Как сделать ламинарный поток воздуха
Как сделать поток воздуха ламинарным. Ламинарный поток — как он выглядит. Видео о ламинарном течении
В течение последних десяти лет за рубежом и в нашей стране возросло количество гнойно-воспалительных заболеваний вследствие инфекций, которые приобрели название «внутрибольничные» (ВБИ) – так определила Всемирная организация здравоохранения (ВОЗ). По анализу заболеваний, вызванных ВБИ, можно сказать, что их продолжительность и частота напрямую зависят от состояния воздушной среды больничных помещений. Для того, чтобы обеспечить требуемые параметры микроклимата в операционных залах (и производственных чистых помещениях), используются воздухораспределители однонаправленного потока. Как показали результаты контроля окружающей среды и анализа движения воздушных потоков, работа таких распределителей может обеспечить требуемые параметры микроклимата, однако отрицательно влияет на бактериологический состав воздуха. Для достижения необходимой степени защиты критической зоны нужно чтобы поток воздуха, который выходит из устройства, не терял форму границ и сохранял прямолинейность движения, другими словами, поток воздуха не должен сужаться или расширяться над выбранной для защиты зоной, в которой находится хирургический стол.
Для проектировщиков уже стало привычным применение в операционных помещениях воздухораспределителей однонаправленного потока сверхтонкой очистки со встроенными фильтрами потолочного типа.
Потоки воздуха, имеющие большие объемы, медленно движутся вниз помещения, отделяя, таким образом, защищаемую зону от окружающего воздуха. Однако многие специалисты не переживают о том, что одними только этими решениями для поддержания необходимого уровня обеззараживания воздушной среды во время проведения хирургических операций не обойтись.
Предложено большое количество вариантов конструкций воздухораспределительных устройств, каждый из них получил свое применение в определенной области. Специальные операционные помещения между собой внутри своего класса делятся на подклассы в зависимости от назначения по степени чистоты. Например, операционные кардиохирургические, общего профиля, ортопедические и т.д. Для каждого класса определены свои требования к обеспечению чистоты.
Эксплуатация ламинарных воздухораспределителей
Ламинарные устройства предназначены для применения в чистых производственных помещениях для раздачи воздуха больших объемов. Для реализации необходимы специально спроектированные потолки, регулирование давления в помещении и напольные вытяжки. При соблюдении этих условий распределители ламинарного потока обязательно создадут необходимый однонаправленный поток, имеющий параллельные линии тока. Благодаря высокой кратности воздухообмена, в приточном потоке воздуха поддерживаются условия, близкие к изотермическим. Спроектированные для распределения воздуха при обширных воздухообменах, потолки обеспечивают низкую стартовую скорость потока за счет своей большой площади. Контроль изменения давления воздуха в помещении и результат работы вытяжных устройств обеспечивают минимальные размеры зон рециркуляции воздуха, здесь срабатывает принцип «один проход и один выход». Взвешенные частицы падают на пол и удаляются, поэтому их рециркуляция практически невозможна.
Однако в условиях операционного помещения такие воздухонагреватели работают несколько иначе. Чтобы не превысить допустимые уровни бактериологической чистоты воздушной среды в операционных помещениях, по расчетам значения воздухообмена составляют около 25 крат/ч, а бывает и меньше. Другими словами, эти значения не сопоставимы со значениями, рассчитанными для производственных помещений. Чтобы поддерживать стабильное движение воздушных потоков между операционной и соседними помещениями, в операционной поддерживается избыточное давление. Воздух удаляется через вытяжные устройства, которые установлены симметрично в стенах нижней зоны. Для раздачи меньших объемов воздуха используются ламинарные устройства меньшей площади, устанавливаются они непосредственно над критической зоной помещения как островок посередине комнаты, а не занимают весь потолок.
По результатам наблюдений такие ламинарные воздухораспределители не всегда смогут обеспечить однонаправленный поток. Поскольку разница между температурой в приточной струе воздуха и температурой окружающей воздушной среды в 5-7 °С неизбежна, воздух более холодный, выходящий из приточного устройства, опустится гораздо быстрее, чем однонаправленный изотермический поток. Это привычное явление для работы потолочных диффузоров, установленных в общественных помещениях. Мнение о том, что ламинары обеспечивают однонаправленный стабильный воздушный поток в любом случае, независимо от того, где и как их применяют, ошибочно. Ведь в реальных условиях скорость вертикального низкотемпературного ламинарного потока будет расти по мере опускания к полу.
Расход воздуха, м 3 /(ч м 2) | Давление, Па | Скорость воздуха на расстоянии 2 м от панели, м/с | |||||
3 °С T | 6 °С T | 8 °С T | 11 °С T | NC | |||
Одиночная панель | 183 | 2 | 0,10 | 0,13 | 0,15 | 0,18 | неоднонаправленным воздушным потоком; б) помещениями с ламинарным, или однонаправленным, воздушным потоком. Примечание. В профессиональной лексике преобладают термины «турбулентны й воздушный поток», «ламинарный воздушный поток». При стационарном ламинарном движении скорость воздушного потока в точке постоянна по величине и направлению; при турбулентном движении ее величина и направление переменны во времени. Ламинарные устройства применяются в чистых производственных помещениях и служат для раздачи больших объемов воздуха, предусматривая наличие специально спроектированных потолков, напольных вытяжек и регулирования давления в помещении. В этих условиях работа распределителей ламинарного потока гарантированно обеспечивает требуемый однонаправленный поток с параллельными линиями тока. Высокая кратность воздухообмена способствует подержанию в приточном потоке воздуха условий, близких к изотермическим. Потолки, спроектированные под распределение воздуха при больших воздухообменах, за счет большой площади обеспечивают маленькую начальную скорость воздушного потока. Работа вытяжных устройств, расположенных на уровне пола, и контроль давления воздуха в помещении сводят к минимуму размеры зон рециркуляции потоков, и легко срабатывает принцип «одного прохода и одного выхода». Взвешенные частицы прижимаются к полу и удаляются, поэтому риск возникновения их рециркуляции невелик. Изучение свойств потоков жидкостей и газов очень важно для промышленности и коммунального хозяйства. Ламинарное и турбулентное течение сказывается на скорости транспортировки воды, нефти, природного газа по трубопроводам различного назначения, влияет на другие параметры. Этими проблемами занимается наука гидродинамика. КлассификацияВ научной среде режимы течения жидкости и газов разделяют на два совершенно разных класса: Также различают переходную стадию. Кстати, термин «жидкость» имеет широкое значение: она может быть несжимаемой (это собственно жидкость), сжимаемой (газ), проводящей и т. д. История вопросаЛаминарное течениеОтличие ламинарного течения от турбулентного состоит в характере и направлении водных (газовых) потоков. Они перемещаются слоями, не смешиваясь и без пульсаций. Другими словами, движение проходит равномерно, без беспорядочных скачков давления, направления и скорости. Турбулентное течениеВ отличие от ламинарного, в котором близлежащие частицы движутся по практически параллельным траекториям, турбулентное течение жидкости носит неупорядоченный характер. Если использовать подход Лагранжа, то траектории частиц могут произвольно пересекаться и вести себя достаточно непредсказуемо. Движения жидкостей и газов в этих условиях всегда нестационарные, причем параметры этих нестационарностей могут иметь весьма широкий диапазон. Циклы турбулентностиВышеописанный пример является хрестоматийным, и из его наблюдения ученые сделали следующие выводы: Есть и еще одно важное свойство турбулентности: оно всегда трехмерно. Даже если рассматривать одномерное течение в трубе или двумерный пограничный слой, все равно движение турбулентных вихрей происходит в направлениях всех трех координатных осей. Число Рейнольдса: формулаПереход от ламинарности к турбулентности характеризуется так называемым критическим числом Рейнольдса: При обтекании тела воздушным потоком (Рис. 5) частицы воздуха не скользят по поверхности тела, а тормозятся, и скорость воздуха у поверхности тела становится равной нулю. При удалении от поверхности тела скорость воздуха возрастает от нуля до скорости течения воздушного потока. Толщина пограничного слоя измеряется в миллиметрах и зависит от вязкости и давления воздуха, от профиля тела, состояния его поверхности и положения тела в воздушном потоке. Толщина пограничного слоя постепенно увеличивается от передней к задней кромке. В пограничном слое характер движения частиц воздуха отличается от характера движения вне его. Рассмотрим частицу воздуха А (Рис. 6), которая находится между струйками воздуха со скоростями U1 и U2, за счет разности этих скоростей, приложенных к противоположным точкам частицы, она вращается и тем больше, чем ближе находится эта частица к поверхности тела (где разность скоростей наибольшая). При удалении от поверхности тела вращательное движение частицы замедляется и становится равным нулю ввиду равенства скорости воздушного потока и скорости воздуха пограничного слоя. Позади тела пограничный слой переходит в спутную струю, которая по мере удаления от тела размывается и исчезает. Завихрения в спутной струе попадают на хвостовое оперение самолета и снижают его эффективность, вызывают тряску (явление Бафтинга). Пограничный слой разделяют на ламинарный и турбулентный (Рис. 7). При установившемся ламинарном течении пограничного слоя проявляются только силы внутреннего трения, обусловленные вязкостью воздуха, поэтому сопротивление воздуха в ламинарном слое мало. В турбулентном пограничном слое наблюдается непрерывное перемещение струек воздуха во всех направлениях, что требует большего количества энергии для поддерживания беспорядочного вихревого движения и, как следствие этого, создается большее по величине сопротивление воздушного потока движущемуся телу. Для определения характера пограничного слоя служит коэффициент Cf. Тело определенной конфигурации имеет свой коэффициент. Так, например, для плоской пластины коэффициент сопротивления ламинарного пограничного слоя равен: для турбулентного слоя кинетический коэффициент вязкости сил трения воздуха. При обтекании тела воздушным потоком в определенной точке происходит переход пограничного слоя из ламинарного в турбулентный. Эта точка называется точкой перехода. Расположение ее на поверхности профиля тела зависит от вязкости и давления воздуха, скорости струек воздуха, формы тела и его положения в воздушном потоке, а также от шероховатости поверхности. При создании профилей крыльев конструкторы стремятся отнести эту точку как можно дальше от передней кромки профиля, чем достигается уменьшение сопротивления трения. Для этой цели применяют специальные ламинизированные профили, увеличивают гладкость поверхности крыла и ряд других мероприятий. При увеличении скорости воздушного потока или увеличении угла положения тела относительно воздушного потока до определенной величины в некоторой точке происходит отрыв пограничного слоя от поверхности, при этом резко уменьшается давление за этой точкой. В результате того, что у задней кромки тела давление больше чем за точкой отрыва, происходит обратное течение воздуха из зоны большего давления в зону меньшего давления к точке отрыва, которое влечет за собой отрыв воздушного потока от поверхности тела (Рис. 8). Ламинарный пограничный слой отрывается легче от поверхности тела, чем турбулентный. Уравнение неразрывности струи воздушного потока При рассмотрении его принимают условие, что изучаемый воздух не обладает свойством сжимаемости (Рис. 9). В струйке переменного сечения через сечение I протекает за определенный промежуток времени секундный объем воздуха, этот объем равен произведению скорости воздушного потока на поперечное сечение F. Секундный массовый расход воздуха m равен произведению секундного расхода воздуха на плотность р воздушного потока струйки. Согласно закону сохранения энергии, масса воздушного потока струйки m1, протекающего через сечение I (F1), равна массе т2 данного потока, протекающего через сечение II (F2), при условии, если воздушный поток установившийся: Это выражение и называется уравнением неразрывности струи воздушного потока струйки. Итак, из формулы видно, что через различные сечения струйки в определенную единицу времени (секунду) проходит одинаковый объем воздуха, но с разными скоростями. Запишем уравнение (1.9) в следующем виде: Из формулы видно, что скорость воздушного потока струи обратно пропорциональна площади поперечного сечения струи и наоборот. Тем самым уравнение неразрывности струи воздушного потока устанавливает взаимосвязь между сечением струи и скоростью при условии, что воздушный поток струи установившийся. Статическое давление и скоростной напор уравнение Бернулли воздух самолет аэродинамика Из уравнения видно, что внутренняя энергия воздушного потока прямо пропорциональна его температуре. Ввиду мизерно малых значений разноса центров тяжести масс воздуха по высоте в струйке воздушного потока этой энергией в аэродинамике пренебрегают. Рассматривая во взаимосвязи все виды энергии применительно к определенным условиям, можно сформулировать закон Бернулли, который устанавливает связь между статическим давлением в струйке воздушного потока и скоростным напором. Рассмотрим трубу (Рис. 10) переменного диаметра (1, 2, 3), в которой движется воздушный поток. Для измерения давления в рассматриваемых сечениях используют манометры. Анализируя показания манометров, можно сделать заключение, что наименьшее динамическое давление показывает манометр сечения 3-3. Значит, при сужении трубы увеличивается скорость воздушного потока и давление падает. Причиной падения давления является то, что воздушный поток не производит никакой работы (трение не учитываем) и поэтому полная энергия воздушного потока остается постоянной. Если считать температуру, плотность и объем воздушного потока в различных сечениях постоянными (T1=T2=T3;р1=р2=р3, V1=V2=V3), то внутреннюю энергию можно не рассматривать. Значит, в данном случае возможен переход кинетической энергии воздушного потока в потенциальную и наоборот. Когда скорость воздушного потока увеличивается, то увеличивается и скоростной напор и соответственно кинетическая энергия данного воздушного потока. Подставим значения из формул (1.11), (1.12), (1.13), (1.14), (1.15) в формулу (1.10), учитывая, что внутренней энергией и энергией положения мы пренебрегаем, преобразуя уравнение (1.10), получим Это уравнение для любого сечения струйки воздуха пишется следующим образом: Такой вид уравнения является самым простым математическим уравнением Бернулли и показывает, что сумма статического и динамического давлений для любого сечения струйки установившегося воздушного потока есть величина постоянная. Сжимаемость в данном случае не учитывается. При учете сжимаемости вносятся соответствующие поправки. Для наглядности закона Бернулли можно провести опыт. Взять два листка бумаги, держа параллельно друг другу на небольшом расстоянии, подуть в промежуток между ними. Листы сближаются. Причиной их сближения является то, что с внешней стороны листов давление атмосферное, а в промежутке между ними вследствие наличия скоростного напора воздуха давление уменьшилось и стало меньше атмосферного. Под действием разности давлений листки бумаги прогибаются вовнутрь. Экспериментальная установка для исследования явлений и процессов, сопровождающих обтекание тел потоком газа называется аэродинамической трубой. Принцип действия аэродинамических труб основан на принципе относительности Галилея: вместо движения тела в неподвижной среде изучается обтекание неподвижного тела потоком газа В аэродинамических трубах экспериментально определяются действующие на ЛА аэродинамические силы и моменты исследуются распределения давления и температуры по его поверхности, наблюдается картина обтекания тела, изучается аэроупругость и т д. Компрессорные трубы имеют высокий кпд, они удобны в работе, но требуют создания уникальных компрессоров с большими расходами газа и большой мощности. Баллонные аэродинамические трубы по сравнению с компрессорными менее экономичны, поскольку при дросселировании газа часть энергии теряется. Кроме того, продолжительность работы баллонных аэродинамических труб ограничена запасом газа в баллонах и составляет для различных аэродинамических труб от десятков секунд до несколько минут. Широкое распространение баллонных аэродинамических труб обусловлено тем, что они проще по конструкции а мощности компрессоров, необходимые для наполнения баллонов, относительно малы. В аэродинамических трубах с замкнутым контуром используется значительная часть кинетической энергии, оставшейся в газовом потоке после его прохождения через рабочую область, что повышает КПД трубы. При этом, однако, приходится увеличивать общие размеры установки. В дозвуковых аэродинамических трубах исследуются аэродинамические характеристики дозвуковых самолетов вертолетов а также характеристики сверхзвуковых самолетов на взлетно-посадочных режимах. Кроме того, они используются для изучения обтекания автомобилей и др. наземных транспортных средств, зданий, монументов, мостов и др. объектов На рис показана схема дозвуковой аэродинамической трубы с замкнутым контуром.
|