Что такое карбон

Что такое карбон

Что такое углепластик или карбон?

Что такое карбон

Вы слышали про углепластик или карбон?

Углепластик, или карбон (от англ. carbon), — это современный, легкий, но очень прочный материал, применяемый в аэрокосмической отрасли, и незаменимый во многих отраслях промышленности (производство спортивного инвентаря, медицинского оборудования, автомобилестроение и так далее). Благодаря возможности его переработки и технологии производства карбоновые детали могут иметь различную форму и габаритные размеры.

На стадии проектирования ( расчета на прочность композитов ) задаются параметры будущего материала, и за счет определенной ориентации волокон в полимерной матрице, например, в эпоксидной смоле, достигается оптимальное соотношение веса и прочности. Карбон используется в тех изделиях, где его отношения веса к прочности имеет существенное значение. Это в свою очередь повышает экономическую выгоду, потому что при сочетании в себе множества достоинств данный материал стоит недешево, что связано с особенностями технологии его производства и немалой долей ручного труда, непосредственно в процессе изготовления деталей из карбона. Некоторые изделия из углепластика нелегко массово производить и поэтому такое производство обходится очень дорого. Если бы можно было сказать, что углеродное волокно имеет какие-либо недостатки, это были бы издержки производства.

Этот материал стал настолько популярен, что существует не мало других синтетических материалов, которые имитируют настоящее углеволокно. Тем не менее, имитации часто представляют собой только пластик, выполненный в виде структуры углеродного волокна или различные пленки. Carbon Composites использует только высококачественные углеткани.

Углеродные волокна изготавливаются путем термической обработки тончайших нитей углерода с последующей карбонизацией (т. е. нагрев в азотной среде) и графитизацией (т. е. насыщение углеродом для повышения прочности). Углеродные ткани (углеткани) получают путем плетения нитей или лент.

Что такое карбонЧто такое карбон

А то, что обычно называют углепластик или карбон, представляет собой материал, состоящий из углеродных тканей, лент, волокон, и при соединении с полимерной матрицей (эпоксидной смолой или другими полимерами) под действием тепла, давления и/или в вакууме образуется композитный материал, который является одновременно прочным и легким. Это делает его особенным.

Изделия из карбона от компании Carbon Composites

Что такое карбонВ последние годы производство изделий из углепластика заметно выросло, и во многих отраслях всё активнее применяется этот по-настоящему уникальный материал. Покупателям компании Carbon Composites доступны изделия из карбона на заказ, выполненные из композитных материалов, максимально подходящих под выбранный проект. Вы можете заказать карбоновые детали высокого качества, обладающие всеми преимуществами данного материала и изготовленные в строгом соответствии с технологией. Немаловажное преимущество изготовления изделий карбона на заказ — в том, что они могут формоваться как единое целое, что позволяет избежать появления слабых мест в конструкции (которые неизбежно возникают в металлических конструкциях из-за формирования изгибов и соединений). Карбон позволяет создавать цельные изделия, в которых нагрузка равномерно распределяется по всей площади. А поверхность из многочисленных нитей в составе углепластика очень красиво переливается на свету.

Используйте все преимущества углепластика (карбона) — материала будущего — заказывая продукцию в компании Carbon Composites.

Источник

углеволокно, карбон, что это?! давайте разбираться вместе)))

Что такое карбон

Всем привет, наткнулся на интересную статью, тут на драйве 2, ну и решил ее откопировать себе, думаю многим будет интересно почитать, ибо самим как правило оень «по-Google-ть»)))
За статью спасибо говорим rules26 у него много чего интересного в блоге)
Сегодня мы поможем разобраться в одном из самых интересных материалов 21 века. Начнем с военных технологий, закончим тюнингом.
Углеродное волокно — материал, состоящий из тонких нитей диаметром от 3 до 15 микрон, образованных преимущественно атомами углерода. Атомы углерода объединены в микроскопические кристаллы, выровненные параллельно друг другу. Выравнивание кристаллов придает волокну большую прочность на растяжение. Углеродные волокна характеризуются высокой силой натяжения, низким удельным весом, низким коэффициентом температурного расширения и химической инертностью.
Углеродное волокно является основой для производства углепластиков (или карбона, карбонопластиков, от «carbon», «carbone» — углерод). Углепластики — полимерные композиционные материалы из переплетенных нитей углеродного волокна, расположенных в матрице из полимерных (чаще эпоксидных) смол.
Углеродные композиционные материалы отличаются высокой прочностью, жесткостью и малой массой, часто прочнее стали, но гораздо легче.
Что такое карбон?
Слово «карбон» — своего рода профессиональный жаргонизм, точнее сокращение от английского Carbon Fiber (углеродное волокно), под эгидой которого, в общем понимании, объединилось огромное количество самых разных материалов. Примерно, как тысячи различных веществ с отличающимися физическими, химическими и техническими свойствами носят название «пластмасса». В случае с карбоном, общим для материалов стал углеволоконный наполнитель, но не связующее вещество, которое может быть разным. Даже полиэтиленовая пленка с впаянными в нее угольными нитями с полным правом может носить это гордое имя. Просто сложившейся классификации углепластиков еще нет.
Большинство современных материалов, применяемых в технике и, особенно, в автомобильной области, доходят до рядового потребителя по схожему сценарию. Новшества появляются в научных лабораториях обычно для нужд «оборонки». Затем, исполнив почетную обязанность по защите Отечества, они прокладывают себе дорогу через спорт и, как следствие, тюнинг к конвейеру. Так произошло и в случае с углеродными материалами.
Какое применение для карбона?
В последние годы проникновение карбона в конструкцию затюнингованных энтузиастами «аппаратов» приняло лавинообразный характер. Кроме того, углепластик все чаще и чаще упоминается в описаниях серийных машин. Этот материал, имеющий военно-космическую и спортивную предысторию, становится все популярнее. Прочность и легкость материалов ценятся конструкторами автомобилей уже давно, примерно с 50-х годов прошлого века. Сегодняшний прогресс технологий производства увеличивает соблазн применять больше композитов в новых разработках. Для владельца машины подобные детали ценны не только декоративностью рисунка углеродной ткани и завораживающей «переливчатостью» отраженного волокнами света, но и сохраняющейся аурой эксклюзивности. Со стороны производителя предложение карбоновых элементов в отделке — показатель технологической «продвинутости» фирмы.
Краткий курс истории.
Не нарушая сложившихся традиций, после «службы в армии» углепластик «занялся» спортом. Лыжники, велосипедисты, гребцы, хоккеисты и многие другие спортсмены по достоинству оценили легкий и прочный инвентарь. В автоспорте карбоновая эра началась в 1976 году. Сначала на машинах McLaren появились отдельные детали из диковинного черно-переливчатого материала, а в 1981 на трассу вышел McLaren MP4 с монококом, полностью изготовленным из углеволоконного композита. Так идея главного конструктора команды Lotus Колина Чепмена, создавшего в 1960-х несущую основу гоночного кузова, получила качественное развитие. Однако в то время новый материал был еще неведом технологам от автоспорта, потому неразрушаемую капсулу для McLaren изготовила американская компания Hercules Aerospace, обладающая опытом военно-космических разработок. Сейчас же в активе практически всех ведущих команд Формулы-1 есть собственное оборудование для выпуска карбоновых монококов, рычагов подвески, антикрыльев, спойлеров, сидений пилотов, рулей и даже тормозных дисков.
Что же такое КАРБОН или углеродное волокно?
Углеродное волокно состоит из множества тончайших нитей углерода. Прочность нитей на разрыв, сравнимая с прочностью легированной стали, при массе, меньшей, чем у алюминия, обуславливает высокие механические характеристики карбонов. Интересно, что наиболее распространенная технология получения столь прочного материала основана на методе «обугливания» волокон, по изначальным свойствам близким к шерсти. Исходный полимер белого цвета с мудреным названием полиакрилонитрил подвергается нескольким циклам нагрева в среде инертных газов. Сначала под воздействием высокой температуры (около 260 C) на молекулярном уровне изменяется внутренняя структура вещества. Затем при температурах повыше (около 700 C) атомы углерода «сбрасывают» водород. После нескольких «поджариваний» водород удаляется полностью. Теперь удерживавшие его силы направлены на упрочнение связей между оставшимися элементами. На шерсть материал уже не похож, однако его прочность еще далека от идеала. И процесс под названием графитизация продолжается. Повторяющиеся операции нагрева до 1300 C «очищают» почерневшее волокно уже от азота. Полностью избавиться от последнего не удается, однако его количество уменьшается. Каждый «шаг» делает содержание в веществе атомов углерода все больше, а их связь все крепче. Механизм упрочнения такой же, как и при «изгнании» водорода. Самая прочная продукция проходит несколько ступеней графитизации при температуре до 3000 C и обозначается аббревиатурой UHM.
Почему так дорого?
Большие затраты энергии — основная причина высокой себестоимости углеродного волокна. Впрочем, это с лихвой компенсируется впечатляющим результатом. Даже не верится, что все начиналось с «мягкого и пушистого» материала, содержащегося в довольно прозаических вещах и известных не только сотрудникам химических лабораторий. Белые волокна — так называемые сополимеры полиакрилонитрила — широко используются в текстильной промышленности. Они входят в состав плательных, костюмных и трикотажных тканей, ковров, брезента, обивочных и фильтрующих материалов. Иными словами, сополимеры полиакрилонитрила присутствуют везде, где на прилагающейся этикетке упомянуто акриловое волокно. Некоторые из них «несут службу» в качестве пластмасс. Наиболее распространенный среди таковых — АБС-пластик. Вот и получается, что «двоюродных родственников» у карбона полным-полно.
Угольная нить имеет впечатляющие показатели по усилию на разрыв, но ее способность «держать удар» на изгиб «подкачала». Поэтому, для равной прочности изделий, предпочтительнее использовать ткань. Организованные в определенном порядке волокна «помогают» друг другу справиться с нагрузкой. Однонаправленные ленты лишены такого преимущества. Однако, задавая различную ориентацию слоев, можно добиться искомой прочности в нужном направлении, значительно сэкономить на массе детали и излишне не усиливать непринципиальные места.
Что такое карбоновая ткань?
Сохранить в Альбом

plain
Для изготовления карбоновых деталей применяется как просто углеродное волокно с хаотично расположенными и заполняющими весь объем материала нитями, так и ткань (Carbon Fabric). Существуют десятки видов плетений. Наиболее распространены Plain, Twill, Satin. Иногда плетение условно — лента из продольно расположенных волокон «прихвачена» редкими поперечными стежками только для того, чтобы не рассыпаться.
Плотность ткани, или удельная масса, выраженная в г/м2, помимо типа плетения зависит от толщины волокна, которая определяется количеством угленитей. Данная характеристика кратна тысячи. Так, аббревиатура 1К означает тысячу нитей в волокне. Чаще всего в автоспорте и тюнинге применяются ткани плетения Plain и Twill плотностью 150–600 г/м2, с толщиной волокон 1K, 2.5K, 3К, 6K, 12K и 24К. Ткань 12К широко используется и в изделиях военного назначения (корпуса и головки баллистических ракет, лопасти винтов вертолетов и подводных лодок, и пр.), то есть там, где детали испытывают колоссальные нагрузки.
Сохранить в Альбом

satin
Бывает ли цветной карбон? Желтый карбон бывает?
Часто от производителей тюнинговых деталей и, как следствие, от заказчиков можно услышать про «серебристый» или «цветной» карбон. «Серебряный» или «алюминиевый» цвет — всего лишь краска или металлизированное покрытие на стеклоткани. И называть карбоном такой материал неуместно — это стеклопластик. Отрадно, что и в данной области продолжают появляться новые идеи, но по характеристикам стеклу с углем углеродным никак не сравниться. Цветные же ткани чаще всего выполнены из кевлара. Хотя некоторые производители и здесь применяют стекловолокно; встречается даже окрашенные вискоза и полиэтилен. При попытке сэкономить, заменив кевлар на упомянутые полимерные нити, ухудшается адгезия такого продукта со смолами. Ни о какой прочности изделий с такими тканями не может быть и речи.
Отметим, что «Кевлар», «Номекс» и «Тварон» — патентованные американские марки полимеров. Их научное название «арамиды». Это родственники нейлонов и капронов. В России есть собственные аналоги — СВМ, «Русар», «Терлон» СБ и «Армос». Но, как часто бывает, наиболее «раскрученное» название — «Кевлар» — стало именем нарицательным для всех материалов.
Сохранить в Альбом

twill2/2
Что такое кевлар и какие у него свойства?
По весовым, прочностным и температурным свойствам кевлар уступает углеволокну. Способность же кевлара воспринимать изгибающие нагрузки существенно выше. Именно с этим связано появление гибридных тканей, в которых карбон и кевлар содержатся примерно поровну. Детали с угольно-арамидными волокнами воспринимают упругую деформацию лучше, чем карбоновые изделия. Однако есть у них и минусы. Карбон-кевларовый композит менее прочен. Кроме того, он тяжелее и «боится» воды. Арамидные волокна склонны впитывать влагу, от которой страдают и они сами, и большинство смол. Дело не только в том, что «эпоксидка» постепенно разрушается водно-солевым раствором на химическом уровне. Нагреваясь и охлаждаясь, а зимой вообще замерзая, вода механически расшатывает материал детали изнутри. И еще два замечания. Кевлар разлагается под воздействием ультрафиолета, а формованный материал в смоле утрачивает часть своих замечательных качеств. Высокое сопротивление разрыву и порезам отличают кевларовую ткань только в «сухом» виде. Потому свои лучшие свойства арамиды проявляют в других областях. Маты, сшитые из нескольких слоев таких материалов, — основной компонент для производства легких бронежилетов и прочих средств безопасности. Из нитей кевлара плетут тонкие и прочные корабельные канаты, делают корд в шинах, используют в приводных ремнях механизмов и ремнях безопасности на автомобилях.
А можно обклеить деталь карбоном?
Непреодолимое желание иметь в своей машине детали в черно-черную или черно-цветную клетку привели к появлению диковинных суррогатов карбона. Тюнинговые салоны обклеивают деревянные и пластмассовые панели салонов углеродной тканью и заливают бесчисленными слоями лака, с промежуточной ошкуриванием. На каждую деталь уходят килограммы материалов и масса рабочего времени. Перед трудолюбием мастеров можно преклоняться, но такой путь никуда не ведет. Выполненные в подобной технике «украшения» порой не выдерживают температурных перепадов. Со временем появляется паутина трещин, детали расслаиваются. Новые же детали неохотно встают на штатные места из-за большой толщины лакового слоя.
Не принимайте это на свой счет, кто ищет тот найдет! Автор не претендует на истину в конечной инстанции.
Как производятся карбоновые и/или композитные изделия?
Технология производства НАСТОЯЩИХ карбоновых изделий основывается на особенностях применяемых смол. Компаундов, так правильно называют смолы, великое множество. Наиболее распространены среди изготовителей стеклопластиковых обвесов полиэфирная и эпоксидная смолы холодного отверждения, однако они не способны полностью выявить все преимущества углеволокна. Прежде всего, по причине слабой прочности этих связующих компаундов. Если же добавить к этому плохую стойкость к воздействию повышенных температур и ультрафиолетовых лучей, то перспектива применения большинства распространенных марок весьма сомнительна. Сделанный из таких материалов карбоновый капот в течение одного жаркого летнего месяца успеет пожелтеть и потерять форму. Кстати, ультрафиолет не любят и «горячие» смолы, поэтому, для сохранности, детали стоит покрывать хотя бы прозрачным автомобильным лаком.
Компаунды холодного твердения.
«Холодные» технологии мелкосерийного выпуска малоответственных деталей не позволяют развернуться, поскольку имеют и другие серьезные недостатки. Вакуумные способы изготовления композитов (смола подается в закрытую матрицу, из которой откачан воздух) требуют продолжительной подготовки оснастки. Добавим к этому и перемешивание компонентов смолы, «убивающее» массу времени, что тоже не способствует производительности. Это Россия, раслабся 😀 Метод же напыления рубленого волокна в матрицу не позволяет использовать ткани. Собственно, все идентично стеклопластиковому производству. Просто вместо стекла применяется уголь. Даже самый автоматизированный из процессов, который к тому же позволяет работать с высокотемпературными смолами (метод намотки), годится для узкого перечня деталей замкнутого сечения и требует оборудования.
Эпоксидные смолы горячего отверждения прочнее, что позволяет выявить качества карбонов в полной мере. У некоторых «горячих» смол механизм полимеризации при «комнатной» температуре запускается очень медленно. На чем, собственно, и основана так называемая технология препрегов, предполагающая нанесение готовой смолы на углеткань или углеволокно задолго до процесса формования. Приготовленные материалы просто ждут своего часа на складах.
В зависимости от марки смолы время жидкого состояния обычно длится от нескольких часов до нескольких недель. Для продления сроков жизнеспособности, приготовленные препреги, иногда хранят в холодильных камерах. Некоторые марки смол «живут» годами в готовом виде. Прежде чем добавить отвердитель, смолы разогревают до 50–60 C, после чего, перемешав, наносят посредством специального оборудования на ткань. Затем ткань прокладывают полиэтиленовой пленкой, сворачивают в рулоны и охлаждают до 20–25 C. В таком виде материал будет храниться очень долго. Причем остывшая смола высыхает и становится практически не заметной на поверхности ткани. Непосредственно при изготовлении детали нагретое связующее вещество становится жидким как вода, благодаря чему растекается, заполняя весь объем рабочей формы и процесс полимеризации ускоряется.
Компаунды горячего твердения.
«Горячих» компаундов великое множество, при этом у каждой собственные температурные и временные режимы отверждения. Обычно, чем выше требуемые показания термометра в процессе формовки, тем прочнее и устойчивее к нагреву готовое изделие. Исходя из возможностей имеющегося оборудования и требуемых характеристик конечного продукта, можно не только выбирать подходящие смолы, но делать их на заказ. Некоторые отечественные заводы-изготовители предлагают такую услугу. Естественно, не бесплатно.
Препреги как нельзя лучше подходят для производства карбона в автоклавах. Перед загрузкой в рабочую камеру нужное количество материала тщательно укладывается в матрице и накрывается вакуумным мешком на специальных распорках. Правильное расположение всех компонентов очень важно, иначе не избежать нежелательных складок, образующихся под давлением. Исправить ошибку впоследствии будет невозможно. Если бы подготовка велась с жидким связующим, то стала бы настоящим испытанием для нервной системы рабочих с неясными перспективами успеха операции.
Процессы, происходящие внутри установки, незатейливы. Высокая температура расплавляет связующее и «включает» полимеризацию, вакуумный мешок удаляет воздух и излишки смолы, а повышенное давление в камере прижимает все слои ткани к матрице. Причем происходит все одновременно.
С одной стороны, одни преимущества. Прочность такого углепластика практически максимальна, объекты самой затейливой формы делаются за один «присест». Сами матрицы не монументальны, поскольку давление распределено равномерно во всех направлениях и не нарушает геометрию оснастки. Что означает быструю подготовку новых проектов. С другой стороны, нагрев до нескольких сотен градусов и давление, порой доходящее до 20 атм., делают автоклав очень дорогостоящим сооружением. В зависимости от его габаритов цены на оборудование колеблются от нескольких сотен тысяч до нескольких миллионов долларов. Прибавим к этому нещадное потребление электроэнергии и трудоемкость производственного цикла. Результат — высокая себестоимость продукции. Есть, впрочем, технологии подороже и посложнее, чьи результаты впечатляют еще больше. Углерод-углеродные композиционные материалы (УУКМ) в тормозных дисках на болидах Формулы-1 и в соплах ракетных двигателей выдерживают чудовищные нагрузки при температурах эксплуатации, достигающих 3000 C. Эту разновидность карбона получают путем графитизации термореактивной смолы, которой пропитывают спрессованное углеродное волокно заготовки. Операция чем-то похожа на производство самого углеволокна, только происходит она при давлении 100 атмосфер. Да, большой спорт и военно-космическая сфера деятельности способны потреблять штучные вещи по «заоблачным» ценам. Для тюнинга и, тем более, для серийной продукции такое соотношение «цены-качества» неприемлемо.
Если решение найдено, оно выглядит настолько простым, что удивляешься: «Что же мешало додуматься раньше?». Тем не менее, идея разделить процессы, происходящие в автоклаве, возникла спустя годы поиска. Так появилась и стала набирать обороты технология, сделавшая горячее формование карбона похожим на штамповку. Препрег готовится в виде сэндвича. После нанесения смолы ткань с обеих сторон покрывается либо полиэтиленовой, либо более термостойкой пленкой. «Бутерброд» пропускается между двух валов, прижатых друг к другу. При этом лишняя смола и нежелательный воздух удаляются, примерно так же, как и при отжиме белья в стиральных машинах образца 1960-х годов. В матрицу препрег вдавливается пуансоном, который фиксируется резьбовыми соединениями. Далее вся конструкция помещается в термошкаф.
Сохранить в Альбом

twill4/4
Тюнинговые фирмы изготавливают матрицы из того же карбона и даже прочных марок алебастра. Гипсовые рабочие формы, правда, недолговечны, но пара-тройка изделий им вполне по силам. Более «продвинутые» матрицы делаются из металла и иногда оснащаются встроенными нагревательными элементами. В серийном производстве они оптимальны. Кстати, метод подходит и для некоторых деталей замкнутого сечения. В этом случае легкий пуансон из вспененного материала остается внутри готового изделия. Антикрыло Mitsubishi Evo — пример такого рода.
Автор статьи :Алексей Романов ( в редакции Rules26 :))
редактор журнала «ТЮНИНГ Автомобилей» имеет свой взгляд на мир карбона)))
И не изготовив пару тройку деталей судит о том что «знает» только по книжкам.
Пробуйте и дерзайте!

Источник

Карбон. Свойства и применение. Плюсы и минусы. Особенности

Карбон – это полимерный очень прочный композитный материал, состоящий из эпоксидной или другой смолы, и армированный углеродными волокнами. Также его называют углепластиком или карбонопластиком. Главная особенность композита в высокой прочности при небольшой толщине и легкости.

Что такое карбон, как его получают

Углепластик является сложным композитным материалом, при изготовлении которого требуется прикладывание ручного труда. В связи с этим цена на него примерно в 20 раз выше, чем на качественную сталь европейского производства.

Вся сложность процесса его изготовления заключается в применяемом армирующем компоненте – углеволокне. Оно представляет собой тончайшие нити, практически на 99% состоящие из атомов углерода. Их получают путем сложного сжигания органических волокон с поэтапным поднятием температуры. В результате от них остается только углерод, который меняет свою структуру, приближаясь к графиту.

Нити углеволокна имеют толщину всего 0,005-0,10 мм. Они тоньше, чем человеческий волос. Каждую из них по отдельности очень легко сломать, но трудно разорвать. Из волокон сплетают полотна, которые и применяются для изготовления карбона.

Углеволокно работает как армирующий компонент карбона. Из него изготавливаются различные тканые и нетканые материалы. Такие холсты пропитываются полимерными смолами, чаще всего эпоксидными. Слои углеволокна наклеиваются друг на друга. В итоге по застыванию смолы, композитный материал приобретает повышенную прочность, гибкость и стойкость к излому. Практически нет аналогичных композитов, которые можно сопоставить по этим качествам с карбоном. Ему уступает стеклопластик и прочие аналоги.

Что такое карбон

Сфера использования

Изначально карбон был предназначен исключительно для изготовления облегченных деталей спортивных гоночных автомобилей, а также космических аппаратов. Позже себестоимость его производства снизилась достаточно, чтобы применять его и для других целей.

Сейчас из него делают:
Технологии изготовления карбоновых изделий
Чтобы получить карбон, необходимо пропитывать слои ткани из углеволокна смолой, и склеивать их между собой. Это можно делать тремя основными способами:

Чаще всего пользуются самым простым способом, заключающимся в наклейке холста на поверхность. Затем он пропитывается сверху смолой, и на него вклеивается следующий слой. Таким образом, набирается нужное количество слоев, чтобы достигнуть требуемого уровня прочности материала и его толщины. Этим методом пользуются в домашних условиях особенно часто, так как для него не требуется особый инструмент и различные приспособления. Смола наносится на углеволокно кистью, тщательно пропитывая ее. Стоит отметить сложность и кропотливость процесса. Зачастую чтобы получить слой карбона толщиной всего в 1 мм, нужно клеить холст в 4 слоя.

Изделия из углекарбона на производствах зачастую получают методом прессования. Это позволяет добиться лучшего удаления воздуха между слоями. В итоге готовое изделие получается более прочным и надежным. Преимущество метода еще и в том, что спрессованная заготовка может разогреваться, для ускоренной полимеризации смолы. При этом благодаря прессу композит будет все время держать правильную форму, пока не затвердеет. Эта технология дает более высокую производительность.

Также изделия их карбона цилиндрической формы можно получать методом намотки. Эта технология подходит как для заводского, так и домашнего производства. Именно этим методом делаются удилища для рыбалки, спиннинги, рамы велосипедов и т.д. Холст углеволокна наматывается на трубку, и пропитывается смолой. В итоге достаточно быстро набирается большое количество слоев, которые в итоге дают высокую прочность изделию. Трубка же, на которую все изначально наматывалось, вынимается. Чтобы она не приклеилась, ее предварительно смазывают специальным разделительным составом. Тогда адгезии смолы к ней не происходит.

Что такое карбон

Преимущества карбона
Карбон это очень востребованный материал, что обусловлено его положительными качествами:

Изделия из карбона нельзя назвать легкими, но если сравнивать его с металлами такого же объема, то он неоспоримо легче. К примеру, сталь тяжелее на 40%, а алюминий на 20%. Но нужно сразу же отметить прочность карбона. Из него можно делать тонкие изделия и использовать в таких условиях, в которых бы не справились аналоги из стали такой же толщины.

Материал обладает очень высокой термической стойкостью. Отдельные образцы карбона нормально переносят нагрев до температур до +2000С. Само углеволокно легко переносит такие условия, но только в бескислородной среде. Но так как оно находится в толще застывшей смолы, то не контактирует с воздухом. В конечном итоге температурная стойкость карбона продиктована больше свойствами смолы, из которой он изготавливается.

Материал не ржавеет и не подвергается другим видам коррозии. Это делает его альтернативным решением для применения вместо стальных изделий в сложных условиях. Он нормально переносит воздействие ультрафиолета, так что может эксплуатироваться практически где угодно.

Карбон является очень упругим материалом, который сложно сломать. За счет этого он так ценится при изготовлении различного спортивного инвентаря. Не последнюю роль в этом играет и его сравнительная легкость, и то что изделия из него за счет прочности можно делать меньшего сечения, чем из дерева, металла или другого пластика. Высокий предел упругости подтверждают хоккейные клюшки, теннисные ракетки и луки, которые делают из карбона.

Качество карбона во многом зависит от того, каким образом был сделан холст из углеволокна, и во сколько слоев уложен. Дело в том, что ориентируя направление волокон в слоях можно добиваться большей стойкости готового изделия на воздействие под определенным углом. Так можно корректировать упругость и стойкость на излом.

Что такое карбон

Недостатки карбона

Карбон является весьма ценным материалом, поэтому изделия из него очень качественные. Они более удобные в эксплуатации, однако, все же не идеальные. Проблема в том, что материал боится ударной нагрузки. От этого на нем появляются трещины и сколы. Зачастую они незаметны, но их появление существенно уменьшает прочностные характеристики композита. Зачастую достаточно деформации карбона даже на 0,5%, чтобы вызвать его структурные нарушения. Однако это не означает, что в итоге изделие из него покроется видимыми трещинами и сколами, а потом сразу же сломается. В композите просто появляются микротрещины, но он все равно остается достаточно прочным, чтобы справлялся с теми задачами, которые перед ним стоят.

Качество композита может сильно отличаться, так как напрямую зависит в первую очередь именно от применяемого углеволокна. В процессе его получения нарушить технологию нельзя, в частности не допускается делать даже небольшое отклонение в температурном режиме или продолжительности воздействия на него, так как прочность готового армирующего компонента снижается. В итоге карбон из него также будет менее стойким на излом. Таким образом, стоимость на композитные изделия из карбона разных производителей существенно отличается.

Материал все же не разлетается на осколки при ударах, так как его части удерживаются между собой слоями из углеволокна. Проблема композита в том, что в нем сложно найти баланс между эластичностью и упругостью. Если он отлично переносит воздействие на разрыв, то зачастую достаточно легко ломается при прикладывании усилия на излом. В связи с этим существует большой процент изделий из карбона, которые в результате нарушения расчетов при изготовлении служат не так долго как заявлено для этого композита. Это яркое подтверждение того, почему одни предметы из карбона стоят в разы дороже, чем на первый взгляд такие же других производителей.

Карбоновые пленки

Высокая стоимость карбона, не позволяет его использовать в направлениях, где это экономически нецелесообразно. Композит имеет очень привлекательный внешний вид, поэтому не нуждается в декорировании. По причине его внешних качеств, производятся различные полимерные пленки, имитирующие карбон. При этом они сами по себе им не являются. Это просто декоративные изделия, похожие на него внешне за счет характерного рисунка.

Что такое карбон

Никакого увеличения прочности поклейка такой пленки не дает, так как она далека от карбона. Она просто обеспечивает декоративный эффект, а также дает некоторую защиту от влаги. По сути это просто слой декорации, ничего более. Так что не стоит путать композит и карбоновую пленку.

Источник

Как делают карбон для суперкаров: чем он так хорош

Что такое карбон

В 2018 году на шоу винтажных автомобилей Pebble Beach Concours d’Elegance в США показали новый гиперкар Bugatti под орущим для русскоговорящих названием Divo. Эта тачка оказалась самой дорогой в ассортименте известного бренда. Всего выпустят 40 машин по 5 миллионов евро каждая — все они давно раскуплены.

Это не принципиально новая модель Bugatti — она построена на базе Chiron. Её внешний вид значительно отличается от прообраза. Гиперкар получил новый обвес, спойлер и другие детали, которые увеличивают его прижимную силу до более чем 450 килограмм — это на 90 килограмм больше, чем у предшественника. У машины такой же двигатель на 8 литров и 16 цилиндров, а максимальная скорость ограничена на отметке 380 километров в час. У Divo прокачанные ходовая и тормозная системы, его позиционируют для использования на треке, но гонять на таких точно будут и за его пределами.

Значимой разницей между Divo и Chiron также стал вес — он уменьшился на 35 килограмм. Это стало возможным за счёт повсеместного использования карбона. Да, настолько большой кусок текста в начале этой статьи нужен был именно для того, чтобы подвести вас к разговору об этом материале.

Карбоном называют композитный материал — углепластик

Карбон — это такое многослойное полотно, которое формируется из волокон углерода, завёрнутых в обёртку из полимерной смолы. Если же говорить о правильном нейминге, то именно карбоном называют углерод, из которого делают карбоновое волокно, также называемое углепластиком. Если же откинуть нудные рассуждения, то карбон = углепластик. Сегодня к числу таких веществ относят абсолютно все полотна, в состав которых входят углеродные волокна, а вот звенья между, которые их связывают, уже могут быть абсолютно разными. Таковы реалии.

Карбон — это современный материал. Но кроме уникальных особенностей у него также очень высокая стоимость. Когда за один килограмм стали обычно просят меньше одного доллара, качественный карбон оценивают в двадцать раз больше, и в ближайшее время его цена вряд ли опустится.

Первоначально карбон разрабатывали именно для автомобилей наивысшего класса и космической отрасли. Тем не менее, из-за небольшого веса и высочайшей прочности его используют в современных самолётах, для производства спортивного инвентаря, а также в технологической медицине.

Карбон состоит из отдельных нитей: как их производят

Чтобы сделать карбон, нужна нить из полимеров или органики: полиакрилонитрильная, фенольная, лигниновая, вискозная. Её термическим образом обрабатывают в открытом пространстве при температуре 250 градусов по Цельсию в течение суток. За это время она фактически обугливается.

Что такое карбон

По окончанию окисления начинается процесс карбонизации. На этом этапе происходит нагревание материала в азоте или аргоне — при этом уже используется температура порядка 800–1500 градусов по Цельсию. В итоге в ходе этого процесса получаются структуры, которые напоминают молекулы графита. После этого происходит насыщение углеродом, что называют графитизацией — оно осуществляется в той же среде, но уже при температуре 1300–3000 градусов. Данный процесс может повторяться несколько раз, чтобы добиться концентрации углерода на уровне 99% — при этом материал постоянно чистят от азота. После этого он достигает необходимой прочности.

Немного о том, какими могут получиться полотна карбона

Отдельные нити карбона можно «скручивать» в единое полотно несколькими способами. От того, какой используется, зависит не только рисунок получившегося материала, но и его технические характеристики: прочность, плотность, жёсткость и не только. А вот чтобы получить оптимальные значения по этим показателям, чаще всего используют послойную проклейку разных видов волокон. Именно тогда материал получается максимально практичным и технологичным. Здесь есть свои нюансы, но основных видов волокна четыре. Это полотно, ёлочка, сатин и корзина. Вот, как они выглядят.

Что такое карбон

Полотно. Этот вид плетения считается наиболее плотным. В данном случае нити карбона переплетаются по очереди один к одному. Главным преимуществом этого типа считается максимальная фиксация фактуры. Тем не менее, за счёт этого оно получается менее пластичным.

Что такое карбон Что такое карбон

Ёлочка. Этот вид плетения называют саржевым. В данном случае используется схема два к двум: две основные нити вплетаются через пару других нитей. Это плетение куда прочнее, чем предыдущее, и считается самым востребованным. Чаще всего используют именно его.

Что такое карбон

Сатин. Такое плетение — антипод двум предыдущим. Оно считается наименее плотным, но наиболее пластичным. Каждая из основных нитей в данном случае проходит над несколькими дополнительными нитями — именно это даёт ему необходимую рыхлость.

Что такое карбон

Корзина. Фактура этого волокна считается наиболее привлекательной. Тем не менее, его очень сложно выложить, чтобы не исказить рисунок — с таким умеют работать только настоящие профессионалы. А вот практической пользы у него не так и много.

Чтобы сделать карбон, используют несколько способов

Выше мы рассмотрели, как делают карбоновые нити, а также поговорили о вариантах плетения, которые нужны, чтобы создать из них полотно. Дальше из карбона нужно сделать готовую объёмную деталь для современного автомобиля, велосипеда и так далее. Для этого используют три способа.

Прессование. Это чуть ли не самый простой способ создать деталь из карбона. В его рамках полотно выкладывают в специальную форму, а потом пропитывают эпоксидной или полиэфирной смолой. После этого лишнюю пропитку попросту вытесняют чем-то вроде пресса или используют для этого вакуумные машины. Когда смола застывает, получается необходимая деталь. Смола в этом случае должна пройти по дороге полимеризации. Чтобы ускорить этот процесс, можно использовать повышенный температурный режим. На выходе обычно получается полая деталь, которую называют листовым углепластиком.

Что такое карбон

Формование. Для этого способа работы с углеволокном понадобится макет готового изделия, который также называют матрицей. Её обычно делают из алебастра, гипса или монтажной пены. На неё накладывается пропитанное смолой полотно из карбона, а потом оно прокатывается специальными валиками, чтобы убрать весь воздух между материалом и заготовкой — это может происходить как в холодном состоянии, так и в горячем. После этого, как и в предыдущем случае, нужно дождаться, чтобы смола высохла. Затем готовое изделие можно отделять от заготовки и начинать сначала.

Что такое карбон

Намотка. Этот вариант работы с карбоновым волокном применяется только для создания труб и других аналогичных деталей. В данном случае оно всё так же пропитывается специальной смолой, а потом наматывается на заготовку соответствующей формы. Важно понимать, что и в этом случае, и в двух других, может быть не один слой волокна, а несколько. Как мы уже отмечали выше, если одновременно использовать карбон разного плетения, можно добиться оптимальных показателей по прочности, упругости и пластичности — это очень важно. Плюс ко всему, указанные операции обычно происходят не вручную, а на заводах в промышленных масштабах.

Немного технических особенностей для понимания карбона

Так как карбон делается из нескольких материалов (углеродное полотно в качестве основы и эпоксидная смола для связки), которые отличаются свойствами, он получается достаточно интересным и необычным по своим техническим характеристикам. Именно поэтому его и используют в суперкарах и не только.

ПоказателиПлотность (ρ, кг/ м³)Температурный режим (Тпл, °C)Предел прочности (σB, МПа)Упругость (σB/ρ, МПа/кгм-3)
Углерод141337002760157
Стекло E254813163450136
Стекло S249316504820194
Графит149636502760184
Молибден1663650138014
Полиамид113624982773
Полиэфир138524868949
Сталь78111621413053
Титан47091668193041
Вольфрам192523410427022
Алюминий26876606202300
Асбест2493152113805500
Бериллий1856128413107100
Карбид бериллия2438209310304200

У карбона есть не только достоинства, но и недостатки

Карбон отличается сложностью в производстве — сделать его куда труднее, чем стеклопластик или стекловолокно. Именно поэтому он стоит достаточно дорого: тут сказывается и время в работе, и дороговизна необходимого оборудования. На выходе у него есть неоспоримые преимущества и недостатки, про которые нужно помнить.

Что такое карбон

Преимущества:

Недостатки:

В общем и целом, карбон — суперинтересный и действительно высокотехнологичный материал, из которого можно делать детали для тех же суперкаров. Тем не менее, сферы его реального применения только этим не ограничены — дошло до того, что из него уже делают даже аксессуары для смартфонов.

Источник

Карбон — что это такое

Что такое углепластик

Международное наименование Carbon — это углерод, из которого и получаются карбоновые волокна carbon fiber.

Это инновационный материал, высокая стоимость которого обусловлена трудоемким технологическим процессом и большой долей ручного труда при этом. По мере совершенствования и автоматизации процессов изготовления цена карбона будет снижаться. Для примера: стоимость 1 кг стали — менее 1 доллара, 1 кг карбона европейского производства стоит около 20 долларов. Удешевление возможно только за счет полной автоматизации процесса и сокращения времени его производства.

Применение карбона

Изначально карбон был разработан для спортивного автомобилестроения и космической техники, но благодаря своим отличным эксплуатационным свойствам, таким как малый вес и высокая прочность, получил широкое распространение и в других отраслях промышленности:

Гибкость углеродного полотна, возможность его удобного раскроя и резки, последующей пропитки эпоксидной смолой позволяют формовать карбоновые изделия любой формы и размеров, в том числе и самостоятельно. Полученные заготовки можно шлифовать, полировать, красить и наносить флексопечать.

Технические характеристики и свойства карбона

Популярность углепластика объясняется его уникальными эксплуатационными характеристиками, которые получаются в результате сочетания в одном композите совершенно разных по своим свойствам материалов — углеродного полотна в качестве несущей основы и эпоксидных компаундов в качестве связующего.

Что такое карбон

Армирующий элемент, общий для всех видов углепластика — это углеродные волокна толщиной 0,005-0,010 мм, которые прекрасно работают на растяжение, но имеют низкую прочность на изгиб, то есть они анизотропны, прочны только в одном направлении, поэтому их использование оправдано только в виде полотна.

Дополнительно армирование может проводиться каучуком, придающим серый оттенок карбону.

Карбон или углепластик характеризуются высокой прочностью, износостойкостью, жёсткостью и малой, по сравнению со сталью, массой. Его плотность — от 1450 кг/м³ до 2000 кг/м³. Технические характеристики углеволокна можно посмотреть в с равнительной таблице плотности, температуры плавления и прочностных характеристик.

Кевлар—это американская торговая марка класса полимеров арамидов, родственных полиамидам, лавсанам. Это название уже стало нарицательным для всех волокон этого класса. Армирование повышает сопротивление изгибающим нагрузкам, поэтому его широко используют в комбинации с углепластиком.

Как делают карбоновые нити

Волокна, состоящие из тончайших нитей углерода, получают термической обработкой на воздухе, то есть окислением полимерных или органических нитей (полиакрилонитрильных, фенольных, лигниновых, вискозных) при температуре 250 °C в течение 24 часов, практически их обугливанием. На фото углеродная нить после обугливания.

Что такое карбон

После окисления проходит карбонизация — нагрев волокна в среде азота или аргона при температурах от 800 до 1500 °C для выстраивания структур, подобных молекулам графита.

Затем проводится графитизация (насыщение углеродом) в этой же среде при температуре 1300-3000 °C. Этот процесс может повторяться несколько раз, очищая графитовое волокно от азота, повышая концентрацию углерода и делая его прочнее. Чем выше температура, тем прочнее получается волокно. Этой обработкой концентрация углерода в волокне увеличивается до 99%.

Виды волокон карбона. Полотно

Волокна могут быть короткими, резаными, их называют «штапелированными», а могут быть непрерывные нити на бобинах. Что такое карбонЭто могут быть жгуты, пряжа, ровинг, которые затем используются для изготовления тканого и нетканого полотна и лент. Иногда волокна укладываются в полимерную матрицу без переплетения (UD).

Так как волокна отлично работают на растяжение, но плохо на изгиб и сжатие, то идеальным вариантом использования углеволокна является применение его в виде полотна Carbon Fabric.

Оно получается различными видами плетения: елочкой, рогожкой и пр., имеющими международные названия Plain, Twill, Satin. Иногда волокна просто перехвачены поперек крупными стежками до заливки смолой. Правильный выбор полотна для углепластика по техническим характеристикам волокна и виду плетения очень важен для получения качественного карбона.

В качестве несущей основы чаще всего используются эпоксидные смолы, в которых полотно укладывается послойно, со сменой направления плетения, для равномерного распределения механических свойств ориентированных волокон. Чаще всего в 1 мм толщины листа карбона содержится 3-4 слоя.

Достоинства и недостатки карбона

Более высокая цена карбона по сравнению со стеклопластиком и стекловолокном объясняется более сложной, энергоемкой многоэтапной технологией, дорогими смолами и более дорогостоящим оборудованием (автоклав). Но и прочность с эластичностью при этом получаются выше наряду со множеством других неоспоримых достоинств:

Но по сравнению с металлическими и деталями из стекловолокна карбоновые детали имеют недостатки:

Как делают карбон

Существуют следующие основные методы изготовления изделий из углеткани.

1. Прессование или «мокрый» способ

Полотно выкладывается в форму и пропитывается эпоксидной или полиэфирной смолой. Излишки смолы удаляются или вакуумформованием, или давлением. Изделие извлекается после полимеризации смолы. Этот процесс может проходить как естественным путем, так и при нагреве. Как правило, в результате такого процесса получается листовой углепластик.

2. Формование

Изготавливается модель изделия (матрица) из гипса, алебастра, монтажной пены, на которую выкладывается пропитанная смолой ткань. При прокатке валиками композит уплотняется и удаляются излишки воздуха. Затем проводится либо ускоренная полимеризация и отверждение в печи, либо естественная. Этот способ называют «сухим» и изделия из него прочнее и легче, чем изготовленные «мокрым» способом. Поверхность изделия, изготовленного «сухим» способом, ребристая (если его не покрывали лаком).

К этой же категории можно отнести формование из листовых заготовок — метод препрегов.

Смолы по своей способности полимеризоваться при повышении температуры разделяются на «холодные» и «горячие». Последние используют в технологии препрегов, когда изготавливают полуфабрикаты в виде нескольких слоев углеткани с нанесенной смолой. Они в зависимости от марки смолы могут храниться до нескольких недель в неполимеризованном состоянии, прослоенные полиэтиленовой пленкой и пропущенные между валками для удаления пузырьков воздуха и лишней смолы. Иногда препреги хранят в холодильных камерах. Перед формованием изделия заготовку разогревают, и смола опять становится жидкой.

3. Намотка

Нить, ленту, ткань наматывают на цилиндрическую заготовку для изготовления карбоновых труб. Кистью или валиком наносят послойно смолу и сушат преимущественно в печи.

Во всех случаях поверхность нанесения смазывается разделительными смазками для простого снятия получившегося изделия после застывания.

Можно ли сделать углепластик своими руками

Где брать углеткань

Тайвань, Китай, Россия. Но в России это относится к «конструкционным тканям повышенной прочности на основе углеволокна». Если найдете выход на предприятие, то вам очень повезло. Много компаний предлагают готовые наборы для отделки автомобилей и мотоциклов карбоном «Сделай сам», включающих фрагменты углеткани и смолу.

70% мирового рынка углеткани производят тайваньские и японские крупные бренды: Mitsubishi, TORAY, TOHO, CYTEC, Zoltec и пр.

Надеемся, вы нашли исчерпывающий ответ на вопрос «Что такое карбон»?

Источник

Общие положения

Международное наименование Carbon — это углерод, из которого и получаются карбоновые волокна carbon fiber.

Это инновационный материал, высокая стоимость которого обусловлена трудоемким технологическим процессом и большой долей ручного труда при этом. По мере совершенствования и автоматизации процессов изготовления карбона его стоимость будет снижаться. Для примера: стоимость 1 кг стали — менее 1 доллара, 1 кг карбона европейского производства стоит около 20 долларов. Удешевление возможно только за счет полной автоматизации процесса.

Применение карбона

Гибкость углеродного полотна, возможность его удобного раскроя и резки, последующей пропитки эпоксидной смолой позволяют формовать карбоновые изделия любой формы и размеров, в том числе и самостоятельно. Полученные заготовки можно шлифовать, полировать, красить и наносить флексопечать.

Технические характеристики и особенности карбона

Популярность углепластика объясняется его уникальными эксплуатационными характеристиками, которые получаются в результате сочетания в одном композите совершенно разных по своим свойствам материалов — углеродного полотна в качестве несущей основы и эпоксидных компаундов в качестве связующего.

Что такое карбон

Армирующий элемент, общий для всех видов углепластика — углеродные волокна толщиной 0,005-0,010 мм, которые прекрасно работают на растяжение, но имеют низкую прочность на изгиб, то есть они анизотропны, прочны только в одном направлении, поэтому их использование оправдано только в виде полотна.

Кевлар—это американская торговая марка класса полимеров арамидов, родственных полиамидам, лавсанам. Это название уже стало нарицательным для всех волокон этого класса. Армирование повышает сопротивление изгибающим нагрузкам, поэтому его широко используют в комбинации с углепластиком.

Особенности технологии изготовления углеродного волокна

Волокна, состоящие из тончайших нитей углерода, получают термической обработкой на воздухе, то есть окислением, полимерных или органических нитей (полиакрилонитрильных, фенольных, лигниновых, вискозных) при температуре 250 °C в течение 24 часов, то есть практически их обугливанием. Вот так выглядит под микроскопом нить после обугливания.

Что такое карбон

После окисления проходит карбонизация — нагрев волокна в среде азота или аргона при температурах от 800 до 1500 °C для выстраивания структур, подобных молекулам графита.

Затем проводится графитизация (насыщение углеродом) в этой же среде при температуре 1300-3000 °C. Этот процесс может повторяться несколько раз, очищая графитовое волокно от азота, повышая концентрацию углерода и делая его прочнее. Чем выше температура, тем прочнее получается волокно. Этой обработкой концентрация углерода в волокне увеличивается до 99%.

Виды волокон карбона. Полотно

Волокна могут быть короткими, резаными, их называют « штапелированными », а могут быть непрерывные нити на бобинах.

Что такое карбон

Это могут быть жгуты, пряжа, ровинг, которые затем используются для изготовления тканого и нетканого полотна и лент. Иногда волокна укладываются в полимерную матрицу без переплетения (UD).

Так как волокна отлично работают на растяжение, но плохо на изгиб и сжатие, то идеальным вариантом использования углеволокна является применение его в виде полотна Carbon Fabric. Оно получается различными видами плетения: елочкой, рогожкой и пр., имеющими международные названия Plain, Twill, Satin. Иногда волокна просто перехвачены поперек крупными стежками до заливки смолой. Правильный выбор полотна по техническим характеристикам волокна и виду плетения очень важен для получения качественного карбона.

В качестве несущей основы чаще всего используются эпоксидные смолы, в которых полотно укладывается послойно, со сменой направления плетения, для равномерного распределения механических свойств ориентированных волокон. Чаще всего в 1 мм толщины листа содержится 3-4 слоя.

Достоинства и недостатки

Изготовление карбона

Существуют следующие основные методы изготовления изделий из углеткани:

1. Прессование или « мокрый » способ. Полотно выкладывается в форму и пропитывается эпоксидной или полиэфирной смолой. Излишки смолы удаляются или вакуумформованием или давлением. Изделие извлекается после полимеризации смолы. Этот процесс может проходить или естественным путем или ускоряется нагревом. Как правило, в результате такого процесса получается листовой углепластик.

2. Формование. Изготавливается модель изделия (матрица) из гипса, алебастра, монтажной пены, на которую выкладывается пропитанная смолой ткань. При прокатке валиками композит уплотняется и удаляются излишки воздуха. Затем проводится либо ускоренная полимеризация и отверждение в печи, либо естественная. Этот способ называют « сухим » и изделия из него прочнее и легче, чем изготовленные « мокрым » способом. Поверхность изделия, изготовленного «сухим» способом, ребристая (если его не покрывали лаком).

К этой же категории можно отнести формование из листовых заготовок — препрегов.

Смолы по своей способности полимеризоваться при повышении температуры разделяются на « холодные » и « горячие ». Последние используют в технологии препрегов, когда изготавливают полуфабрикаты в виде нескольких слоев углеткани с нанесенной смолой. Они в зависимости от марки смолы могут храниться до нескольких недель в неполимеризованном состоянии, прослоенные полиэтиленовой пленкой и пропущенные между валками для удаления пузырьков воздуха и лишней смолы. Иногда предпреги хранят в холодильных камерах. Перед формованием изделия заготовку разогревают, и смола опять становится жидкой.

3. Намотка. Нить, ленту, ткань наматывают на цилиндрическую заготовку для изготовления труб. Кистью или валиком наносят послойно смолу и сушат преимущественно в печи.

Во всех случаях поверхность нанесения углепластика смазывается разделительными смазками для простого снятия получившегося изделия после застывания.

Углепластик своими руками

Что такое карбон

Изделия на основе углеволокна можно формовать и самим, что уже давно и успешно применяется при ремонте велосипедов, спортивного инвентаря, тюнинге автомобилей. Возможность экспериментировать с наполнителями для смолы, со степенью ее прозрачности предоставляют широкое поле для творчества любителям автотюнинга карбоном. Подробнее об изготовлении деталей из карбона своими руками, в том числе и для автотюнинга можно почитать здесь.

70% мирового рынка углеткани производят тайваньские и японские крупные бренды: Mitsubishi, TORAY, TOHO, CYTEC, Zoltec и пр.

Затем изделие извлекаем из формы, шлифуем, полируем, покрываем лаком, гелькоутом или красим.

Источник

Что мы знаем о карбоне.

Что такое карбон

Что такое карбон

Многие из вас не раз слышали такое слово как карбон. Но не каждый знает что это такое и часто принимает за карбон то что им не является. В этой статье мы постараемся рассказать о том, что такое карбон, о его плюсах и минусах и о том, как можно сделать имитацию под карбон.

Что такое карбон

Карбон — это композитный материал, состоящий из переплетенных нитей углерода и скрепленных эпоксидными смолами.

Основная составляющая часть карбона – это нити углерода (по сути, тоже самое что и, например, стержень в карандаше). Такие нити очень тонкие, сломать их очень просто, а вот порвать достаточно трудно. Из этих нитей сплетаются ткани. Они могут иметь разный рисунок плетения (елочка, рогожа и проч.). Для придания еще большей прочности данные ткани из нитей углерода кладут слоями, каждый раз меняя угол направления плетения. Слои скрепляются с помощью эпоксидных смол.

В настоящий момент карбон получил очень широкое распространение и применятся во многих отраслях. Из него делаются капоты, бамперы, спойлеры, распорки стоек, детали салона, элементы кузова. Применяют карбон и не только в автомобилях. Его можно встретить и на катерах, на яхтах, мотоциклах, снегоходах, самолетах и прочей летающей технике.
Плюсы и минусы

У карбона есть как свои плюсы, так и минусы. Основными достоинствами являются прочность и небольшой вес. По прочности карбон не уступает большинству металлов, а по весу карбон на 40% легче стали и на 20% легче алюминия. Кроме того, детали из карбона превосходят по прочности детали из стекловолокна. Этим и обусловлено широкое применение карбона в автоспорте. Ведь в автоспорте снижение веса при сохранении прочности является очень важным моментом. Например, кокпиты болидов Формулы 1 выполнены из карбона.
Теперь о минусах

Первое что тормозит продвижение карбона в «массы автолюбителей» — это конечно цена. По стоимости детали из карбона значительно превосходят аналогичные детали из стекловолокна. Высокая стоимость карбона обусловлена, прежде всего, более сложной технологией производства и большей стоимостью производных материалов. Например, для проклейки слоев используются более дорогие и качественные смолы, чем при работе со стеклотканью, а технология производства деталей подразумевает наличие более дорогостоящего оборудования, к примеру такого, как автоклав.

К минусам карбона можно отнести и боязнь точечных ударов. Например, капот из карбона после некоторого времени эксплуатации может превратиться в решето после частого попадания мелких камней.

Также, детали из карбона подвержены выцветанию под воздействием солнечных лучей. Т.е. после определенного времени цвет будет отличаться от первоначального.

Стоит отметить и невозможность восстановления после повреждений. Т.е. в отличие от металлических деталей или деталей из стеклоткани восстановить первоначальный вид карбоновых просто невозможно. Поэтому, после даже незначительного повреждения всю деталь придется менять целиком.
Имитация карбона

Как ни парадоксально, автолюбители полюбили карбон не из его прочности и малого веса, а из-за внешнего вида. Но для того чтобы сетка карбона радовала глаз владельца автомобиля совсем не обязательно, чтобы детали были именно из карбона. В настоящее время придать детали видимость выполнения из карбона можно несколькими способами. Самый простой и дешевый это использование ПВХ пленок с рисунком под карбон. Таких пленок в последнее время выпускается предостаточное количество. Ими можно обклеить как простые детали, так и более сложные по форме. В последнем случае используется фен для нагрева и вытягивания в нужном направлении. Конечно, обтягивание сложных элементов требует специальных навыков, поэтому без специальной подготовки, простому автолюбителю качественно обклеить сложные по форме детали практически не возможно. Это лучше доверить профессионалам. Благо фирм, предоставляющих такие услуги, становится все больше с каждым днем. Они предлагают не только обклейку определенных деталей салона и экстерьера, но и полную обтяжку кузова пленкой под карбон.

Второй способ придать деталям видимость структуры карбона можно посредством «Аква- печати». Эта технология подразумевает обтяжку деталей специальной карбоновой пленкой под давлением воды и требует наличия специального оборудования и материалов. При таком способе покрытие получается более качественное и становится возможным нанесение рисунка карбона на самые сложные по форме детали. Детали после такой обработки по внешнему виду ничем не отличаются от настоящего карбона. Недостатком данной технологии является более дорогая цена и малое количество фирм оказывающих данную услугу. Но второе в скором времени перестанет быть проблемой, так как все больше и больше тюнинговых ателье и автосервисов обращают свое внимание на данную технологию.

Кстати, вы, наверное, не раз видели в объявлениях о продаже японских автомобилей такую фразу – «салон карбон». На самом деле детали салона выполнены не из карбона (конечно, если хозяин автомобиля не поменял их на настоящие карбоновые) и из пластика обтянутого по технологии «Аква-печать». Например, такие салоны в стоковой комплектации имеют некоторые модификации Toyota Chaser.

Ну и третий вариант придать детали вид карбона – это аэрография. Но конечно по внешнему виду (имитация карбона) она значительно уступает предыдущим двум способам. Так как выполнить рисунок в виде правильной геометрической сетки карбона аэрографом практически не возможно. Даже используя различные трафареты, точного совпадения добиться нереально. Так что отнести данный способ можно просто к извращенству.

Надеемся, данная статья поможет вам в нелегком деле тюнинга автомобиля и позволит понять, а так ли вам нужны детали из карбона, если можно сделать все более дешевле и по внешнему виду неотличимо от настоящего карбона.
Похожие публикации:
Углеродное волокно. Карбоновый тюнинг автомобиляУглеродное волокно. Карбоновый тюнинг автомобиля Технология выгодных покупок «CARBON» от ТНК Флокирование и перетяжка кожей, или, что такое тюнинг салона своими руками?Флокирование и перетяжка кожей, или, что такое тюнинг салона своими руками? Что такое спойлер, и как его выбрать?Что такое спойлер, и как его выбрать? Что такое Webasto и с чем его едят?Что такое Webasto и с чем его едят?

Источник

Карбон (материал)

Углепластик — полимерный композиционный материал из переплетенных нитей углерода, расположенных в матрице из полимерных (например, эпоксидных) смол.

Основная составляющая часть углепластика – это нити углерода (по сути, тоже самое что и, например, стержень в карандаше). Такие нити очень тонкие, сломать их очень просто, а вот порвать достаточно трудно. Из этих нитей сплетаются ткани. Они могут иметь разный рисунок плетения (ёлочка, рогожа и проч.). Для придания еще большей прочности данные ткани из нитей углерода кладут слоями, каждый раз меняя угол направления плетения. Слои скрепляются с помощью эпоксидных смол. Применяется для изготовления лёгких, но прочных деталей, например: кокпиты и обтекатели в Формуле 1, спиннинги, мачты для виндсерфинга, бамперы и пороги на спортивных автомобилях, несущие винты вертолётов.

Нити углерода обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода.

Температурная обработка состоит из нескольких этапов.

Первый из них представляет собой окисление исходного (полиакрилонитрильного, вискозного) волокна на воздухе при температуре 250 °C в течение 24 часов.

В результате окисления образуются лестничные структуры.

После окисления следует стадия карбонизации — нагрева волокна в среде азота или аргона при температурах от 800 до 1500 °C. В результате карбонизации происходит образование графитоподобных структур.

Процесс термической обработки заканчивается графитизацией при температуре 1600-3000°С, которая также проходит в инертной среде. В результате графитизации количество углерода в волокне доводится до 99 %.

Помимо обычных органических волокон (чаще всего вискозных и полиакрилонитрильных), для получения нитей углерода могут быть использованы специальные волокна из фенольных смол, лигнина, каменноугольных и нефтяных пеков.

Кроме того, детали из карбона превосходят по прочности детали из стекловолокна.

Детали из карбона обходятся значительно дороже аналогичных деталей из стекловолокна.

«Дороговизна» карбона вызвана, прежде всего, более сложной технологией производства и большей стоимостью производных материалов.

Например, для проклейки слоев используются более дорогие и качественные смолы, чем при работе со стеклотканью, а для производства деталей требуется более дорогое оборудования, к примеру, такое как автоклав.

Недостатком карбона является боязнь «точечных» ударов. Например, капот из карбона может превратиться в решето после частого попадания мелких камней. В отличие от металлических деталей или деталей из стеклоткани, восстановить первоначальный вид карбоновых деталей невозможно. Поэтому, после даже незначительного повреждения всю деталь придется менять целиком. Кроме того, детали из карбона подвержены выцветанию под воздействием солнечных лучей.

Применение

Что такое карбон

Используется вместо металлов во многих изделиях, от частей космических кораблей до удочек

Источник

Карбон под водой, на земле и в небе…

Что такое карбон

В последнее время всё чаще можно встретить утверждение, что карбон — это прямо-таки олицетворение современной эпохи развития технологий и производства. По большому счету это даже правда, но есть один нюанс: в свободной продаже углепластик появился еще 54 года назад. И до этого он тоже существовал и использовался, но тему не особо распространяли по причине ее плотной связи с военно-промышленным комплексом. Не особо, правда, известно, как он применялся военными, да еще и в те годы, но нынче даже в гражданской сфере карбон действительно стал использоваться прямо-таки по всем фронтам.

Почему все так любят карбон

Сегодня углепластик по-прежнему связан с ВПК и на его усовершенствование традиционно тратятся немалые средства. Хотя какими бы ни были прочными композиты, а по убойной силе с термоядерной реакцией они всё равно и рядом не сидели. Так что нам остается лишь уповать на людское благоразумие, направляя исследования на развитие «мирного карбона», а именно — добиться с его помощью того, чтобы жить с ним нам было выгоднее, приятнее и комфортнее. При этом желательно, чтобы недорого, ведь именно цена в большинстве случае останавливает конечного потребителя. Поэтому удешевление стоимости производства изделий из карбона стало одной из главных задач, которую решают по всему миру 24/7, ведь идея внедрения углепластиков в массовое производство так и манит своими потенциальными прибылями.

И, тем не менее, даже сейчас из карбона пытаются выжать по максимуму, ведь даже его начальные параметры довольно впечатляющи: он легче стали и алюминия по отдельности, но прочнее их, взятых вместе. Когда это стало окончательно понятно, перспективы открылись серьезные. Радость омрачал лишь тот факт, что в тех случаях, когда при ударах металл отделается легким испугом в виде незначительной и еле заметной вмятины, углепластик треснет и разлетится, поскольку имеет крайне низкую способность к деформации. Это тоже стало одной из главных проблем, которую частично решили, решают и, вероятно, будут еще решать. Хотя в некоторых случаях это, наоборот, является преимуществом — к примеру, в гоночном спорте, куда композиты проникли едва ли не сразу после ВПК (что не удивительно, поскольку «Формула-1» — самый престижный класс международных автогонок, поэтому и деньги там вращаются немалые).

Мы его только не едим…

Правда, стоит отметить, что в судостроении этот материал долгое время не использовали, поскольку не удавалось решить проблему, когда в соленой воде углепластик с металлами приводил к сильнейшей коррозии. Но поскольку сегодня уже есть технологии обработки композитов, моря и океаны бороздят корабли, построенные с использованием углепластиков.

Как ни странно, но, за редким исключением, во всех перечисленных выше сферах применения карбона ценится именно основное его качество — высокое отношение его прочности к массе. К примеру, модуль упругости лучших представителей углеволокна даже выше, чем 700 ГПа. Для наглядности это нагрузка 70 т на 1 кв. мм. А усилие на разрыв доходит до 5 ГПа — и это при крайне низкой массе!

Производство изделий из карбона: почему так дорого?

По прошествии нескольких лет активного поиска исходников для этого самые подходящие результаты продемонстрировали полиакрилонитриловые волокна (PAN). Именно с этого полимера началось производство углеволокна.

Кстати, трудно поверить, но производство это начинается с мягких белых волокон, которые, между прочим, активно применяются в легкой промышленности и содержатся в составе многих вещей, о чем вовсе не догадываются люди, далекие от химии. Например, эти волокна (сополимеры полиакрилонитрила) очень любит наша текстильная промышленность, выпускающая одежду, ковры, материалы для фильтров, обивки и всё остальное, где на этикетке значится акриловое волокно. Очень популярный сегодня АБС-пластик, которому сам черт не страшен, тоже содержит некоторые виды этих полимеров…

Итак, полимер вытягивают так, чтобы он располагался параллельно оси волокнá. Полиакрилонитриловые волокна нагревают до 260 °С и окисляют, вследствие чего соединение между молекулами становится стабильным. Далее вещество греют в инертном газе при температуре в несколько тысяч градусов, что ведет к тому, что с него убираются летучие компоненты и частицы волокон создают новые связи. Короче, материал обугливается — происходит его так называемая карбонизация, а все неуглеродные соединения в нем отторгаются и удаляются.

Тут следует заметить, что чем выше будет температура всего этого процесса, тем качественнее получат карбоновую нить. Так, при изготовлении карбона с экстремально высокими характеристиками прочности волокно подвергают всё в том же инертном газе многоступенчатому графитированию — а процесс этот, как можно догадаться, не из дешевых. Но качество продукта оправдывает затраты: получаемая карбоновая нить обладает фантастической прочностью на разрыв, хотя ее прочность на изгиб такими показателями не отличается. Для случаев, когда это принципиально, нашли простой выход: используют углеткань и, ориентируя в ней нужным образом волокна, укладывают перед полимеризацией в определенном направлении ее слои, задавая расчетную прочность конечного продукта.

Не волокном единым…

Кроме того, учитывая то, что часто необходимо получить деталь со сложной геометрией, есть вероятность получения участков, где волокно спрессовано недостаточно плотно. Это — уязвимые места, поэтому для производства таких сложных изделий используются не только углеткани с определенным видом плетения, но еще и технологии, которые делают процесс распределения отверждающего вещества равномерным.

Связующие вещества (компаунды) можно разделить на «холодного» и «горячего» отверждения — и обе технологии получения карбоновых деталей могут похваcтать преимуществами и опечалить недостатками. Но каковым бы ни был компаунд, получить само карбоновое волокно — дело в любом случае энергетически затратное, что и портит всю картину массовому производству, о чем говорилось с самого начала.

Задача снижения цены производства углепластика

На бытовом же уровне всех заботит уменьшение цены на всё, чем мы пользуемся постоянно. Ибо если накопить денег на дорогую карбоновую удочку не так сложно, то уж купить автомобиль, где углепластиковые детали в большом количестве, уже не по карману человеку со средними доходами. А было бы неплохо — ведь карбоновые детали кузова (а также кузов целиком), снижают массу и улучшают его аэродинамику. Первое преимущество позволяет экономить на топливе, а второе — улучшает поведение автомобиля и снижает количество ДТП, что уже доказано статистикой. Эстетику, правда, в расчет не берем, поскольку сегодня есть технологии печати, которые могут делать имитацию, правдоподобно превращая капот и прочие детали в карбоновые — например, можно наклеить специальную пленку: это будет красиво, но всё равно металл и обман, который не сравнится с композитами, но который значительно дешевле.

А чтобы удешевить производство углепластиков, необходимо его больше автоматизировать и сделать менее энергозатратным. И вот поэтому сегодня создаются целые объединения институтов и лабораторий, и на сегодняшний день существует даже ряд их наработок, в результате которых должно произойти снижение стоимости производства карбона до 90 %.

Способы удешевления углепластиков

Что такое карбонВ первую очередь следует напомнить, что если карбон будет дешевле, он завоюет массовое производство — и это будет уже другая, более оптимистичная, история. Поэтому подробности новых технологий — коммерческая тайна, но кое-что всё-таки становится известным.

Например, одним из прорывов можно считать технологию струйного перенесения сухой смолы, что снижает стоимость производства кузовных деталей. Автор технологии — австралийская компания Quickstep. Тут разработали особый вид смолы в сухом виде, которую впоследствии распыляет робот. Суть в том, что подобный технологический ход уже не требует затратного способа подготовки жидкой смолы.

Также в компании ведутся работы по использованию карбонового сырья лигнина, который по прочности стои́т на одной ступени с бетоном, а получается из древесины. Кроме этого, ведется работа еще и по поиску методов использования углепластиков с термопластиковыми смолами, что также снижает стоимость производства до 70 %.

А учеными Пенсильвании совместно с американскими и бельгийскими производителями удалось найти иной способ для удешевления производства, а именно, с использованием графена.

Они выяснили, что лишь незначительная добавка графена позволяет получить углеволокно, которое по сравнению с углеволокном, полученным традиционным способом, имеет более высокие характеристики: на 225 % выше прочность и на 184 % — жесткость. И это тоже можно назвать своеобразной революцией в производстве, поскольку из двух технологических этапов нагрева углеволокнá один можно исключить полностью, а второй будет менее энергоемким.

Карбон будущих поколений

Фантастика на пороге!

…Однако всё идет к тому, что не за горами реализация старой идеи космического лифта, предложенная еще в 1895 г. нашим великим ученым Константином Циолковским. Заключается она в том, чтобы доставлять на космическую станцию, пребывающую на геостационарной орбите, грузы, минуя дорогостоящие и небезопасные запуски космических ракет. А это, на минуточку, высота 35 000 км над поверхностью Земли!

Данный проект, возможно, давно бы реализовали — но для этого необходим был очень прочный материал, поэтому план, скорее, считали фантастикой гения. Однако по мере открытия и исследования углеродных нанотрубок (которые ведутся еще с 1990-х) всё это уже не кажется сказкой, поскольку нить из карбоновых нанотрубок толщиной всего 1 мм выдерживает вес до 30 тонн (!).

Компания Lamborghini в 2019 году стала первой, кто поставил для себя задачу исследования углепластика в условиях космоса, и отправила на Международную космическую станцию образцы, среди которых, между прочим, не только опытные, но и те, которые уже используются в серийном производстве. Что это значит?

Да то, что, если такие крупные корпорации тратят немалые деньги на исследования, значит это имеет расчетную выгоду, которая обязательно реализуется в денежные знаки, то есть доступность для простых смертных качественных и красивых изделий из карбона по низкой цене. Надо только подождать.

Источник

Карбон (углепластик) — что это за материал: характеристики, описание и состав

Для просмотра ткани вблизи — наведите на фото

Название волокон технического назначения произошло от «carbon», «carbone» — в переводе означающих «углерод». Тонкие нити из этого сырья нашли широкое применение во многих отраслях от аэрокосмической отрасли до текстильной промышленности. Рассмотрим детально, что такое карбон.

Карбон – это многослойный композиционный материал. Основа полотен выполнена из углеродного волокна, пропитана термореактивными полимерными смолами.

При малом весе такой материал демонстрирует сверхпрочность. К сведению: детали, выполненные из карбона, по жесткости и износостойкости превосходят аналогичные из алюминия.

Из чего изготавливают карбон — состав

Что такое карбон

В процессе формирования карбоновых тканей основным сырьем являются полимерные материалы, органической сырье и термореактивные смолы.

Углеродное волокно (carbon fiber) – разновидность полотен, полученных разными способами переплетения. Иногда карбоновые нити в текстиле укладывают в полимерную матрицу, закрепляя стежками до заливки связующими компонентами.

При применении ткацких переплетений применяют способы: рогожка, елочка и другие. Такие полотна демонстрируют растяжимость, но плохо реагируют на сжатие и изгиб. Наиболее известные торговые наименования этого типа полотен: Plain, Twill, Satin.

Углепластик (carbon fiber reinforced polymer) – это полимер, армированный карбоновым волокном. Свойства материала зависят от добавок, вводимых в матрицу (например, кремнезем, углеродные нанотрубки, резина).

Сложность переплетения карбоновых нитей обусловлена невысокими показаниями стойкости на изгиб в отличие от стандартных материалов. Производителями разработан ряд техник, позволяющих получить различные виды основ.

Слои материалов пропитывают смолами и скрепляют путем наматывания или прессования. Карбоновая ткань толщиной в 1 мм состоит из 4–5 слоев.

Процесс производства

Что такое карбон

В производстве карбонового волокна используют полимеры и органическое сырье, подвергающиеся термической обработке. Обугливание происходит при температуре +250◦С на открытом воздухе в течение 24 часов.

Из подготовленного сырья получают тончайшие нити углерода диаметром от 3 до 15 мкм. На следующем этапе проводится карбонизация – прокаливание нитей в автоклаве при температуре 800 — 1500◦С. Во время этого процесса осуществляется пиролиз. Из сырья улетучиваются инертные компоненты, меняется структура химических связей.

Что такое карбон

В зависимости от назначения и технологии производства волокна режут (штапелированные) или делают непрерывными, наматывая на бобины. В производстве полотен применяют два метода: сухой и мокрый. Оба способа предусматривают воздействие на углеродные нити высоким давлением при определенных температурах.

Готовые полотна скрепляют полиэфирными, винилэфирными или эпоксидными смолами. Затем при необходимости проводят армирование с использованием каучука, кевлара и других компонентов.

Технические характеристики

В таблице приведены свойства карбоновых материалов:

ХарактеристикиПоказатели
Тип сырьяХимическое (углерод)
Компоненты органического происхожденияполиакрилонитрильные, фенольные, лигниновые, вискозные волокна
Количество углеродных нитей в волокне, К1 (1000 нитей) – 50
СтруктураМногослойная
Предел прочности на разрыв, МПа2500–3500
Модуль упругости, ГПа200–600
НазначениеТехническая ткань
Тактильные качестваЛегкая, жесткая, прочная
Способ ткацкого переплетенияПростое, сатиновое, саржевое, сложное и нетканые полотна
Плотность углеродных волокон, гр./м31,7 – 1,9
Плотность, гр./м2200–470
Стандартная ширина полотен, см.100, 150
ВодоупорностьВысокая
Гигроскопичность, %1–5
Скорость впитывания влагиНизкая
ВоздухопроницаемостьНезначительная
ПаропроводимостьСредняя
ТермостойкостьДо 2000◦С
Способность накапливать статическое электричествоСредняя
ЭластичностьВысокая
Прочность и износостойкостьВысокие
Способы окрашиванияЛегко поддается окрашиванию и нанесению принтов. Чаще всего черные полотна с серыми вкраплениями, серые, серебристые.
ПроизводительЯпония, Тайвань, Россия, Китай
Виды материалаPlain, Twill, Satin
СтандартизацияГОСТ Р 58062 – 2018
ЦенаВысокая, от 760 ₽ за 1 метр

Плюсы и минусы

К плюсам карбоновых тканей стоит отнести такие качества:

Из недостатков стоит отметить такие:

Наиболее известные в текстильной промышленности материалы:

Применение карбона

Что такое карбон

Карбоновая ткань впервые была разработана в качестве материала для космической отрасли. Высокие эксплуатационные свойства, углеродных волокон обеспечили им быстрое распространение в других сферах: автомобильной, авиационной, строительной, медицинской, энергетической, судостроительной.

Карбон используется в изготовлении спортивной амуниции, рыболовных снастей, фильтров, аксессуаров, электроники, декоративных изделий, специальной одежды. Нетканые образцы применяют в качестве изоляционных материалов в трубопроводах.

Безопасный для здоровья материал используется в производстве линии для оздоровления. Электротекстиль в связи с высоким показателем температуры плавления (450 градусов в воздушной среде) применяют в изготовлении грелок, электропростыней, в качестве изоляционного материала в системах «теплый пол».

УВ используются для изделий леченого назначения. Полиакрилонитрил (ПАН) в производстве карбоновых материалов используется в качестве композита, как сверхпрочное конструкционное сырье. Вискозное волокно дополняет и замещает графит там, где необходим лечебный эффект.

Морфологическая структура волокна позволяет образовывать стабильные цепи. Воздух, проходя сквозь переплетения карбоновых нитей, насыщает их отрицательными частицами (ионами). Лечебный эффект достигается благодаря таким качествам:

Данные способности улучшают регенерацию поврежденных тканей вдвое быстрее, чем при использовании лекарственных средств. УВ снимают воспаления и отечность, стимулируют иммунную систему. Из карбоновых тканей производят жгуты, салфетки, жгуты подушки и одеяла.

Углеродные нити на вискозной основе используют в производстве трикотажных изделий. Шорты, наколенники, маски, вкладыши для постельного белья – далеко не полный список изделий медицинского назначения.

Сколько стоит карбон

Что такое карбон

Многие задаются вопросом: сколько стоит карбон, и почему материал химического происхождения достаточно дорогой. Для сравнения: 1 кг промышленной стали стоит в 20 раз ниже углерода.

Такое соотношение объясняется особенностями технологии и высокой долей ручного труда при изготовлении волокон. Химическая промышленность не стоит на месте. С внедрением автоматизации цена на карбоновые ткани в будущем будет снижаться.

Что такое карбон

Прочное и стойкое полотно требует специального ухода. Прежде всего, необходимо тщательно осматривать поверхность на предмет сколов и повреждений. УФ-лучи делают его уязвимым. Поэтому для изделий, находящихся под воздействием солнца, важно покрытие специальным лаком или эмалью.

Источник

Карбон, углеродное волокно, кованый карбон.

Истинные поклонники тюнинга, для которых внешний вид автомобиля не на последнем месте, хорошо знают о материалах применяемых для внешнего и внутреннего стайлинга.

Один из самых интересных и известных эффектных материалов 21 века, применяемый в тюнинге, является углеволокно или другим словом карбон.

На сайте представлено большое множество различных обзоров проектов от мировых тюнинг-ателье, в которых применяется данный материал. BMW 8 серии от AC Schnitzer, Mercedes-AMG G63 от LUMMA Design, Maserati Levante от Larte Design.

Итак, что же такое карбон? Давайте разбираться!

Что такое углеродное волокно и карбон?

Слово «карбон» пришло в русский язык из-за рубежа. Оно происходит от английского слова carbon, по-русски – сажа, углерод и технического термина carbon fiber, в переводе – углеродное волокно.

Что такое карбон

Углеродное волокно — это материал, состоящий из тончайших нитей диаметром от 5 до 15 микрометров, образованных преимущественно атомами углерода. Сами атомы углерода объединены в микрокристаллы, выровненные параллельно друг другу. Такая схема придает волокну высокую прочность на растяжение и маленький вес.

Что такое карбон

Карбон – это общее наименование группы композитных материалов, получаемых путём запекания углеродного волокна при высокой температуре в матрице из полимерных смол. В процессе полимеризации синтетические смолы, армированные высокопрочными углеродными нитями, превращаются в материалы, обладающие уникальными техническими характеристиками и эксплуатационными свойствами.

В мире существует несколько крупных заводов, производящие карбон. Венгерский Zoltek, американский Cytek, немецкий Hexcel и три японских завода – Toray, Mitsubishi и Toho. В 2015 году открыли завод по производству углеродного волокна и в России, в городе Елабуга. Строительство такого завода стало важным шагом в реализации программы импортозамещения.
Благодаря появившимся на рынке материалов российских производителей, помимо аэрокосмической отрасли и военных предприятий, карбоном заинтересовались и другие отрасли промышленности. Карбон стали активно использовать в автомобилестроении, дизайне интерьеров, производстве спортивного инвентаря и других сферах.

История карбона в автоспорте.

В автоспорт карбон пришёл в 1976 году. Британская компания McLaren стала использовать углеволоконный композит на своих спортивных автомобилях, делая отдельные детали для них. В 1981 году на трассу вышел McLaren MP4, ставший первым в истории Формулы 1 с полностью карбоновым монококом. Однако в те года технологи из автоспорта не имели малейшего понятия, как сделать самим такой монокок. Поэтому не разрушаемую капсулу для McLaren произвела американская компания Hercules Aerospace, обладающая богатым опытом военно-космических разработок. В сегодняшние дни практически все ведущие команды Формулы-1 имеют собственное производство деталей из карбона.

Источник

Углеткань (карбон) свойства и характеристики

Что такое карбон

ВВЕДЕНИЕ

Композитные (композиционные) материалы — это искусственные материалы, получаемые сочетанием компонентов с различными физическими и/или химическими свойствами, которые, в сочетании, приводят к появлению нового материала с характеристиками, отличными от характеристик отдельных компонентов. Одним из компонентов является матрица (основа), другим — упрочнители (волокна, частицы, нити, хлопья). В качестве матриц используют полимерные, металлические, керамические и углеродные материалы. Упрочнителями служат волокна — стеклянные, борные, углеродные, органические, нитевидные кристаллы (карбидов, берилов, нитридов и др.) и металлические проволоки, обладающие высокой прочностью и жесткостью. Примеры композиционных материалов: пластик, армированный борными, углеродными, стеклянными волокнами, жгутами или тканями на их основе; алюминий, армированный нитями стали, бериллия, клееная фанера и пр. Среди композиционных материалов можно выделить углепластики.

Впервые получение и применение углеродных волокон было предложено и запатентовано известным американским изобретателем — Томасом Алва Эдисоном в 1880 году в качестве нитей накаливания в электрических лампах. Эти волокна получались в результате пиролиза хлопкового или вискозного волокна и отличались хрупкостью и высокой пористостью и впоследствии были заменены вольфрамовыми нитями. В течение последующих 20 лет Эдисон же предложил получать углеродные волокна на основе различных природных волокон.

Понадобилось несколько десятков лет, прежде чем к углеродным волокнам вновь возник интерес. Поводом послужило получение углеродного волокна из искусственных волокон. В 1958 году волокна из вискозы уже вырабатывались в значительных количествах. В 1959 году союз химических объединений выпускает в продажу высокомодульное углеродное волокно, полученное путем высокотемпературной обработки целлюлозы. Это резко повысило интерес к нему.

Основные сведения

Углепластик (или карбон, карбонопластики, от англ. carbon — углерод) — это композиционный многослойный материал, представляющий собой полотно из углеродных волокон в оболочке из термореактивных полимерных (чаще эпоксидных) смол.

Международное наименование Carbon – это углерод, из которого и получаются карбоновые волокна carbonfiber.

В настоящее время к карбонам относят все композитные материалы, в которых несущей основой являются углеродные волокна, а вот связующее сможет быть разным. То есть карбон и углепластик объединились в один термин, привнеся путаницу в головы потребителей.То есть карбон или углепластик – это одно и то же.

Это инновационный материал, высокая стоимость которого обусловлена трудоемким технологическим процессом и большой долей ручного труда при этом. По мере совершенствования и автоматизации процессов его стоимость будет снижаться. Для примера: стоимость 1 кг стали — менее 1 доллара, 1 кг карбона европейского производства стоит около 20 долларов. Удешевление возможно только за счет полной автоматизации процесса.

Углепластик как относительно новый класс полимерных композитных материалов (ПКМ) получил в последние годы наиболее интенсивное развитие благодаря своим уникальным свойствам, а именно:

Популярность углепластика объясняется его уникальными эксплуатационными характеристиками, которые получаются в результате сочетания в одном композите совершенно разных по своим свойствам материалов — углеродного полотна в качестве несущей основы и эпоксидных компаундов в качестве связующего.

Основная составляющая часть углепластика — это нити углерода. Такие нити очень тонкие (примерно 0,005-0,010 мм в диаметре), сломать их очень просто, а вот порвать достаточно трудно.Углеродные волокна имеют важную особенность – они практически на 100 % состоят только из атомов углерода, благодаря чему имеют черный цвет.

Углеродные нити прекрасно работают на растяжение, но имеют низкую прочность на изгиб, то есть они анизотропны, прочны только в одном направлении, поэтому их использование оправдано только в виде полотна.

Из этих нитей сплетаются ткани. Они могут иметь разный рисунок плетения (ёлочка, рогожа и др.).

Для придания ещё большей прочности ткани из нитей углерода кладут слоями, каждый раз меняя угол направления плетения. Слои скрепляются с помощью эпоксидных смол.

Нити углерода обычно получают путем термической обработки химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Термическая обработка состоит из нескольких этапов:

Виды волокон карбона. Полотно

Волокна могут быть короткими, резаными, их называют «штапелированными», а могут быть непрерывные нити на бобинах. Это могут быть жгуты, пряжа, ровинг, которые затем используются для изготовления тканого и нетканого полотна и лент. Иногда волокна укладываются в полимерную матрицу без переплетения (UD).

Так как волокна отлично работают на растяжение, но плохо на изгиб и сжатие, то идеальным вариантом использования углеволокна является применение его в виде полотна CarbonFabric. Оно получается различными видами плетения: елочкой, рогожой и пр., имеющими международные названия, наиболее распространены Plain, Twill, Satin. Иногда волокна просто перехвачены поперек крупными стежками до заливки смолой.Плотность ткани, или удельная масса, выраженная в [г/м2], помимо типа плетения зависит от толщины волокна, которая определяется количеством угленитей. Данная характеристика кратна тысячи. Так, аббревиатура означает тысячу нитей в волокне. Правильный выбор полотна по техническим характеристикам волокна и виду плетения очень важен для получения качественного карбона.

Что такое карбон

Что такое карбон

Что такое карбон

В качестве несущей основы чаще всего используются эпоксидные смолы, в которых полотно укладывается послойно, со сменой направления плетения, для равномерного распределения механических свойств ориентированных волокон. Чаще всего в 1 мм толщины листа содержится 3-4 слоя.

Связующие

В качестве матриц (связующих) при изготовлении различных конструкций используются преимущественно эпоксидные и полиэфирные синтетические смолы.

Эпоксидные смолы используются двух типов: термопласты и реактопласты. Термопласты все еще находятся в стадии разработки из-за их высокой стоимости. Чаще всего используют смолы реактопласты, которыми пропитывают углеродистые волокна, а после подвергают нагреванию. Процесс затвердевания смолы называют полимеризацией.

До момента отверждения связующее остается вязкотекучей жидкостью. В определенных условиях (при повышении температуры, добавлении инициирующих реакцию веществ и т.п.) молекулы этой жидкости взаимодействуют между собой, образуя большие пространственные молекулы, вследствие чего вся масса связующего необратимо отверждается — затвердевает.

Сравнительно новым классом термостойких высокомолекулярных соединений являются полиамидные смолы. Их главное отличие от полиэфирных и эпоксидных смол заключается в более высоких механических характеристиках и большей стойкости к окислению при высоких температурах (после отверждения). Однако применение полиамидных смол требует разработки специальной технологии изготовления ПКМ.

В зависимости от формы и геометрических размеров детали применяются соответствующие методы формования: прессование, автоклавное формование, намотка, пултрузия, вакуумное или пресскамерное формование, пропитка под давлением. Главное в технологическом процессе — обеспечить выполнение требований к основным технологическим параметрам проведения режима формования (температура формования и скорость подъема температуры, величина и время приложения давления формования, время выдержки на отдельных режимах формования, скорость и температура охлаждения).

Технология изготовления углепластика

Углероное волокно является основой для производства углепластиков (или карбона, карбонопластиков).

Существуют следующие основные методы изготовления изделий из углеткани:

Во всех случаях поверхность нанесения углепластика смазывается разделительными смазками, чаще всего восковыми составами для простого снятия получившегося изделия после застывания.

Применение углепластиков

Углепластик (карбон) имеет невероятно широкую сферу применения. Углеродные материалы и изделия из них можно встретить в самых разнообразных отраслях промышленности.

Композитные материалы интенсивно входят в привычный мир каждого человека. Из них создаются многие товары народного потребления: предметы интерьера, детали бытовых приборов, спортивная экипировка и инвентарь, модели, детали ЭВМ, военной промышленности и многое другое.

Достоинства и недостатки карбона

Более высокая цена карбона по сравнению со стеклопластиком и стекловолокном объясняется более сложной, энергоемкой многоэтапной технологией, дорогими смолами и более дорогостоящим оборудованием (автоклав). Но и прочность с эластичностью при этом получаются выше наряду со множеством других неоспоримых достоинств:

— Легкость: легче стали на 40%, легче алюминия на 20% (1,7 г/см3 — 2,8 г/см3 — 7,8 г/см3);

— Высокая термостойкость: карбон сохраняет форму и свойства до температуры 2000°С;

— Теплоемкость и хорошие виброгасящие свойства;

— Высокий предел прочности на разрыв и высокий предел упругости;

— Эстетичность и декоративность.

— Чувствительность к точечным ударам;

— Сложность реставрации при сколах и царапинах;

— Выцветание, выгорание под воздействием солнечных лучей, для защиты покрывают лаком или эмалью;

— Длительный процесс изготовления;

— В местах контакта с металлом начинается коррозия металла, поэтому в таких местах закрепляют вставки из стекловолокна,

— Сложность утилизации и повторного использования.

Список используемой литературы:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *