но им активно пользуются в физике, информатике, экономике, математике и много где еще.

Одна из самых странных особенностей теории — это субъективность ее правил. К примеру, газ, состоящий из частиц, в среднем имеющих одинаковую температуру, при ближайшем рассмотрении имеет микроскопические температурные различия.

В последние годы появилось революционное понимание термодинамики, объясняющее эту субъективность с помощью квантовой теории информации, которая описывает распространение информации через квантовые системы.

Точно так же, как термодинамика первоначально выросла из попыток улучшить паровые двигатели, современная термодинамика описывает работу уже квантовых машин — управляемых наночастиц.

Для корректного описания мы вынуждены распространить термодинамику на квантовую область, где такие понятия, как температура и работа, теряют свое обычное значение, а классические законы механики перестают работать.

Квантовая термодинамика

Зарождение квантовой термодинамики

В письме от 1867 года своему коллеге, шотландцу Питеру Тейту, знаменитый физик Джеймс Кларк Максвелл сформулировал знаменитый парадокс, намекающий на связь между термодинамикой и информацией.

Парадокс касался второго закона термодинамики — правила, согласно которому энтропия всегда возрастает. Как позже заметил сэр Артур Эддингтон, это правило «занимает главенствующее положение среди законов природы».

Согласно второму закону, энергия становится все более неупорядоченной и менее полезной, поскольку она распространяется от горячих тел к холодным и различия в температуре уменьшаются.

Великий австрийский физик Людвиг Больцман показал, что увеличение энтропии является следствием законов обычной математической статистики: существует гораздо больше способов для равномерного распределения энергии между частицами, чем для локальной ее концентрации. Когда частицы движутся, они естественным образом стремятся к состояниям с более высокой энтропией.

Но в письме Максвелла описывался мысленный эксперимент, в котором некое просветленное существо — позднее названное демоном Максвелла — использует свои знания для снижения энтропии и нарушения второго закона.

Всемогущий демон знает положение и скорость каждой молекулы в контейнере с газом. Разделяя контейнер на две половинки и открывая и закрывая маленькую дверцу между двумя камерами, демон пропускает только быстрые молекулы в одну сторону и только медленные — в другую.

Действия демона делят газ на горячий и холодный, концентрируя его энергию и снижая общую энтропию. Некогда бесполезный газ с некоторой средней температурой теперь можно пустить в ход в тепловой машине.

Долгие годы Максвелл и другие задавались вопросом, как закон природы может зависеть от знания или незнания положения и скорости молекул. Если второй закон термодинамики субъективно зависит от этой информации, то как он может быть абсолютной истиной?

Связь термодинамики с информацией

Столетие спустя американский физик Чарльз Беннетт, опираясь на работы Лео Силарда и Рольфа Ландауэра, разрешил парадокс, формально связав термодинамику с наукой об информации. Беннетт утверждал, что знания демона хранятся в его памяти, а память должна быть очищена, на что требуется работа.

Результаты исследования показали, что информация является физической величиной — чем больше у вас информации, тем больше работы вы можете извлечь. Демон Максвелла создает работу из газа с одной температурой, потому что у него гораздо больше информации, чем у обычного наблюдателя.

Потребовались еще полвека и расцвет квантовой теории информации — области, зародившейся в погоне за квантовым компьютером, чтобы физики подробно изучили поразительные следствия идеи Беннетта.

В течение последнего десятилетия физики предположили, что энергия распространяется от горячих объектов к холодным из-за определенного способа распространения информации между частицами.

Согласно квантовой теории, физические свойства частиц вероятностны и частицы могут находиться в суперпозиции состояний. Когда они взаимодействуют, то запутываются, комбинируя вместе распределения вероятностей, описывающих их состояния.

Центральным положением квантовой теории является утверждение, что информация никогда не теряется, то есть настоящее состояние Вселенной сохраняет всю информацию о прошлом. Однако со временем, когда частицы взаимодействуют и все больше запутываются, информация об их индивидуальных состояниях перемешивается и распределяется между все большим количеством частиц.

Чашка кофе охлаждается до комнатной температуры, потому что при столкновении молекул кофе с молекулами воздуха информация, кодирующая кофейную энергию, просачивается наружу, передается окружающему воздуху и теряется в нем.

Однако понимание энтропии как субъективной меры позволяет Вселенной в целом развиваться без потери информации. Даже когда энтропия частей Вселенной, например частиц газа, кофе, читателей N + 1, растет по мере того, как их квантовая информация теряется во Вселенной, глобальная энтропия Вселенной всегда остается нулевой.

15 лет назад люди думали об энтропии как о свойстве термодинамической системы. Сейчас же мы считаем, что энтропия — это не свойство системы, а свойство наблюдателя, описывающего систему.

Идея о том, что энергия имеет две формы: бесполезное тепло (о котором мы не знаем ничего) и полезную работу (о которой мы знаем почти все), имела смысл для паровых двигателей.

На самом деле между ними существует целый спектр форм — энергия, о которой у нас есть лишь частичная информация. При таком подходе энтропия и термодинамика становятся гораздо менее загадочными.

Ренато Реннер,
профессор университета ETH, Цюрих

Квантовая тепловые двигатели

Как же теперь, используя более глубокое понимание квантовой термодинамики, построить тепловую машину?

В 2012 году был учрежден технологический Европейский исследовательский центр, посвященный квантовой термодинамике, где в настоящее время работают более 300 ученых и инженеров.

Команда центра надеется исследовать законы, управляющие квантовыми переходами в квантовых двигателях и холодильниках, которые когда-нибудь смогут охлаждать компьютеры или использоваться в солнечных панелях, биоинженерии и других приложениях.

Уже сейчас исследователи намного лучше, чем раньше, понимают, на что способны квантовые двигатели.

Тепловой двигатель — это устройство, использующее квантовое рабочее тело и два резервуара при разных температурах (нагреватель и холодильник) для извлечения работы. Работа — это передача энергии от двигателя к какому-то внешнему механизму без изменения энтропии механизма.

С другой стороны, тепло — это обмен энергией между рабочем телом и резервуаром, изменяющий энтропию резервуара. При слабой связи между резервуаром и рабочим телом тепло связано с температурой и может быть выражено как dQ = TdS, где dS — это изменение энтропии резервуaра.

В элементарном квантовом тепловом двигателе рабочее тело состоит из одной частицы. Такой двигатель удовлетворяют второму закону и поэтому также ограничен пределом эффективности Карно.

Когда рабочее тело приводится в контакт с резервуаром, то в рабочем теле изменяется заселенность энергетических уровней. Определяющим свойством резервуара является его способность довести рабочее тело до заданной температуры независимо от начального состояния тела.

В данном случае температура является параметром квантового состояния системы, а не макропараметром, как в классической термодинамике: мы можем говорить о температуре как о заселенности энергетических уровней.

В процессе обмена энергией с резервуаром тело обменивается еще и энтропией, поэтому энергетический обмен на этой стадии рассматривается как передача тепла.

Для примера рассмотрим квантовый цикл Отто, в котором рабочим телом будет выступать двухуровневая система. В такой системе имеются два энергетических уровня, каждый из которых может быть заселен; пусть энергия основного уровня E1, а возбужденного E2. Цикл Отто состоит из 4 стадий:

II. Происходит контакт с нагревателем, система нагревается, то есть верхний энергетический уровень заселяется и изменяется энтропия рабочего тела. Это взаимодействия продолжается время τ1.

III. Происходит сжатие между уровнями E1 и E2, то есть происходит работа над системой, теперь расстояния между уровнями Δ2 = E1E2.

IV. Тело приводится в контакт с холодильником на время τ2, что дает ему возможность срелаксировать, опустошить верхний уровень. Теперь нижний уровень оказывается полностью заселен.

Здесь мы можем ничего не говорить о температуре рабочего тела, имеют значения лишь температуры нагревателя и холодильника. Совершенную работу можно записать как:

где p0(1) — вероятность, что рабочее тело находилось в основном (возбужденном) состоянии. КПД данного квантового четырехтактного двигателя η = 1 − Δ1/Δ2.

Как сделать квантовый двигатель

Цикл Отто на квантовой двухуровневой системе

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *