классификация микроорганизмов по отношению к кислороду

Классификация бактерий по отношению к кислороду воздуха

Наличие ферментов, нейтрализующих токсические кислородные продукты

При доступе кислорода воздуха

Без доступа кислорода воздуха

Анаэробы очень широко распространены. Они являются возбудителями ряда опасных инфекционных заболеваний человека, используются в промышленности как продуценты ценных для народного хозяйства соединений.

классификация микроорганизмов по отношению к кислороду

Рис. 60.Выявление типа дыхания микроорганизмов

при культивировании в высоком столбике агара

Метаболическое направление эволюции микроорганизмов

Пробионты, появившиеся 3,6 млрд. лет назад, были первичными гетеротрофами и получали энергию при расщеплении органических веществ абиогенного происхождения, в изобилии имевшихся в окружающей среде. Примером древнего способа обмена веществ, дошедшего до наших дней, является гликолиз — ферментативное бескислородное расщепление глюкозы. По мере истощения запаса органического материала возникала жесткая конкурентная борьба за него, что ускорило процесс эволюции первичных гетеротрофов. Таким образом, первичными организмами нашей планеты были анаэробы (2,5–3 млрд. лет назад).

Исключительным событием стало возникновение фотосинтеза у анаэробных бактерий. Фотосинтез освободил клетки от зависимости доступности органики абиогенного происхождения. Побочным продуктом фотосинтеза являлся кислород, накопление которого в атмосфере привело к коренному изменению хода эволюции. Появление озонового экрана защитило первичные организмы от смертельного УФО и положило конец абиогенному синтезу органики.

Первые аэробные бактерии появились 2,4–2,8 млрд. лет назад благодаря приобретению аппарата окислительного фосфорилирования. Продукты брожения подвергались дальнейшему окислению до СО2 и Н2О. Аэробные (вторичные) гетеротрофы могли более эффективно, чем анаэробные (первичные) гетеротрофы, расщеплять органические вещества, образующиеся в результате фотосинтеза (рис. 61).

классификация микроорганизмов по отношению к кислороду

Рис. 61. Эволюция пробионтов

С ростом концентрации кислорода в атмосфере усложнялась жизнь первичных анаэробных гетеротрофов. Некоторые из них вымерли, другие нашли бескислородную среду (метанобразующие бактерии или серные бактерии, живущие в горячих подземных источниках).

Некоторые первичные гетеротрофы пошли по пути, приведшему к образованию эукариотических клеток. Часть из них вступила в симбиоз с аэробными бактериями, способными к окислительному фосфорилированию. Поглотив вторичных гетеротрофов, первичные не расщепили их на молекулы, а сохранили в качестве энергетических станций, называемых сегодня митохондриями. Такие симбионты дали начало царствам животных и грибов.

Другая часть первичных гетеротрофов «заключила союз» не только с аэробными гетеротрофами, но и с первичными фотосинтетиками, сохранив последних в качестве хлоропластов. Такие симбионты дали начало царству растений.

В пользу симбиотической теории образования эукариот говорят наличие двух мембран у митохондрий и хлоропластов (внутренняя своя, наружная образована клеткой-захватчиком) и идеальный генетический код, позволивший эукариотам отстранится от чужой генетической информации. Митохондрии и хлоропласты имеют кольцевую ДНК и бактериальные рибосомы потому, что их предки были бактериями.

Сравнительный биохимический анализ показывает, что в основе энергетического обмена всех без исключения организмов лежат одни и те же поразительно сходные между собой цепи реакций, не связанных с потреблением свободного кислорода, — реакции, которые происходят в клетках современных анаэробов.

Источник

Отношение различных микроорганизмов к кислороду.

Среди аэробов выделяют группу микроорганизмов-микроаэрофилов, которым кислород необходим, но в концентрации ниже атмосферной (менее 5%). Такие организмы встречаются на границе анаэробной и аэробной зон в естественных местообитаниях. К ним относятся многие тионовые и железоокисляющие бактерии (в том числе, представители родов Beggiatoa, Galionella), а также пресноводные спириллы (Spirillum volutans).

Факультативные анаэробы способны переключать свой обмен веществ в зависимости от наличия или отсутствия кислорода с аэробного дыхания на анаэробные процессы. Как правило, в присутствии кислорода такие микроорганизмы растут быстрее и накапливают больше биомассы. К факультативным анаэробам относятся Saccharomyces cerevisiae, многие энтеробактерии (E. coli) и бациллы.

Группа аэротолерантных анаэробов также не использует кислород в метаболизме, однако некоторое количество кислорода в среде не влияет на их жизнедеятельность. В эту группу входят молочнокислые бактерии и некоторые патогенные стрептококки (Streptococcus pyogenes).

Осмофилы и галлофилы.

Осмофилы (от осмос и греч. philéō — люблю), организмы, способные существовать в субстрате с высоким осмотическим давлением. Однако приуроченность организма к определённому местообитанию зависит не столько от осмотического давления, сколько от химического состава среды. Истинных О., т. е. организмов, одинаково хорошо растущих в изоосмотических растворах различного химического состава, не существует. В зависимости от повышенного содержания в субстрате какого-либо иона и потребности в нём организмов их делят на натриофилы, калиофилы, кальцефилы, магниофилы, фторофилы, селенофилы и т.д. В этих случаях осмотическое давление — производная величина от химического состава среды. Замена субстрата или изменение его ионного состава при сохранении на прежнем уровне осмотического давления обычно приводит к гибели организма. Существуют организмы, способные жить лишь при очень высоких концентрациях солей (NaCl). Это галофильные, т.е. «любящие» высокую концентрацию солей, организмы (от лат. halo – соль). Они представлены двумя основными типами: умеренными галофилами, которые развиваются при содержании соли 1-2%, хорошо растут в среде с 10% соли, но выносят даже 20%-ную её концентрацию (большинство бактерий не переносят концентрации NaCl выше 5%, и экстремально галофильными архебактериями родов Halobacterium и Halococcus, которые требуют содержания 12-15% солей и способны хорошо расти в насыщенном 32%-ном растворе NaCl. Галлофилы обнаружены среди различных групп микроорганизмов (прокариот и эукариот). Галлофилы встречаются на кристаллах соли в прибрежной полосе, на соленой рыбе, на засоленных шкурах животных, на рассольных сырах, в капустных и огуречных рассолах. Большие скопления галофилов благодаря высокому содержанию в них каратиноидов имеют бледно-морковный оттенок.

классификация микроорганизмов по отношению к кислороду

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

классификация микроорганизмов по отношению к кислороду

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

классификация микроорганизмов по отношению к кислороду

классификация микроорганизмов по отношению к кислороду

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Источник

Жизнь на планете всем обязана анаэробным и аэробным бактериям

Бактерии появились более 3,5 миллиардов лет назад и были первыми живыми организмами на нашей планете. Именно благодаря аэробным и анаэробным видам бактерий на Земле зародилась жизнь.

классификация микроорганизмов по отношению к кислороду

Сегодня они являются одной из самых разнообразных в видовом плане и широко распространенной группой прокариотических (не имеющих ядра) организмов. Различное дыхание позволило подразделить их на аэробные и анаэробные, а питание – на гетеротрофные и автотрофные прокариоты.

Классификационное деление прокариотов

Видовое разнообразие этих безъядерных одноклеточных организмов огромно: наука описала только 10000 видов, а предположительно существует более миллиона видов бактерий. Их классификация крайне сложна и осуществляется, опираясь на общность следующих признаков и свойств:

К примеру, морфологическая классификация по внешнему виду подразделяет все бактерии как:

классификация микроорганизмов по отношению к кислороду

Классификация физиологическая по отношению к кислороду делит все прокариоты на:

Анаэробные прокариоты

Анаэробные микроорганизмы полностью соответствуют своему названию – приставка ан- отрицает значение слова, аэро – это воздух и б- жизнь. Получается – безвоздушная жизнь, организмы, чье дыхание не нуждается в свободном кислороде.

Бескислородные микроорганизмы делятся на две группы:

Классификация анаэробных бактерий подразделяет облигатную группу по возможности спорообразования на следующие:

Свойства клостридий

Спорообразующие анаэробные бактерии в большом количестве встречаются в почве и в желудочно-кишечном тракте животных и человека. Среди них известно более 10 видов, которые являются токсичными для человека. Эти бактерии образуют высокоактивные экзотоксины, специфические для каждого вида.

Хотя инфекционным возбудителем может быть один вид анаэробных микроорганизмов, более характерна интоксикация различными микробными ассоциациями:

Бактериальный посев

Вполне закономерно в привычной нам кислородной среде, что для получения облигатных аэробов необходимо использовать специальное оборудование и микробиологические среды. По сути, культивирование бескислородных микроорганизмов сводится к созданию условий, при которых доступ воздуха к средам, где производится культивирование прокариотов, полностью перекрыт.

классификация микроорганизмов по отношению к кислороду

В случае проведения микробиологического анализа на облигатные анаэробы крайне важным являются методы забора пробы и способ транспортировки образца в лабораторию. Так как под действием воздуха облигатные микроорганизмы незамедлительно погибнут, пробу необходимо сохранять либо в герметичном шприце, либо в специализированных средах, предназначенных для подобных транспортировок.

Аэрофильные микроорганизмы

Аэробами называют микроорганизмы, чье дыхание невозможно без свободного кислорода воздуха, а их культивирование проходит на поверхности питательных сред.

По степени зависимости от кислорода все аэробы делят на:

Свойства и особенности аэробов

Аэробные бактерии обитают в почве, воде и воздухе и активно участвуют в круговороте веществ. Дыхание бактерий, которые являются аэробами, осуществляется путем прямого окисления метана (СН4), водорода (Н2), азота (N2), сероводорода (Н2S), железа (Fe).

К облигатным аэробным микроорганизмам, которые являются патогенными для человека, относятся туберкулезная палочка, возбудители туляремии и холерный вибрион. Всем им для жизнедеятельности необходимо высокое содержание кислорода. Факультативно-аэробные бактерии, такие как сальмонелла, способны осуществлять дыхание при весьма незначительном количестве кислорода.

Аэробные микроорганизмы, осуществляющие свое дыхание в кислородной атмосфере, способны существовать в весьма широком диапазоне при парциальном давлении от 0,1 до 20 атм.

Выращивание аэробов

Культивирование аэробов подразумевает использование подходящей питательной среды. Необходимыми условиями являются также количественный контроль кислородной атмосферы и создание оптимальных температур.

классификация микроорганизмов по отношению к кислороду

Дыхание и рост аэробов проявляется в виде образования мути в жидких средах или, в случае плотных сред, в виде образования колоний. В среднем для выращивания аэробов в условиях термостатирования потребуется о 18 до 24 часов.

Общие свойства для аэробов и анаэробов

классификация микроорганизмов по отношению к кислороду

Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.

Источник

Влияние кислорода на жизнедеятельность микробов. Классификация микроорганизмов по отношению к кислороду. Использование в практической деятельности этих знаний.

Условия внешней среды имеют большое значение для жизни микроорганизмов. Температура и влажность, наличие кислорода, освещенность и другие факторы среды влияют на рост микроорганизмов и распространение их в природе.

Большинству живых существ необходим кислород. Микроорганизмы, нуждающиеся для жизни в кислороде, получили название облигатных ( строгих) аэробов. К ним относится большая часть бактерий и грибов.

Некоторые микроорганизмы совсем не используют кислород. Это анаэробы. Они бывают двух типов: облигатные анаэробы, для них кислород токсичен, и аэротолерантные анаэробы, которые не погибают при контакте с кислородом. Токсичность кислорода для облигатных анаэробов определяется тем, что эти организмы не имеют окислительных ферментов – супероксиддисмутазы и каталазы, обычно содержащихся в клетках аэробов и аэротолерантных анаэробов и защищающих организм от токсичных продуктов кислородного обмена (Н2О2 и др.). К облигатным анаэробным микроорганизмам относятся например: бактерии рода Clostridium, ряд представителей которого может фиксировать азот атмосферы, вызывать некоторые болезни (газовую гангрену и т.д., а также анаэробные актиномиценты.

Существует факультативные анаэробы – микроорганизмы, имеющие анаэробный тип метаболизма, но в то же время нечувствительные к кислороду. К ним относятся некоторые кишечные бактерии, представители рода Serratia и др. факультативно анаэробные микроорганизмы в зависимости от условий среды могут иметь или окислительный, или бродильный тип обмена. Так, многие дрожжи способны при доступе воздуха окислять сахар до СО2 и Н2О, а в анаэробных условиях они вызывают спиртовое брожение. Сахар при этом превращается в этиловый спирт и углекислоту.

К факультативно – анаэробным бактериям относятся представители родов Bacillus, Vibrio, Escherichia, патогенные бактерии из родов Salmonella, Shigella, Staphylococcus и др.

Поможем написать любую работу на аналогичную тему

Влияние кислорода на жизнедеятельность микробов. Классификация микроорганизмов по отношению к кислороду. Использование в практической деятельности этих знаний.

Влияние кислорода на жизнедеятельность микробов. Классификация микроорганизмов по отношению к кислороду. Использование в практической деятельности этих знаний.

Влияние кислорода на жизнедеятельность микробов. Классификация микроорганизмов по отношению к кислороду. Использование в практической деятельности этих знаний.

Источник

По потребности микроорганизмов в кислороде выделяют пять групп (рис. 10):

1. Облигатные (строгие) аэробы способны получать энергию только путем дыхания и поэтому обязательно нуждаются в молекулярном кислороде. Энергию получают окислительным метабо­лизмом, используя кислород как терминаль­ный акцептор электронов в реакции, катали­зируемой цитохромоксидазой. Пример: представители родов Pseudomonas и Bacillus.

2. Облигатные (строгие) анаэробы не способны расти и размножаться в присутствии кислорода, поскольку у них отсутствуют ферменты, расщепляющие токсические соединения кислорода. Для них как тип окисли­тельно-восстановительных процессов характерна ферментация, при которой происходит перенос электронов от субстрата-донора к субстрату-акцептору. Тип метаболизма у них — бродильный. Пример: микроорганизмы родов Clostridium и Bacteroides.

3. Факультативные анаэробыспособны расти и размножаться как в при­сутствии кислорода, так и в его отсутствии. Они обладают смешанным типом метабо­лизма и могут ис­пользовать в качестве терминальных акцепторов электронов как молекулярный кислород, так и органические соединения. Процесс получения энергии у них мо­жет происходить кислородным дыханием в присутствии кислорода, а в его отсутствии переключаться на брожение. Пример: Escherichia coli и Saccharomyces.

4. Микроаэрофилы нуждаются в низком содержании свободного кислорода 2-10%. Естественной средой обитания микроаэрофилов является мукозный слой, покрывающий эпителий желудка, где концентрация кислорода невелика. У микроаэрофилов имеются ферменты, которые инактивируются при контакте с сильными окислителями и активны только при низких значениях парци­ального давления кислорода, например фер­мент гидрогеназа. Многие микроаэрофильные бактерии растут быстрее в избыточном количестве углекислого газа (до 20%), поэтому их называют капнофилами. Пример: Helicobacter pylori, Campylobacter.

5. Аэротолерантные микроорганизмыспособны расти в присутствии атмосферного кислорода, но не использовать его в качестве источника энергии. Они осуществляют анаэробный метаболизм (брожение), но устойчивы к действию кислорода при его обычных концентрациях. Пример: Streptococcus pyogenes, Lactobacillus.

классификация микроорганизмов по отношению к кислороду

Аэробы Микроаэрофильные Факультативные Анаэробы Аэротолерантные

микроорганизмы анаэробы микроорганизмы

Рис. 10. Характер роста бактерий с различной потребностью в кислороде

— свободные кислородные радикалы), Эти соединения вызывают перекисное окисление ненасыщенных жирных кислот и окисление SH-групп белков.

Таблица 15. Ферменты бактерий с различной потребностью в кислороде

* Супероксид дисуматаза встречается у многих строгих анаэробов и наличие этого фермента коррелирует с их устойчивостью к кислороду.

Для нейтрализации токсичных форм кисло­рода микроорганизмы, способные существо­вать в его атмосфере, имеют специфические ферменты, прежде всего каталаза, пероксидаза, а также мощную ферментную систему для нейтрализации наиболее токсичных радикалов кислорода, которая получила название супероксид дисмутаза. У анаэробов эти ферменты отсутствуют, также как и система регуляции окислительно-восстановительного потенциала, поэтому накопление токсических для мембран клеток соединений вызывает их разрыв и неизбежную гибель. Биохимически анаэробное дыхание протекает по типу бродильных процессов.

У облигатных аэробов и факультатив­ных анаэробов накоплению закисного радикала O2

препятствует ферменты каталаза и супероксид дисмутаза,расщепляющие кислородный радикал на перекись водорода и молекулярный кислород (табл. 15 и рис. 10).

Аэротолерантные микроорганизмы не име­ют супероксид дисмутазы, и ее функцию вос­полняет высокая концентрация ионов мар­ганца, который, окисляясь под действием 02

, убирает тем самым супероксидный ион. Перекись водорода у этих микроорганизмов разрушается ферментом пероксидазой в ката­лизируемых ею реакциях окисления органи­ческих веществ.

Строгие анаэробы не имеют ни каталазу, ни пероксидазу, но содержат супероксид дисмутазу. В связи с этим некоторые стро­гие анаэробы (бактероиды, фузобактерии) не выносят присутствия даже незначительного количества молекулярного кислорода, тогда как некоторые клостридии могут находиться в атмосфере кислорода, благодаря ферменту супероксид дисмутаза.

Брожение и его виды

При брожении происходит расщепление сложных органических веществ до более просто устроенных с выделением относительно небольшого количества энергии. При поступлении глюкозы в клетку, происходит гликолиз и образуется ПВК. Дальнейшие ее превращения предопределяются набором ферментов анаэробных бактерий. Бродильный (ферментативный) метаболизм, — процесс получения энергии, при котором отщеплен­ный от субстрата водород переносится на органические соединения.

Кислород в процессе брожения участия не принимает. Восстановленные органические соединения выделяются в питательную среду и накапливаются в ней. Ферментироваться могут углеводы, аминокислоты (за исключе­нием ароматических), пурины, пиримидины, многоатомные спирты. Не способны сбра­живаться ароматические углеводороды, сте­роиды, каротиноиды, жирные кислоты. Эти вещества разлагаются и окисляются только в присутствии кислорода, в анаэробных усло­виях они стабильны. Продуктами брожения являются кислоты, газы, спирты.

В зависимости от того какие конечные продукты образуются, выделяют разные типы брожения:

1. Молочнокислое брожение. Примерами этого типа брожения являются лактобактерии, бифидобактерии, стрептококки. Из ПВК они образуют молочную кислоту (гомоферментативное брожение) или молочную кислоту, ацетон, янтарную кислоту, уксусную (гетероферментативное брожение). Продукты молочнокислого брожения игра­ют большую роль в формировании колони­зационной резистентности бактериями рода Lactobacillus и Bifidobacterium, составляющих облигатную флору кишечника. Молочнокислые бактерии широко исполь­зуются в молочной промышленности для по­лучения молочнокислых продуктов, а также в создании пробиотиков.

2.Маслянокислое брожение. Масляная кислота, бутанол, ацетон, изопропанол и ряд других ор­ганических кислот, в частности уксусная, капро­новая, валерьяновая, пальмитиновая, являются продуктами сбраживания углеводов сахаролитическими строгими анаэробами (анаэробные бактерии рода клостридии, а также бактероиды, фузобактерии и другие группы). Спектр этих кислот, определяемый при помощи газожид­костной хроматографии, используется как экс­пресс-метод при идентификации анаэробов.

4.Спиртовое брожение. Встречается, в основ­ном, у дрожжей. Конечными продуктами яв­ляются этанол и С02. Сбраживание глюко­зы происходит по ФДФ-пути в анаэробных условиях. При доступе кислорода процесс брожения ослабевает, на смену ему приходит дыхание. Подавление спиртового брожения кислородом называется эффектом Пастера. Спиртовое брожение используется в пищевой промышленности: хлебопекарной, виноделии.

6. Муравьинокислое (смешанное) броже­ние.Встречается у представителей семейств Enterobacteriaceae, Vibrionaceae. Глюкоза рас­щепляется по ФДФ-пути, глюконат расщеп­ляется по КДФГ-пути.

Знание механизмов брожения имеет большое практическое значение: во-первых, для разработки методов диагностики (идентификации) инфекционных заболеваний но набору ферментов; во-вторых, для создания современных биотехнологий молочнокислых продуктов, сыра, хлеба, вина, пива и многих других продуктов питания.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *