Грп что это

Грп что это

Грп что это

группа руководства полётами

Словарь: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с.

главный распределительный пункт

Словари: Словарь сокращений и аббревиатур армии и спецслужб. Сост. А. А. Щелоков. — М.: ООО «Издательство АСТ», ЗАО «Издательский дом Гелеос», 2003. — 318 с., С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.

главная распределительная подстанция

Государственная реформатская партия

Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.

гидравлический разрыв пласта
гидроразрыв пласта

Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.

газорегулировочный пункт
газораспределительный пункт
газораздаточный пункт
газоредуцирующий пункт

Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.

гидрорасчленение угольных пластов

Государственная регистрационная палата

при Минэкономики РФ

Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.

Государственная реформистская партия

Государственная региональная программа

группа разведки пути

группа реализации проекта

групповой рабочий проект

главная редакция переводов

ФГУП РАМИ «РИА Новости»

ГРП «Секисовское» в Восточном Казахстане

государственная регистрация прав

групповой рацион питания

годовая рабочая программа

годовой расчётный показатель

Полезное

Смотреть что такое «ГРП» в других словарях:

ГРП — ГРП гидравлический разрыв пласта, гидроразрыв пласта ГРП газорегуляторный пункт ГРП геологоразведочное предприятие ГРП главная редакция переводов ГРП горнорудное предприятие ГРП государственная регистрация прав … Википедия

ГРП — нефт. гидроразрыв пласта formation fracturing … Универсальный дополнительный практический толковый словарь И. Мостицкого

ГРП — газораздаточный пункт газоразрядный прибор газораспределительный пункт газорегулировочный пункт газорегулирующий пункт гидравлический разрыв пласта (нефт.) гидроразрыв пласта гидрорасчленение угольных пластов главный распределительный пункт… … Словарь сокращений русского языка

АИС ГРП — автоматизированная информационная система государственной регистрации прав ср.: АС ГРП Источник: http://www.cnews.ru/news/line/index.shtml?2007/02/12/235309 … Словарь сокращений и аббревиатур

газорегуляторный пункт (ГРП), установка (ГРУ) — технологическое устройство, предназначенное для снижения давления газа и поддержания его на заданных уровнях; Источник … Словарь-справочник терминов нормативно-технической документации

Газорегуляторный пункт (ГРП), установка (ГРУ) 1 — технологическое устройство, предназначенное для снижения давления газа и поддержания его на заданных уровнях в газораспределительных сетях. Источник … Словарь-справочник терминов нормативно-технической документации

АС ГРП — «Автоматизированная система государственной регистрации прав» … Словарь сокращений и аббревиатур

НИИ ГРП — Научно исследовательский институт газоразрядных приборов г. Рязань, образование и наука … Словарь сокращений и аббревиатур

Гидравлический разрыв пласта — Гидроразрыв пласта (ГРП) один из методов интенсификации работы нефтяных и газовых скважин и увеличения приёмистости нагнетательных скважин. Метод заключается в создании высокопроводимой трещины в целевом пласте для обеспечения притока… … Википедия

Источник

Газорегуляторный пункт

Комплекс технологического оборудования и устройств, выполняющих предварительную очистку газа и некоторые другие функции

Газорегуляторными пунктами (установками) называется комплекс технологического оборудования и устройств.

Газорегуляторные установки (ГРУ, ГРП, ГРПШ) предназначены для предварительной очистки газа, автоматического снижения давления газа и поддержания его на заданных уровнях независимо от изменения расхода газа в пределах номинальных расходных характеристик регуляторов давления газа, контроль входного и выходного давлений и температуры газа.

ГРП могут с высокой точностью производить учет расхода газа плавно меняющихся потоков не агрессивных газов.

В зависимости от назначения и технической целесообразности газорегуляторное оборудование размещают в отдельно стоящих зданиях, в пристройках к зданиям, в шкафах.

В зависимости от размещения оборудования газорегуляторные пункты подразделяются на несколько типов:

Источник

Назначение, устройство, классификация ГРП

Газорегуляторным пунктом (установкой) называется комплекс технологического оборудования и устройств, предназначенный для понижения входного давления газа до заданного уровня и поддержания его на выходе постоянным.

В зависимости от размещения оборудования газорегуляторные пункты подразделяются на несколько типов:

Газорегуляторные пункты и установки можно классифицировать следующим образом:

Грп что это

ГРПШ-400, ГРУ-400, ПГБ-400 производства ООО «Газ-Сервис»

Что касается газорегуляторных пунктов и установок с основной линией редуцирования и байпасом, то согласно п. 44 «Технического регламента «О безопасности сетей газораспределения и газопотребления» в газорегуляторных пунктах всех видов и газорегуляторных установках не допускается проектирование обводных газопроводов с запорной арматурой, предназначенных для транспортирования природного газа, минуя основной газопровод на участке его ремонта и для возвращения потока в сеть в конце участка, что прямо запрещает использование байпасов.

Одним из вариантов замены газорегуляторных пунктов и установок с байпасом являются газорегуляторные пункты и установки с основной и съемной обводной (см. СОЛ) линиями. Конструктивно подобные изделия представляют собой двухниточный пункт, в котором одна линия (СОЛ) является съемной. СОЛ предназначена для подачи газа потребителям при проведении регламентных работ на основной линии либо для восстановления газоснабжения в случае аварии. По конструкции, составу и типу оборудования СОЛ полностью соответствует основной линии редуцирования. Кроме этого, СОЛ должна предусматривать подключение к ней сбросных и продувочных трубопроводов. Для перевозки СОЛ комплектуются съемными комплектами транспортировочных кронштейнов.

Газорегуляторные пункты и установки с двумя и четырьмя линиями редуцирования в свою очередь по технологической схеме подразделяются на:

По выходному давлению подразделяются на:

Пункты и установки, поддерживающие на выходах одинаковое давление, могут иметь одинаковую и различную пропускную способность линий. Пункты с различной пропускной способностью применяются для управления сезонными режимами газоснабжения (зима/лето) либо для газоснабжения разных объектов.

Грп что это

Оптимус-7000 с СОЛ производства ООО «Завод ПГО «Газовик»

Грп что это

СОЛ на базе РДНК-400 производства ООО «Завод ПГО «Газовик»

Расположение входа/выхода у газорегуляторных пунктов зависит как от технических условий подключения, так и от типовых решений различных производителей. Бывают пункты с вертикальным и горизонтальным расположением входа и выхода, вход и выход могут быть расположены как с одной стороны изделия, так и на его противоположных сторонах. Для изделий со входом и выходом на противоположных сторонах различают «правое» и «левое» исполнения — по стороне, с которой поток газа поступает в газорегуляторный пункт.

В случае необходимости для отопления ГРПШ и ПГБ могут быть использованы различные методы обогрева. Отопление бывает электрическим, либо с помощью газовой горелки или конвектора, либо от внешнего источника тепла. Выбор его типа зависит от места установки и условий эксплуатации оборудования.

Газорегуляторные пункты могут содержать узел учета расхода газа (см. главу 10) и оборудование для дистанционного контроля и управления технологическими параметрами (телеметрии/телемеханики), которое из-за своей специфики и большого количества производителей в данной книге не представлено.

Рассмотрим устройство ГРП с основной и резервной линиями редуцирования. Основная линия редуцирования включает следующее последовательно соединенное трубопроводами оборудование: входное отключающее устройство 4, фильтр газовый 15, регулятор давления газа 14 с встроенным предохранительным запорным клапаном, выходное запорное устройство 17.

Фильтр газа осуществляет его очистку от механических примесей. Степень засоренности фильтра определяется с помощью индикатора перепада давления 16.

Регулятор давления газа осуществляет понижение давления до требуемого и сохраняет его неизменным вне зависимости от изменения входного давления и расхода газа.

Встроенный в регулятор предохранительный запорный клапан осуществляет перекрытие подачи газа в случае выхода давления (контролируемого через импульсный трубопровод 11) за верхний или нижний пределы его настройки.

Предварительная настройка параметров регулятора давления и предохранительного запорного клапана осуществляется через кран 7, для чего предварительно перекрываются краны 6 и 17. После настройки давление сбрасывается через трубопровод 2.

Резервная линия редуцирования идентична основной по составу технологического оборудования и служит для регулирования давления газа на период обслуживания или ремонта оборудования основной линии. Давление газа на входе обеих линий редуцирования контролируется через краны 10 с помощью манометров 8 на входе и 9 на выходе ГРП.

Для продувки газопровода основной и резервной линии служат трубопроводы 3.

Помимо запорного клапана, для защиты потребителя от повышения выходного давления сверх установленных значений в составе ГРП предусмотрена сбросная линия, предназначенная для сброса газа в атмосферу. Она состоит из трубопровода забора контролируемого давления с запорным устройством 13, предохранительного сбросного клапана 12, сбросного трубопровода 1. Подробное описание работы всех описанных устройств можно найти в соответствующих разделах.

Газорегуляторные пункты и установки, в том числе с узлами учета расхода газа изготавливаются на основании технического задания (опросного листа, см. стр. 1256). Справочные таблицы с основными характеристиками газорегуляторных пунктов и установок приведены на стр. 1246–1251.

Быстро и удобно подбор ПГРШ, ПГБ и ГРУ можно сделать с помощью бесплатных сервисов подбора на сайте www.gazovik-sbyt.ru в меню справа «Экспертный подбор». Работа сервисов подбора описана на стр. 1234–1235.

Грп что это

Газорегуляторный пункт(ГРП) с основной и резервной линиями редуцирования: 1, 3 — сбросные и продувочные трубопроводы; 2 — настроечная свеча; 4, 5, 6, 7, 13, 17 — запорная арматура; 8, 9 — манометр; 10 — кран шаровой для манометра; 11 — импульсный трубопровод; 12 — предохранительный сбросной клапан; 14 — регулятор давления газа с предохранительным запорным клапаном; 15 — фильтр газовый; 16 — индикатор перепада давления

Источник

В данной статье мы рассмотрим какие существуют виды газорегуляторных пунктов — далее ГРП, принципы их работы и назначение.

Назначение ГРП.

Газорегуляторные пункты служат для дополнительной очистки газа от механических примесей, снижения давления газа после газораспределительной станции и поддержании его на заданном значении с последующей бесперебойной и безаварийной подачей потребителям.

В зависимости от избыточного давления газа на входе газорегуляторные пункты могут быть среднего (до 0,3 МПа) и высокого давления (0,3-1,2МПа). ГРП могут быть центральными (обслуживать группу потребителей) и объектовыми (обслуживать объекты одного потребителя).

Виды ГРП.

ГРП подразделяются между собой:

по выходному давлению: ГРП низкого, среднего и высокого выходного давления.

по количеству ступеней понижения давления газа: одноступенчатые и многоступенчатые ГРП.

по количеству линий редуцирования: однониточные и многониточные ГРП.

по типу схемы газоснабжения потребителя газа: тупиковые и закольцованные ГРП.

а также по наличию резервной нитки редуцирования: ГРП с резервной линией редуцирования и без.

(описание каждого типа ГРП представлено ниже).

Принцип работы ГРП.

Стоит отметить, что в схеме ГРП (без резервной линии редуцирования) предусматривается байпасная линия, которая позволяет подавать газ и осуществлять ручное регулирование выходного давления газа на время ремонта оборудования или проведения технического обслуживания ГРП. На входе и выходе из ГРП установлены манометры. На входе в ГРП промышленного назначения либо в узлах учета газа замеряется температура газа с помощью термометра. Для централизованного замера расхода газа устанавливается измерительное устройство — газовый счетчик промышленного назначения.

Для снижения давления газа в ГРП применяются регуляторы давления прямого и непрямого действия. В регуляторах прямого действия конечный импульс давления воздействует на мембрану, которая через рычажное устройство связано с дроссельным органом. При уменьшении выходного давления степень открытия дроссельного органа увеличивается, при увеличении — уменьшается. В результате выходное давление газа поддерживается постоянным.

Для приведения в действие регуляторов давления непрямого действия источником энергии служит сжатый воздух и газ давлением 200-1000кПа. Применяются регуляторы давления непрямого действия при входном давлении более 1,2МПа и выходном более 0,6МПа. Также в последнее время все чаще применяют комбинированные регуляторы давления, представляющие из себя предохранительно-запорный клапан и регулятор давления в одном корпусе.

Для контроля за входным и выходным давлением, температурой в помещениях, открытием дверей — современные ГРП могут быть оборудованы системой телеметрии.

Описание и различие между собой видов ГРП:

ГРП низкого, среднего и высокого выходного давления. В чем разница между собой таких газорегуляторных пунктов интуитивно понятно. Если на ГРП газ понижается с высокого (0,3 — 1,2 МПа) или среднего (5кПа — 0,3МПа) давления до низкого (до 5кПа, или 500 мм.в.ст.), то такие ГРП называются ГРП низкого выходного давления. Соответственно, если на выходе получаем среднее или высокое давление газа, то и ГРП будет называться соответствующим образом. Также бывают случаи когда ГРП питает разных потребителей, например частный сектор и газовую котельную, тогда из ГРП делается 2 выхода газа, один среднего, другой низкого, а понижающий пункт будет называться — ГРП с выходом среднего и низкого давления.

Одноступенчатые и многоступенчатые ГРП. Одноступенчатая схема подразумевает под собой понижение давления газа с входного до рабочего в одну ступень, а многоступенчатые в 2 и более ступени. Часто случается, что невозможно понизить давление газа сразу с высокого (например 1,2 МПа) до низкого (200 мм.в.ст. например бытовым потребителям) и добиться устойчивой работы ГРП одним регулятором давления. Тогда применяют такой прием как снижение газа в несколько ступеней. Рассмотрим на примере двухступенчатой схемы. Газ, поступает в ГРП под высоким давлением — 1.2 МПа, проходит через фильтр ПКН, дальше регулятор первой ступени понижает давление газа до 0,5 — 3 МПа (тут зависит от величины расхода газа) и подается на «бочку» — значительно расширенный участок газопровода внутри ГРП, служащий «подушкой» для сглаживания колебаний давления подаваемаемого регулятором первой ступени (из бочки часто предусматривают дополнительный сбросной клапан). Далее, газ уже пониженного давления — возьмем 0,1 МПа, поступает через второй предохранительно запорный клапан на регулятор второй ступени. Этот регулятор уже и понижает давление до рабочего, в нашем случае 200 мм.в.ст. (2,0 кПа). Такая схема также дает дополнительную защиту конечного потребителя от поступления газа высокого давления в сети низкого (превышение в 300 раз!), что очень опасно.

Однониточные и многониточные ГРП. Многониточная схема подключения, подразумевает под собой ГРП, оборудованный несколькими параллельно подключенными линиями редуцирования. Характерным при такой схеме подключения является то, что подача газа осуществляется из одного разветвляющегося по всем параллельно работающим линиям редуцирования газопровода, в то же время выходы этих ниток объединены в один коллектор. Такая схема подключения служит для повышения надежности и производительности газоснабжения. Применяется на наиболее значимых ГРП, например на ГРП высокого давления, которые «питают» систему промышленных потребителей и сеть ГРП. А однониточное ГРП — соответственно оборудовано одной линией редуцирования, возможно и многоступенчатой.

Тупиковые и закольцованные ГРП. Для увеличения надежности газоснабжения потребителей газа применяется схема газоснабжения от объединенных между собой двух и более ГРП через газораспределительные сети по выходному давлению в «кольцо». При этом, чем больше газорегуляторных пунктов находится в «кольце», тем надежнее, считается, система газоснабжения. Чтобы легче было понять, как это работает приведу пример: есть район города с бытовыми потребителями, который нужно снабдить природным газом. По расчетным данным на этот район можно поставить либо один ГРП, с большой пропускной способностью либо два поменьше обеспечивающих суммарно ту же производительность, но расставить в разных частях газифицируемого района. Если есть возможность — устанавливается 2 (или более) и их выходные газовые сети по газоснабжению потребителя объединяются в одну. При такой схеме, если выйдет из строя один из ГРП — нагрузка в газовых сетях ляжет на исправный газорегуляторный пункт (точнее на все включенные в «кольцо», по принципу: на близрасположенные — больше, на дальние меньше) и, что самое главное — подача газа потребителю не прекратится. Конечно, если один из ГРП выключится из работы во время пиковых нагрузок на систему газораспределения, например по утрам, когда большинство людей просыпается и готовит еду перед работой, а кольцо включает в себя всего 2 или 3 газорегуляторных пункта — давление у конечного потребителя может заметно уменьшиться, что может быть визуально зафиксировано на величине языков пламени работающей газовой плиты, однако в данном случае любой потребитель может просигнализировать об этом в аварийную газовую службу, бригада которой примет экстренные меры по восстановлению нормального режима газоснабжения. Также, на закольцованных ГРП легче проводить техническое обслуживания, так как легче регулировать подачу газа через байпас. Кольца ГРП бывают высокого, среднего и низкого давления.

Бывает нецелесообразно осуществлять газоснабжение потребителя более чем от одного ГРП (например газоснабжение мелкого населенного пункта). В таких случаях схема газоснабжения от ГРП называется «тупиковой«.

ГРП с резервной линией (ниткой) редуцирования и без. Характерным для ГРП, оборудованных резервной линией, является наличие дублирующей нитки редуцирования с комплектом оборудования, которая не работает одновременно (в отличие от многониточных), а включается в случае аварийного прекращения подачи газа через основную. Это достигается путем настройки на резервной линии предохранительно-запорного клапана на закрытие при более высоком давлении, а рабочее давление регулятора на более низкое. Таким образом, в случае завышения выходного давления по вине регулятора основной нитки — запорный клапан на ней отсекает поступление газа потребителю через этот регулятор. Выходное давление газа по мере расхода постепенно понижается и достигает рабочего выходного давления регулятора резервной линии (обычно установленного ниже на 10% чем на основной линии) и поддерживается на этом уровне резервным регулятором. Обычно такая схема применяется в ГРП, снабжающих потребителя газом по «тупиковой» схеме газоснабжения для повышения надежности и обеспечения бесперебойной подачи газа.

Основные требования к устройству газорегуляторного пункта:

здание одноэтажное с бесчердачным перекрытием;

отопление (либо от централизованного источника, либо от котла, расположенного в пристройке ГРП);

ширина входа не менее 0,8м;

двери должны открываться только наружу;

вентиляция — приточно-вытяжная, естественная, в помещении с оборудованием должна обеспечивать 3-х кратный воздухообмен в течение часа;

температура в середине помещения не ниже +5°С (чтобы не обмерзало седло регулятора давления)

освещение естественное и электрическое во взрывобезопасном исполнении;

продувочные газовые свечи должны иметь внутренний диаметр не менее наибольшего диаметра седла установленного регулятора давления;

здание газорегуляторного пункта оборудуется индивидуальной системой молниезащиты, если оно установлено вне зоны грозозащиты;

на входе и на выходе устанавливаются в колодцах отключающие устройства;

между собой все помещения (котельная, помещение для телеметрии) должны быть разделены герметичными перегородками.

дополнительные требования к современным ГРП: здание должно быть оснащено системой телеметрии, обеспечивающей контроль входного, выходного давления, температуру в помещении, открытие дверей, наличие электропитания.

Также для эксплуатации газорегуляторного пункта необходимо вести соответствующую документацию.

Шкафные ГРП изготавливаются в виде металлического шкафа и устанавливаются на отдельных несгораемых опорах при давлении газа более 0,6МПа. Если давление газа составляет менее 0,6 МПа. Шкафы можно крепить к глухим (без проемов) огнестойким стенам газифицированных зданий. Помимо этого, отличие ГРП от ШРП состоит в том, что первый (газорегуляторный пункт) является отапливаемым капитальным зданием, но менее компактным. Также современные газорегуляторные пункты оборудованы системой телеметрии, в отличие от ШРП.

Разделы сайта, связанные с этой новостью:

Источник

Газорегуляторные пункты (ГРП): классификация и принцип действия

02 апреля, 2021, 10:39

Газорегуляторный пункт (ГРП) представляет собой комплекс оборудования, служащий для понижения давления газа до требуемого и поддержания его на заданном уровне с целью непрерывной подачи потребителям, а также для очистки газа от механических примесей.

Существует несколько классификаций газорегуляторных пунктов (ГРП) в зависимости от типа размещения, давления на выходе, технологической схемы. Рассмотрим подробно каждый из видов.

ГАЗОРЕГУЛЯТОРНЫЕ ПУНКТЫ (ГРП) ВЫСОКОГО, СРЕДНЕГО И НИЗКОГО ДАВЛЕНИЯ

В основе этой классификации — значение давления газа на выходе газорегуляторного пункта. Давление от 1,2 МПа до 0,3 МПа считается высоким, от 0,3 МПа до 5 кПа — средним, ниже 5 кПа — низким.

Производятся также ГРП с двумя выходами, на одном из которых поддерживается среднее, а на другом — низкое давление газа. Такие газорегуляторные пункты используются в случаях, когда требуется обеспечить газоснабжение разных типов потребителей.

ГАЗОРЕГУЛЯТОРНЫЕ ПУНКТЫ (ГРП) ОДНОСТУПЕНЧАТЫЕ И МНОГОСТУПЕНЧАТЫЕ

Одноступенчатые ГРП понижают давление газа до требуемого в один прием, с помощью одного регулятора давления. Но не всегда это оказывается возможным. Например, чтобы понизить давление с 1,2 МПа до 2 кПа для подачи газа индивидуальным потребителям, требуется, по крайней мере, двухступенчатая схема редуцирования. Она работает следующим образом.

Сначала газ высокого давления подается на регулятор первой ступени. Здесь его давление понижается до среднего. После этого он поступает в специальный расширенный участок трубопровода, где колебания давления выравниваются. Далее регулятор второй ступени понижает давление газа со среднего до требуемого.

Благодаря многоступенчатой схеме редуцирования исключается риск попадания газа с высоким давлением в газопровод низкого давления.

ГРП С ОДНОЙ И НЕСКОЛЬКИМИ ЛИНИЯМИ РЕДУЦИРОВАНИЯ

Грп что это

ГРП с одной линией редуцирования (одно- или многоступенчатой) — наиболее простая технологическая схема. Она используется, например, в системах газоснабжения бытовых потребителей.

В газораспределительных пунктах, обслуживающих крупную сеть объектов, часто применяется технологическая схема с двумя или более линиями редуцирования. Она обеспечивает высокую производительность и надежность газоснабжения.

В ГРП такого типа (они также называются многониточными) две или более линии редуцирования функционируют параллельно. При этом выходы всех линий объединены в общий коллектор.

Однониточные и многониточные газорегуляторные пункты могут оснащаться резервной линией редуцирования. Она не работает параллельно с основной, а подключается в тех случаях, когда подача газа по основной линии прекращается (например, по причине аварии). Благодаря этому ГРП с резервной линией редуцирования обеспечивают бесперебойное газоснабжение потребителей.

КЛАССИФИКАЦИЯ ГРП ПО ТИПУ РАЗМЕЩЕНИЯ ОБОРУДОВАНИЯ

В зависимости от типа размещения технологического оборудования различаются:

— газорегуляторные пункты шкафные (ГРПШ), в которых оборудование располагается в металлическом несгораемом шкафу;

— пункты газорегуляторные блочные (ПГБ), в которых оборудование размещается в блочном здании;

— газорегуляторные установки (ГРУ), предусматривающие монтаж на сварной раме с установкой внутри помещения, где находится газоиспользующее оборудование;

— стационарные газорегуляторные пункты (ГРП), представляющие собой комплекс оборудования, расположенный в специально предназначенном для этого капитальном здании.

Грп что это

ПРИНЦИП РАБОТЫ ГРП

Минимальный состав оборудования газорегуляторного пункта включает регулятор давления, газовый фильтр, предохранительный запорный клапан, предохранительный сбросной клапан. Также ГРП оснащаются манометрами, термометрами, приборами учета.

Принцип работы газорегуляторного пункта можно описать следующим образом.

Газ, поступающий в ГРП по входному трубопроводу, проходит через фильтр, где очищается от содержащихся в нем механических примесей. Затем, минуя предохранительный запорный клапан, он подается в регулятор давления. Здесь давление газа понижается до заданного и поддерживается на постоянном уровне вне зависимости от потребления. В том случае, если выходное давление оказывается выше установленного (например, по причине неисправности регулятора), предохранительный сбросной клапан сбрасывает излишки газа в атмосферу. При дальнейшем повышении давления срабатывает предохранительный запорный клапан, и подача газа прекращается.

ГРП без резервной линии редуцирования могут комплектоваться байпасом — обводной линией, регулирование давления газа на которой осуществляется вручную. Байпасная линия используется временно в период ремонта или обслуживания газорегуляторного пункта.

Приборы для контроля давления устанавливаются на входе и выходе ГРП.

При необходимости учета расхода газа газорегуляторные пункты оснащаются счетчиками и измерительными комплексами.

Современные газорегуляторные пункты оборудуются также системами телеметрии, позволяющими осуществлять автоматический контроль давления, температуры и других параметров работы ГРП.

Правильно подобрать газорегуляторный пункт вам помогут специалисты компании «Газовик». По вопросам поставки, а также при необходимости технической консультации звоните нам по номеру 8-800-333-90-77.

Грп что это

Для получения консультации звоните нам 8-800-333-90-77 (звонок бесплатный)

Или отправьте запрос на консультацию и мы сами вам перезвоним

Источник

Гидравлический разрыв пласта (ГРП или фрак, от английского hydraulic fracturing) является неотъемлемым процессом стимуляции скважины в процессе добычи нефти и газа из сланцевых пород.

Еще не так давно вокруг ГРП было очень много разговоров и очень многие организации выступали против разрешения на проведение ГРП. Главным аргументом против ГРП выдвигалась теория о том, что ГРП очень сильно загрязняет подземные источники пресной воды, вплоть до того, что из-под крана начинает течь вода с примесями газа, которые можно поджечь, о чем, кстати, был снят ролик, который попал во многие передачи и выпуски новостей.

2. Для проведения ГРП требуется довольно большое количество техники и персонала. Технически же процесс идентичен не зависимо от компании, проводящей работу. К арматуре скважины подключается трейлер с блоком манифольдов. К этому трейлеру подключаются насосные установки нагнетающие раствор ГРП в скважину. За насосными станциями устанавливается смесительная установка, возле которой устанавливают трейлера с песком и водой. За всем этим хозяйством устанавливают станцию контроля. С противоположенной стороны арматуры устанавливается кран и каротажная машина.

3. Процесс ГРП начинается в смесителе, куда подается песок и вода, а так же химические добавки. Все это смешивается до определенной консистенции, после чего подается в насосные установки. На выходе из насосной установки раствор ГРП попадает в блок манифольдов (это что-то вроде общего смесителя для всех насосных установок), после чего раствор отправляется в скважину. Процесс ГРП не проводится за один подход, а проходит этапами. Составлением этапов занимается команда петрофизиков на основе акустического каротажа, как правило, открытой скважины, проведенной во время бурения. В течении каждого этапа каротажная команда ставит в скважине заглушку, отделяя интервал ГРП от остальной скважины, после чего производит перфорацию интервала. Затем проходит ГРП интервала, и заглушка снимается. На новом интервале ставится новая заглушка, снова проходит перфорация, и новый интервал ГРП. Процесс ГРП может длится от нескольких дней, до нескольких недель, а количество интервалов может доходить до сотни.

Помпы, используемые при ГРП оснащены дизельными двигателями мощностью от 1 000 до 2 500 л.с.. Мощные насосные прицепы способны нагнетать давление до 80 МПа, при пропускной способности 5-6 баррелей в минуту. Количество помп рассчитывается все теми же петрофизиками на основе каротажа. Высчитывается необходимое давление для разрыва пласта, и на его основе считается количество насосных станций. В течении работы количество используемых помп всегда превосходит расчетное количество. Каждая помпа работает в менее интенсивном режиме, чем это требуется. Делается это по двум причинам. Во-первых, это значительно сохраняет ресурс помп, во-вторых, при выходе из строя одной из помп она просто выводится из линии, а давление на остальных помпах слегка увеличивается. Таким образом поломка помпы не влияет на процесс ГРП. Это весьма важно, т.к. если процесс уже начат то остановка неприемлема.

Грп что это
5. Технология ГРП токовой не родилась вчера. Первые попытки «ГРП» предпринимались еще в 1900 года. Заряд нитроглицерина опускался в скважину, после чего детонировал. В то же время была опробования кислотная стимуляция скважин. Но оба метода, несмотря на раннее рождение, потребовали еще очень много времени, чтобы стать совершенными. Бум ГРП получил лишь в 1950-х годах, с развитием проппанта. Сегодня метод продолжает совершенствоваться и улучшаться. При стимуляции скважины продляется ее жизнь и увеличивается дебит. В среднем прирост нефтепотока к расчетному дебиту скважины составляет до 10 000 тонн в год. Кстати, ГРП проводится и на вертикальных скважинах в песчаннике, поэтому ошибочно думать, что процесс приемлем только в сланцевых породах и родился только что. Сегодня около половины скважин подвергаются ГРП стимуляции.

Грп что это
Вид на блок манифольдов от арматуры. Кстати, ходить среди трейлеров и труб можно лишь во время каротажа, когда в системе нагнетания нет давления. Любой человек, появившийся среди трейлеров с помпами или труб во время проведения ГРП увольняется на месте без разговоров. Безопасность прежде всего.

Тем не менее, с развитием горизонтального бурения очень многие люди стали высказываться против проведения стимуляций скважин, т.к. ГРП наносит вред окружающей среде. Было написано очень много трудов, снято видео и проведено расследований. Если читать все эти статьи, то все складно, но это только на первый взгляд, а мы же присмотримся к деталям.

Грп что это
Каротажная машина. Команда собирает заряды и готовит заглушку для проведения перфорации.

Грп что это
8. Как эти химические вещества могут подняться на верх минуя ловушки удерживающие нефть? Ответ мы находим в отчете Ассоциации по защите окружающей среды (3). Случиться это может либо из-за взрывов на скважинах, либо из-за разливов во время проведения ГРП, либо из-за разливов утилизационных бассейнов, либо из-за проблем с целостностью скважин. Первые три причины не в состоянии заразить источники воды на огромных площадях, остается лишь последний вариант, который сегодня официально подтвержден Академией наук США (4).

Грп что это
9. Кому интересно как отслеживается движение жидкостей внутри пород, то делается это с помощью так называемых трейсеров. Специальная жидкость, имеющая определенный радиационный фон, нагнетается в скважину. После чего в соседних скважинах, и на поверхности, ставят сенсоры, реагирующие на излучение. Таким образом можно смоделировать очень точно «общение» скважин между собой, а так же обнаружить утечки внутри обсадных колонн скважин. Не беспокойтесь, фон у таких жидкостей очень слабый, а радиоактивные элементы используемые при таких исследованиях очень быстро разлагаются не оставляя следов.

Вопросов к EPA (Environmental Protection Agency) тоже много. На EPA очень многие любят ссылаться, как на очень веский источник. Источник и в правду веский, но и веский источник может дать дезу. В свое время EPA нашумели на весь мир, проблема в том, что наделав шуму, мало кто знает чем все кончилось, а кончилась история весьма плачевно, для некоторых.

К слову, проблема газификации воды действительно есть, но она никак не связана с ГРП, а связана с очень неглубоким залеганием метана. Газ из верхних слоев постепенно поднимается наверх и попадает в водные скважины. Это естественный процесс, никак не связанный вообще с добычей и бурением. Такой газификации подвержены не только водные скважины, но и озера и родники.

Грп что это
Сразу за историей с нерадивым доктором из EPA, ЖД комиссия обратила свой взор на очень популярное видео, которое к тому моменту где только не показывали. Некий Стивен Липский, хозяин скважин с пресной водой, и консультант по вопросом окружающей среды Алиса Рич сняли видео, в котором они поджигают воду, идущую из-под крана. Водозабор производился из водных скважин Стивена. Вода загорелась, якобы, из-за высокой концентрации газа, в которой виновата нефтяная компания со своим злосчастным ГРП. На самом деле, при расследовании, оба обвиняемых сознались, что к системе трубопровода был подключен баллон с пропаном, и сделано это было с целью привлечения новостных ведомств, которое заставило бы людей верить в то, что ГРП виновато в газификации пресной воды. В данном случае было доказано, что Алиса Рич знала о фальсификации, но хотела передать заведомо ложные данные в EPA и между Алисой и Стивеном был сговор, для оклеветанная деятельности компании. Опять же, было доказано, что компания и процесс ГРП не наносят вреда окружающей среде. После этого инцидента, кстати, все как-то сконфуженно притихли относительно обвинений ГРП в газификации воды. Видимо отправляться за решетку никто не торопится. Или все разом поняли, что процесс этот естественен и был до появления ГРП?

Кроме того, в Пенсильвании, в связи с тем, что это был один из первых штатов в США вообще, сохранилось очень, очень много документов, уходящих в историю вплоть до начала 1800-х годов, в которых упоминаются горящие ручьи, а так же воспламеняющиеся источники воды, с обильной концентрацией газа в ней. Есть масса документов, в которых упоминается наличие очень высокой концентрации метана на глубине 20, лишь 20 метров! Масса документов указывает на очень высокую концентрацию метана в реках и ручьях, более 10 mg/L. Поэтому, в отличие от Техаса, где о подобных документах я лично ничего не слышал, в Пенсильвании проблема газификации была задокументированная еще до начала вообще хоть какого-либо бурения как такового. Поэтому о каком вреде ГРП идет речь, если есть документы которым более 200 лет, а так же молекулярно доказано, что газ в водных скважинах не является сланцевым? Организации, борющиеся с ГРП о таких документах почему-то забывают, либо подобными исследованиями не занимаются и не интересуются.

Так же стоит обратить внимание на то, что Пенсильвания является одним из штатов, который требует у операторов анализа качества пресной воды, согласно Акту 13, до начала бурения, для отслеживания уровня возможного загрязнения. Так вот, при анализе качества воды, почти всегда допустимая концентрация растворенного газа, 7000 μg/L, является превышенной. Вопрос, почему тогда люди не жаловались на состояние здоровья, экологию и загубленную землю на протяжении двухсот лет, а вдруг спохватились массово жаловаться с началом газового бурения? (9).
Газификация естественна, и не является следствием ГРП и бурения вообще, эта проблема есть в любой стране, с залежами газа на поверхности.

Источник

Гидравлический разрыв пласта (ГРП)

Основная технологическая составляющая метода Фрекинга – один из способов интенсификации работы нефтяных и газовых скважин

ИА Neftegaz.RU. Гидравлический разрыв пласта (ГРП, основная технологическая составляющая метода Фрекинга, Hydraulic fracturing или fracking) – один из способов интенсификации работы нефтяных и газовых скважин и увеличения приемистости нагнетательных скважин.

Технология ГРП

Технология ГРП заключается в создании высокопроводимой трещины в целевом пласте под действием подаваемой в него под давлением жидкости для обеспечения притока добываемого флюида (природный газ, вода, конденсат, нефть или их смесь) к забою скважины.

В однородных по толщине пластах обычно создается 1 трещина значительной длины.

На многопластовых или большой толщины залежах, представленных низкопроницаемыми геологическими формациями, осуществляется, как правило, поинтервальный ГРП.

Рабочая жидкость, применяемая для ГРП, нагнетается в пласт через колонну труб.

Если давление разрыва превышает допустимое рабочее давление для эксплуатационной колонны и устьевой запорной арматуры, то технологи рекомендуют вместо запорной арматуры установить специальную головку, а на нижнем конце НКТ установить пакер, выше которого межтрубное пространство заполнить жидкостью с большей плотностью.

В качестве рабочей жидкости ГРП обычно применяют растворы с использованием высокомолекулярных полимеров (для снижения потерь давления) на водной основе, в том числе:

В качестве расклинивающего материала используются проппанты, кварцевый песок и другие материалы фракции 0,5-1,5 мм.

Эффективность ГРП повышается при одновременной гидропескоструйной или прострелочной перфорации скважины, однако при поинтервальных ГРП при этом необходимо изолировать обработанный участок пласта с помощью пакера и т. д.

Экологическая опасность технологии ГРП

Технология гидравлического разрыва пласта в российских условиях

Не будем обещать, что в ближайшие 15 минут вы точно будете специалистом по гидроразрыву пластов, зато точно узнаете как 33 человека и 22 машины на песчаном пустыре среди болот закачают на 3 км под землю 3 бассейна Сибиряк воды и 9 железнодорожных (Ж/Д) вагонов песка или проппанта всего лишь за 5 часов.

Здесь самое главное слово «Зачем», ведь там под землей и так этого добра достаточно.

Этот песок в белых мешках и есть проппант, сейчас его поднимают кранами на 10-метровую высоту, чтобы потом так вколотить его на 3 км под землю, чтобы он там и остался навсегда.

В общем, это такие похороны проппанта, которые дают скважине новую жизнь.

Сейчас легкой нефти практически нет, все месторождения, которые сейчас разрабатываются, либо на стадии завершающейся, либо это новые месторождения, где нефть очень трудно извлечь и без новых технологий там делать нечего.

В наших геологических условиях, когда больше 70% нефти находится в трудно извлекаемых пластах, ГРП – это единственный способ с которым мы можем экономически рентабельно развиваться, разрабатывать и бурить новые скважины.

И когда для ГРП используют 300 и более т проппанта, то это уже не просто разрыв, а супер ГРП или супер Фрекинг.

Здесь все будет как обычно, но немного не так.

Именно в эту скважину будет закачано 450 т проппанта, те есть это не самый простой супер фрэкинг, и почти 1500 м 3 воды, а все это еще сюда и привезти нужно, а здесь весной это такая беда, что без трактора никуда, да и с ним недалеко.

А привезти нужно 22,5 тягача с проппантом и 75 бочек с водой, потом эту воду надо будет перекачать в емкости и подогреть.

У неоднократных чемпионов Дакара на 1 рейс, а это всего лишь 40 км, уходит по 3-3,5 часа, и то если повезет, если сам ГРП будет длиться всего лишь 5 часов, то процедура подготовки – не менее 3 суток по таким дорогам, причем именно суток, не определяясь на дни и ночи.

То есть, увидев это впервые, проникаешься и эмоциями через край, когда же это только сухие цифры на планерке – ни тени эмоции ни в лице, ни в интонации.

Когда на кустовую площадку заедет весь флот ГРП, то проппант и воду всё еще будут возить, но это будет супер фрахт, не 1, а 2 флота, 22 таких грузовика и 33 человека бригады ГРП.

И это не подстраховка, за время 5 часовой операции под землей, здесь на земле работы хватит на всех, и вспотеть успеют все.

Причем чем больше механизмов, тем больше вероятность получить проблемы – здесь 22 агрегата, связанные только шлангами и проводами, которые должны отработать как одно целое, плюс человеческий фактор и огромная цена ошибки.

Если что-то я недоподам, то может остановиться вся работа, то есть гель, жидкая химия, понизитель трения стабилизатора.

Стоят компьютеры, надо соблюдать пропорции определённые, сколько литров на м 3 подавать.

Флот ГРП – это мобильный комплекс 10-20 крупноразмерных установок на грузовых шасси для проведения ГРП.

Состав комплекса ГРП (флот):

Жидкости опасные-нужны очки, каска, противогаз.

Все начнется с мини ГРП, это такая разминка перед боем.

Чтобы почувствовать, как поведет себя пласт.

Без этой пробы на деле, вся информация геологоразведки – это просто прогноз.

В пласт закачают гель под давлением, гель это вода+гуар (растительный полимер).

Гуар добавляют почти во все йогурты и желе, именно такое желе должно разорвать пласт.

Ну а давление – это не основной источник гидроразрыва, но и источник информации.

Именно по нему выстраиваются все эти замысловатые графики и делаются расчеты, и именно этот показал, что предварительный расчет был верным на 95%.

Радмир Гайнетдинов (начальник геологической службы): «Наша геологическая служба получает данные от заказчика, по ней мы делаем модель и расчёт по добыче.

Мини ГРП позволяет нам при помощи записи давления подойти ближе к реалии самой трещины.

По первоначальным данным наша трещина должна была составлять почти 200 метров в длину, 129 в высоту, после внесения всех калибровок длина увеличивается на 23 м, высота остаётся прежней.

И когда свои расчеты с учетом данных мини ГРП закончит специалист, на летучке по безопасности их озвучит мастер.

Это единственная часть операции, где всех участников можно увидеть вместе – это 33 человека, которых во время самого процесса найти на кустовой площадке на площадке можно будет только по рации.

По работе, подушка 550 м 3 будет с расходом 5,5, первая песочная стадия 5,5, остальные все стадии 5,2.

Начальная концентрация проппанта 100, конечная 1300.

Нам нужно для работы 1341 м 3 воды.

Когда все разойдутся, начнется самое интересное и после этой команды из штаба «Все,за дело» на площадке станет жутко от рева и уровень децибелов здесь не понизится на ближайшие 5 часов.

Гидротационной установке надо перекачать из емкости 1341 м 3 воды, но это без малого и есть 3 бассейна Сибиряк и уже у себя, в таком бассейне превратить ее в гель, смешать с индийским гуаром.

Ну а химтрал – это где жидкости опасные, и следует помнить и про ТБ, и про пропорции, добавить в этот раствор стабилизатор глин.

Если вода без этого стабилизатора попадет на глину в пласте, то глина разбухнет и забьет всю суглинку.

А с нее как с гуся вода, и во время операции она должна оставаться сухой, несмотря на то, что так много воды утечет.

Но еще понизитель трения, это что-то вроде смазки и это уже для проппанта, чтобы он, этот песок не стёр до дыр стенки колонны скважины.

Дальше насосы все это закачают со свистом, точнее с ревом самолета на взлете и между ними, в самом эпицентре напряжения нужно отстоять старшему оператору.

Ну а то давление, которое создают насосы и средний расход гелия – это 5,3 м 3 /мин, будут удерживать пласт разорванным, пока полученная трещина не нафаршируется проппантом, а его уже блендер будет постепенно добавлять в гель, сначала 100 кг/м 3 проппанта, до 1300 кг/м 3 в конце, и это будет чистый проппант, в котором и гель то будет трудно найти.

Судя по этим кривым, гидроразрыв пласта произошел на 1 й минуте, здесь давление резко подскочило до 550 атмосфер, потом резко же упало, потом стабилизировалось, то есть в этот короткий промежуток времени и произошел разрыв пласта, и разорвало его ни что иное, как этот гель.

В гидроразрыве будут использоваться 3 разных вида проппанта, самый мелкий – его закачают 112,5 тонн, чуть покрупнее – 225 т, и такого же, только с резиновой оболочкой – тоже 112,5, это 450 тонн или 9 железнодорожных вагонов.

Брейкер, этот белый порошок, возвращает гель в его обычное состояние, разлагает его на обычную воду, полимер и проппант.

Вода и полимер откачаются из скважины, а этот проппант так и останется расклеивать трещину.

Ну а гидроразрыв так и называется из-за того, что это ни что иное, как разрушение камня водой.

В соответствии с графиком повышается и напряжение у всех присутствующих на станции контроля и оно не спадет до самой остановки насосов.

Потому что никто не может засунуть глаза в скважину на 3 км глубине, и это давление-единственный источник информации.

Такое ощущение, что если оно резко поднимется или резко упадет, то все схватятся за сердце и полезут за валокордином, это будет аварийная ситуация или по здешнему стоп, она может произойти на каждой секунде, а этих секунд надо пережить 18000».

Радион Галлиев (главный специалист отдела супервайзинга): «Это наверное на каждом ГРП есть, потому что когда идет падение дебита, с 400 до 500 поднимается за какой-то короткий промежуток времени – вот это самая напряженная ситуация.

Конечно, это на каждом ГРМ, вне зависимости от того 400 тонн качаем или 120.

Оно всегда одинаковое.

Если бы у нас не было ГРП, то коэффициент продуктивности у нас составлял бы, где-то 0,3, а при таком большом ГРП как 400 т, именно если эту скважину взять, продуктивность у нас выросла до 1,9, то есть можно сказать, что приток вырос порядка 8 раз».

Алексей Затирахин (старший мастер по повышению): «Весь процесс построен именно на взаимодействии людей, то есть бригада – это семья.

То, как человек сработает на своем месте, из этого складывается успешная работа.

Вообще ГРП напоминает кулачный бой, это мягкий против твердого и вообще непонятно, как этот мягкий гель может сломать твердый камень, но в Юганскнефтегазе провели более 10 тыс. ГРП, и всегда этот гель выходил победителем.

Ну а теперь то, что мы имеем в итоге – там под землей нефть находится в твёрдой структуре, ее очень сложно проходить к устью скважины через этот спресованный песчаник, словно через фильтр, и для того, чтобы это стимулировать, и делают ГРП, те мы в нем делаем трещину и набиваем ее проппантом».

Алексей Никитин (начальник управления повышения): «ГРП можно сравнить с приемом антибиотика в медицине, это новый инструмент, который в умелых руках дает потрясающий эффект, однако в неумелых руках применение этого метода не даст эффекта, а наоборот может навредить.

Для многих это не просто метод интенсификации и увеличения притока нефти и нефтеотдачи, но и средство разработки месторождений.

В 1 ю очередь-это очень мощный инструмент.

Что касается многих мнений по поводу пользы и вреда ГРП, то споры до сих пор не утихают.

Именно на старых месторождениях, таких как Усть-Балыкское и Мамонтова, мы, используя ГРП, смогли увеличить текущую добычу, предотвратить падение, которое уже было нами запланировано, и во многом реанимировать старый фонд.

В проектах работ на разработку месторождений есть один очень важный фактор – коэффициент извлечения нефти, который редко бывает больше 35, как правило, от 30 до 40% или в долях единицы – 0,3 и 0,4.

По применению ГРП и вовлечению в разработку ранее не гринированных участков пластов позволяет нам на том же фонде скважин на несколько единиц (%) поднять этот коэффициент извлечения нефти (КИН).

Если бы мы не применяли этот метод, то нам бы приходилось забуривать много вторых стволов, бурить новые скважины, чтобы поднять эту пропущенную нефть.

Если говорить о самом процессе ГРП, то для многих он, как черный ящик, но это не так, мы уже знаем какие параметры на входе и что мы получим на выходе, для нас это не черный ящик.

Мы достаточно четко себе представляем, как развивается трещина, каким образом туда заходит проппант и какие процессы там происходят.

Если мы понимаем эти процессы, то мы можем их улучшить, соответственно увеличивается эффективность метода ГРП.

Здесь важен не только процесс ГРП, но и взаимодействие всех служб, подготовка скважины ГРП, сам ГРП, освоение скважины, спуск насоса, последующий вывод насоса на режим, вывод скважины на режим, все это одно большое мероприятие, провал на каком-то этапе даст негативное восприятие всего процесса.

Также применяется многостадийный гидроразрыв пласта (МГРП), который является одним из самых передовых технологий в нефтяной отрасли, наиболее эффективная для горизонтальных скважин».

Источник

В чем разница между ГРП и ГРПШ?

При создании газовых коммуникаций, обеспечивающих теплоснабжение производственных объектов или жилых помещений, многие теряются перед выбором специальных устройств распределения и контроля давления газа. Сегодня мы расскажем вам о разнице ГРП и ГРПШ, самом распространенном оборудовании данного типа.

При создании газовых коммуникаций, обеспечивающих теплоснабжение производственных объектов или жилых помещений, многие теряются перед выбором специальных устройств распределения и контроля давления газа. Сегодня мы расскажем вам о разнице ГРП и ГРПШ, самом распространенном оборудовании данного типа.

Главная задача представленных моделей – автоматический контроль давления газа, поддержание необходимых параметров во время расхода. Основное отличие заключается в способе расположения устройств. ГРП – это стационарный газорегуляторный пункт, он размещается в специальных помещениях или на открытом пространстве. Все устройства ГРПШ (газорегуляторного пункта шкафного) размещаются в шкафу из металла, устойчивого к горению и другим неблагоприятным факторам.

Размещение ГРП и ГРПШ

Из разницы ГРП и ГРПШ вытекают отличия в правилах безопасного размещения данных газорегуляторных пунктов, о которых стоит рассказать подробнее.

В связи с тем, что оборудование стационарного газорегуляторного пункта представляет собой открытую систему, данное устройство нельзя устанавливать в непосредственной близости от жилых домов, общественных заведений, административных зданий, а также встраивать оборудование в перечисленные постройки или размещать стационарные пункты в подвальных и цокольных помещениях.
ГРП следует размещать в котельных или одноэтажных постройках, расположенных в непосредственной близости от производственных зданий или на огражденных открытых площадках.

Оборудование газорегуляторного пункта шкафного скрыто за огнестойким металлом, поэтому данное устройство разрешается устанавливать на наружных стенах административных, жилых или общественных построек, а также на крыше производственных сооружений в том случае, если покрытие кровли состоит из негорючих материалов.

Принцип работы у данных газорегуляторных пунктов одинаковый, поэтому разницу ГРП и ГРПШ нужно учитывать лишь в зависимости от того, где вы планируете размещать оборудование.

Источник

Устройство газорегуляторных пунктов

ГРП размещают:

ГРУ могут размещаться непосредственно в газоиспользующих установках или в смежном помещении с открытым проемом. При этом входное давление не должно быть более 0,6 МПа.

ШРП с входным давлением газа до 0,6 МПа могут устанавливаться на наружных стенах производственных зданий, котельных, общественных и бытовых зданий производственного назначения.

Принципиальная схема ГРП показана на рисунке ниже. В зависимости от величины давления газа на входе их подразделяют на ГРП и ГРУ среднего давления (свыше 0,005 до 0,3 МПа) и на ГРП и ГРУ высокого давления (свыше 0,3 до 1,2 МПа). Поскольку их принципиальные технологические схемы аналогичны, условимся в дальнейшем применять термин «ГРП».

Газорегуляторный пункт

Грп что это

Здание ГРП должно быть надземным, одноэтажным, из материалов I и II степени огнестойкости. Помещение ГРП должно освещаться естественным (через окна) и искусственным (электрическим) светом. Проводку электрического освещения выполняют во взрывобезопасном исполнении. В целях безопасности допускается кососвет, то есть освещение помещения рефлекторами, установленными снаружи.

Помещение ГРП можно отапливать водяными или паровыми (низкое давление пара) системами от близлежащей котельной или от других котлов, расположенных в пристройке. При всех условиях отопление должно обеспечить температуру в помещении ГРП не ниже 5 о С. Помещение ГРП оборудуют пожарным инвентарем (ящик с песком, огнетушители, кошма).

На вводе газопровода в ГРП и на выходном газопроводе устанавливают отключающие устройства на расстоянии не менее 5 м и не более 100 м.

В состав газового оборудования ГРП входят:

На основной линии газовое оборудование располагается в такой последовательности: входная задвижка для отключения основной линии; фильтр для очистки газа от различных механических примесей; предохранительный клапан, автоматически отключающий подачу газа потребителям в случае выхода из строя регулятора давления газа; регулятор, который снижает давление газа и автоматически поддерживает его на заданном уровне независимо от расхода газа потребителями; предохранительный сбросной клапан, присоединенный к газопроводу после выходной задвижки (служит для сброса в атмосферу части газа, когда неисправный регулятор начинает повышать выходное давление).

Источник

Газорегуляторный пункт (ГРП) — описание

В данной статье мы рассмотрим какие существуют виды газорегуляторных пунктов — далее ГРП, принципы их работы и назначение.

Назначение ГРП.

Газорегуляторные пункты служат для дополнительной очистки газа от механических примесей, снижения давления газа после газораспределительной станции и поддержании его на заданном значении с последующей бесперебойной и безаварийной подачей потребителям.
В зависимости от избыточного давления газа на входе газорегуляторные пункты могут быть среднего (до 0,3 МПа) и высокого давления (0,3-1,2МПа). ГРП могут быть центральными (обслуживать группу потребителей) и объектовыми (обслуживать объекты одного потребителя).

Виды ГРП.

ГРП подразделяются между собой:
по выходному давлению:
ГРП низкого, среднего и высокого выходного давления.
по количеству ступеней понижения давления газа:
одноступенчатые и многоступенчатые ГРП.
по количеству линий редуцирования:
однониточные и многониточные ГРП.
по типу схемы газоснабжения потребителя газа:
тупиковые и закольцованные ГРП.
а также по наличию резервной нитки редуцирования:
ГРП с резервной линией редуцирования и без.
(описание каждого типа ГРП представлено ниже).

Принцип работы ГРП.

Стоит отметить, что в схеме ГРП (без резервной линии редуцирования) предусматривается байпасная линия, которая позволяет подавать газ и осуществлять ручное регулирование выходного давления газа на время ремонта оборудования или проведения технического обслуживания ГРП. На входе и выходе из ГРП установлены манометры. На входе в ГРП промышленного назначения либо в узлах учета газа замеряется температура газа с помощью термометра. Для централизованного замера расхода газа устанавливается измерительное устройство — газовый счетчик промышленного назначения.

Для снижения давления газа в ГРП применяются регуляторы давления прямого и непрямого действия. В регуляторах прямого действия конечный импульс давления воздействует на мембрану, которая через рычажное устройство связано с дроссельным органом. При уменьшении выходного давления степень открытия дроссельного органа увеличивается, при увеличении — уменьшается. В результате выходное давление газа поддерживается постоянным.
Для приведения в действие регуляторов давления непрямого действия источником энергии служит сжатый воздух и газ давлением 200-1000кПа. Применяются регуляторы давления непрямого действия при входном давлении более 1,2МПа и выходном более 0,6МПа. Также в последнее время все чаще применяют комбинированные регуляторы давления, представляющие из себя предохранительно-запорный клапан и регулятор давления в одном корпусе.

Для контроля за входным и выходным давлением, температурой в помещениях, открытием дверей — современные ГРП могут быть оборудованы системой телеметрии.

Описание и различие между собой видов ГРП:
ГРП низкого, среднего и высокого выходного давления. В чем разница между собой таких газорегуляторных пунктов интуитивно понятно. Если на ГРП газ понижается с высокого (0,3 — 1,2 МПа) или среднего (5кПа — 0,3МПа) давления до низкого (до 5кПа, или 500 мм.в.ст.), то такие ГРП называются ГРП низкого выходного давления. Соответственно, если на выходе получаем среднее или высокое давление газа, то и ГРП будет называться соответствующим образом. Также бывают случаи когда ГРП питает разных потребителей, например частный сектор и газовую котельную, тогда из ГРП делается 2 выхода газа, один среднего, другой низкого, а понижающий пункт будет называться — ГРП с выходом среднего и низкого давления.

Одноступенчатые и многоступенчатые ГРП. Одноступенчатая схема подразумевает под собой понижение давления газа с входного до рабочего в одну ступень, а многоступенчатые в 2 и более ступени. Часто случается, что невозможно понизить давление газа сразу с высокого (например 1,2 МПа) до низкого (200 мм.в.ст. например бытовым потребителям) и добиться устойчивой работы ГРП одним регулятором давления. Тогда применяют такой прием как снижение газа в несколько ступеней. Рассмотрим на примере двухступенчатой схемы. Газ, поступает в ГРП под высоким давлением — 1.2 МПа, проходит через фильтр ПКН, дальше регулятор первой ступени понижает давление газа до 0,5 — 3 МПа (тут зависит от величины расхода газа) и подается на «бочку» — значительно расширенный участок газопровода внутри ГРП, служащий «подушкой» для сглаживания колебаний давления подаваемаемого регулятором первой ступени (из бочки часто предусматривают дополнительный сбросной клапан). Далее, газ уже пониженного давления — возьмем 0,1 МПа, поступает через второй предохранительно запорный клапан на регулятор второй ступени. Этот регулятор уже и понижает давление до рабочего, в нашем случае 200 мм.в.ст. (2,0 кПа). Такая схема также дает дополнительную защиту конечного потребителя от поступления газа высокого давления в сети низкого (превышение в 300 раз!), что очень опасно.

Однониточные и многониточные ГРП. Многониточная схема подключения, подразумевает под собой ГРП, оборудованный несколькими параллельно подключенными линиями редуцирования. Характерным при такой схеме подключения является то, что подача газа осуществляется из одного разветвляющегося по всем параллельно работающим линиям редуцирования газопровода, в то же время выходы этих ниток объединены в один коллектор. Такая схема подключения служит для повышения надежности и производительности газоснабжения. Применяется на наиболее значимых ГРП, например на ГРП высокого давления, которые «питают» систему промышленных потребителей и сеть ГРП. А однониточное ГРП — соответственно оборудовано одной линией редуцирования, возможно и многоступенчатой.

Тупиковые и закольцованные ГРП. Для увеличения надежности газоснабжения потребителей газа применяется схема газоснабжения от объединенных между собой двух и более ГРП через газораспределительные сети по выходному давлению в «кольцо». При этом, чем больше газорегуляторных пунктов находится в «кольце», тем надежнее, считается, система газоснабжения. Чтобы легче было понять, как это работает приведу пример: есть район города с бытовыми потребителями, который нужно снабдить природным газом. По расчетным данным на этот район можно поставить либо один ГРП, с большой пропускной способностью либо два поменьше обеспечивающих суммарно ту же производительность, но расставить в разных частях газифицируемого района. Если есть возможность — устанавливается 2 (или более) и их выходные газовые сети по газоснабжению потребителя объединяются в одну. При такой схеме, если выйдет из строя один из ГРП — нагрузка в газовых сетях ляжет на исправный газорегуляторный пункт (точнее на все включенные в «кольцо», по принципу: на близрасположенные — больше, на дальние меньше) и, что самое главное — подача газа потребителю не прекратится. Конечно, если один из ГРП выключится из работы во время пиковых нагрузок на систему газораспределения, например по утрам, когда большинство людей просыпается и готовит еду перед работой, а кольцо включает в себя всего 2 или 3 газорегуляторных пункта — давление у конечного потребителя может заметно уменьшиться, что может быть визуально зафиксировано на величине языков пламени работающей газовой плиты, однако в данном случае любой потребитель может просигнализировать об этом в аварийную газовую службу, бригада которой примет экстренные меры по восстановлению нормального режима газоснабжения. Также, на закольцованных ГРП легче проводить техническое обслуживания, так как легче регулировать подачу газа через байпас. Кольца ГРП бывают высокого, среднего и низкого давления.

Бывает нецелесообразно осуществлять газоснабжение потребителя более чем от одного ГРП (например газоснабжение мелкого населенного пункта). В таких случаях схема газоснабжения от ГРП называется «тупиковой«.

ГРП с резервной линией (ниткой) редуцирования и без. Характерным для ГРП, оборудованных резервной линией, является наличие дублирующей нитки редуцирования с комплектом оборудования, которая не работает одновременно (в отличие от многониточных), а включается в случае аварийного прекращения подачи газа через основную. Это достигается путем настройки на резервной линии предохранительно-запорного клапана на закрытие при более высоком давлении, а рабочее давление регулятора на более низкое. Таким образом, в случае завышения выходного давления по вине регулятора основной нитки — запорный клапан на ней отсекает поступление газа потребителю через этот регулятор. Выходное давление газа по мере расхода постепенно понижается и достигает рабочего выходного давления регулятора резервной линии (обычно установленного ниже на 10% чем на основной линии) и поддерживается на этом уровне резервным регулятором. Обычно такая схема применяется в ГРП, снабжающих потребителя газом по «тупиковой» схеме газоснабжения для повышения надежности и обеспечения бесперебойной подачи газа.

На фото представлен одноступенчатый ГРП выходного низкого давления без резервной линии редуцирования.

Грп что это

Однониточный одноступенчатый грп. Взгляд изнутри.

Основные требования к устройству газорегуляторного пункта:
здание одноэтажное с бесчердачным перекрытием;
отопление (либо от централизованного источника, либо от котла, расположенного в пристройке ГРП);
ширина входа не менее 0,8м;
двери должны открываться только наружу;
вентиляция — приточно-вытяжная, естественная, в помещении с оборудованием должна обеспечивать 3-х кратный воздухообмен в течение часа;
температура в середине помещения не ниже +5°С (чтобы не обмерзало седло регулятора давления)
освещение естественное и электрическое во взрывобезопасном исполнении;
продувочные газовые свечи должны иметь внутренний диаметр не менее наибольшего диаметра седла установленного регулятора давления;
здание газорегуляторного пункта оборудуется индивидуальной системой молниезащиты, если оно установлено вне зоны грозозащиты;
на входе и на выходе устанавливаются в колодцах отключающие устройства;
между собой все помещения (котельная, помещение для телеметрии) должны быть разделены герметичными перегородками.

дополнительные требования к современным ГРП: здание должно быть оснащено системой телеметрии, обеспечивающей контроль входного, выходного давления, температуру в помещении, открытие дверей, наличие электропитания.

Видеоролик по безопасной эксплуатации ГРП.

Шкафные ГРП изготавливаются в виде металлического шкафа и устанавливаются на отдельных несгораемых опорах при давлении газа более 0,6МПа. Если давление газа составляет менее 0,6 МПа. Шкафы можно крепить к глухим (без проемов) огнестойким стенам газифицированных зданий. Помимо этого, отличие ГРП от ШРП состоит в том, что первый (газорегуляторный пункт) является отапливаемым капитальным зданием, но менее компактным. Также современные газорегуляторные пункты оборудованы системой телеметрии, в отличие от ШРП. На сегодняшний день нетрудно купить ГРП или ШРП уже готовый, или сделать под заказ.

Источник

В данной статье мы рассмотрим какие существуют виды газорегуляторных пунктов — далее ГРП, принципы их работы и назначение.

Назначение ГРП.

Газорегуляторные пункты служат для дополнительной очистки газа от механических примесей, снижения давления газа после газораспределительной станции и поддержании его на заданном значении с последующей бесперебойной и безаварийной подачей потребителям.

В зависимости от избыточного давления газа на входе газорегуляторные пункты могут быть среднего (до 0,3 МПа) и высокого давления (0,3-1,2МПа). ГРП могут быть центральными (обслуживать группу потребителей) и объектовыми (обслуживать объекты одного потребителя).

Виды ГРП.

ГРП подразделяются между собой:

по выходному давлению: ГРП низкого, среднего и высокого выходного давления.

по количеству ступеней понижения давления газа: одноступенчатые и многоступенчатые ГРП.

по количеству линий редуцирования: однониточные и многониточные ГРП.

по типу схемы газоснабжения потребителя газа: тупиковые и закольцованные ГРП.

а также по наличию резервной нитки редуцирования: ГРП с резервной линией редуцирования и без.

(описание каждого типа ГРП представлено ниже).

Принцип работы ГРП.

Стоит отметить, что в схеме ГРП (без резервной линии редуцирования) предусматривается байпасная линия, которая позволяет подавать газ и осуществлять ручное регулирование выходного давления газа на время ремонта оборудования или проведения технического обслуживания ГРП. На входе и выходе из ГРП установлены манометры. На входе в ГРП промышленного назначения либо в узлах учета газа замеряется температура газа с помощью термометра. Для централизованного замера расхода газа устанавливается измерительное устройство — газовый счетчик промышленного назначения.

Для снижения давления газа в ГРП применяются регуляторы давления прямого и непрямого действия. В регуляторах прямого действия конечный импульс давления воздействует на мембрану, которая через рычажное устройство связано с дроссельным органом. При уменьшении выходного давления степень открытия дроссельного органа увеличивается, при увеличении — уменьшается. В результате выходное давление газа поддерживается постоянным.

Для приведения в действие регуляторов давления непрямого действия источником энергии служит сжатый воздух и газ давлением 200-1000кПа. Применяются регуляторы давления непрямого действия при входном давлении более 1,2МПа и выходном более 0,6МПа. Также в последнее время все чаще применяют комбинированные регуляторы давления, представляющие из себя предохранительно-запорный клапан и регулятор давления в одном корпусе.

Для контроля за входным и выходным давлением, температурой в помещениях, открытием дверей — современные ГРП могут быть оборудованы системой телеметрии.

Описание и различие между собой видов ГРП:

ГРП низкого, среднего и высокого выходного давления. В чем разница между собой таких газорегуляторных пунктов интуитивно понятно. Если на ГРП газ понижается с высокого (0,3 — 1,2 МПа) или среднего (5кПа — 0,3МПа) давления до низкого (до 5кПа, или 500 мм.в.ст.), то такие ГРП называются ГРП низкого выходного давления. Соответственно, если на выходе получаем среднее или высокое давление газа, то и ГРП будет называться соответствующим образом. Также бывают случаи когда ГРП питает разных потребителей, например частный сектор и газовую котельную, тогда из ГРП делается 2 выхода газа, один среднего, другой низкого, а понижающий пункт будет называться — ГРП с выходом среднего и низкого давления.

Одноступенчатые и многоступенчатые ГРП. Одноступенчатая схема подразумевает под собой понижение давления газа с входного до рабочего в одну ступень, а многоступенчатые в 2 и более ступени. Часто случается, что невозможно понизить давление газа сразу с высокого (например 1,2 МПа) до низкого (200 мм.в.ст. например бытовым потребителям) и добиться устойчивой работы ГРП одним регулятором давления. Тогда применяют такой прием как снижение газа в несколько ступеней. Рассмотрим на примере двухступенчатой схемы. Газ, поступает в ГРП под высоким давлением — 1.2 МПа, проходит через фильтр ПКН, дальше регулятор первой ступени понижает давление газа до 0,5 — 3 МПа (тут зависит от величины расхода газа) и подается на «бочку» — значительно расширенный участок газопровода внутри ГРП, служащий «подушкой» для сглаживания колебаний давления подаваемаемого регулятором первой ступени (из бочки часто предусматривают дополнительный сбросной клапан). Далее, газ уже пониженного давления — возьмем 0,1 МПа, поступает через второй предохранительно запорный клапан на регулятор второй ступени. Этот регулятор уже и понижает давление до рабочего, в нашем случае 200 мм.в.ст. (2,0 кПа). Такая схема также дает дополнительную защиту конечного потребителя от поступления газа высокого давления в сети низкого (превышение в 300 раз!), что очень опасно.

Однониточные и многониточные ГРП. Многониточная схема подключения, подразумевает под собой ГРП, оборудованный несколькими параллельно подключенными линиями редуцирования. Характерным при такой схеме подключения является то, что подача газа осуществляется из одного разветвляющегося по всем параллельно работающим линиям редуцирования газопровода, в то же время выходы этих ниток объединены в один коллектор. Такая схема подключения служит для повышения надежности и производительности газоснабжения. Применяется на наиболее значимых ГРП, например на ГРП высокого давления, которые «питают» систему промышленных потребителей и сеть ГРП. А однониточное ГРП — соответственно оборудовано одной линией редуцирования, возможно и многоступенчатой.

Тупиковые и закольцованные ГРП. Для увеличения надежности газоснабжения потребителей газа применяется схема газоснабжения от объединенных между собой двух и более ГРП через газораспределительные сети по выходному давлению в «кольцо». При этом, чем больше газорегуляторных пунктов находится в «кольце», тем надежнее, считается, система газоснабжения. Чтобы легче было понять, как это работает приведу пример: есть район города с бытовыми потребителями, который нужно снабдить природным газом. По расчетным данным на этот район можно поставить либо один ГРП, с большой пропускной способностью либо два поменьше обеспечивающих суммарно ту же производительность, но расставить в разных частях газифицируемого района. Если есть возможность — устанавливается 2 (или более) и их выходные газовые сети по газоснабжению потребителя объединяются в одну. При такой схеме, если выйдет из строя один из ГРП — нагрузка в газовых сетях ляжет на исправный газорегуляторный пункт (точнее на все включенные в «кольцо», по принципу: на близрасположенные — больше, на дальние меньше) и, что самое главное — подача газа потребителю не прекратится. Конечно, если один из ГРП выключится из работы во время пиковых нагрузок на систему газораспределения, например по утрам, когда большинство людей просыпается и готовит еду перед работой, а кольцо включает в себя всего 2 или 3 газорегуляторных пункта — давление у конечного потребителя может заметно уменьшиться, что может быть визуально зафиксировано на величине языков пламени работающей газовой плиты, однако в данном случае любой потребитель может просигнализировать об этом в аварийную газовую службу, бригада которой примет экстренные меры по восстановлению нормального режима газоснабжения. Также, на закольцованных ГРП легче проводить техническое обслуживания, так как легче регулировать подачу газа через байпас. Кольца ГРП бывают высокого, среднего и низкого давления.

Бывает нецелесообразно осуществлять газоснабжение потребителя более чем от одного ГРП (например газоснабжение мелкого населенного пункта). В таких случаях схема газоснабжения от ГРП называется «тупиковой«.

ГРП с резервной линией (ниткой) редуцирования и без. Характерным для ГРП, оборудованных резервной линией, является наличие дублирующей нитки редуцирования с комплектом оборудования, которая не работает одновременно (в отличие от многониточных), а включается в случае аварийного прекращения подачи газа через основную. Это достигается путем настройки на резервной линии предохранительно-запорного клапана на закрытие при более высоком давлении, а рабочее давление регулятора на более низкое. Таким образом, в случае завышения выходного давления по вине регулятора основной нитки — запорный клапан на ней отсекает поступление газа потребителю через этот регулятор. Выходное давление газа по мере расхода постепенно понижается и достигает рабочего выходного давления регулятора резервной линии (обычно установленного ниже на 10% чем на основной линии) и поддерживается на этом уровне резервным регулятором. Обычно такая схема применяется в ГРП, снабжающих потребителя газом по «тупиковой» схеме газоснабжения для повышения надежности и обеспечения бесперебойной подачи газа.

Основные требования к устройству газорегуляторного пункта:

здание одноэтажное с бесчердачным перекрытием;

отопление (либо от централизованного источника, либо от котла, расположенного в пристройке ГРП);

ширина входа не менее 0,8м;

двери должны открываться только наружу;

вентиляция — приточно-вытяжная, естественная, в помещении с оборудованием должна обеспечивать 3-х кратный воздухообмен в течение часа;

температура в середине помещения не ниже +5°С (чтобы не обмерзало седло регулятора давления)

освещение естественное и электрическое во взрывобезопасном исполнении;

продувочные газовые свечи должны иметь внутренний диаметр не менее наибольшего диаметра седла установленного регулятора давления;

здание газорегуляторного пункта оборудуется индивидуальной системой молниезащиты, если оно установлено вне зоны грозозащиты;

на входе и на выходе устанавливаются в колодцах отключающие устройства;

между собой все помещения (котельная, помещение для телеметрии) должны быть разделены герметичными перегородками.

дополнительные требования к современным ГРП: здание должно быть оснащено системой телеметрии, обеспечивающей контроль входного, выходного давления, температуру в помещении, открытие дверей, наличие электропитания.

Также для эксплуатации газорегуляторного пункта необходимо вести соответствующую документацию.

Шкафные ГРП изготавливаются в виде металлического шкафа и устанавливаются на отдельных несгораемых опорах при давлении газа более 0,6МПа. Если давление газа составляет менее 0,6 МПа. Шкафы можно крепить к глухим (без проемов) огнестойким стенам газифицированных зданий. Помимо этого, отличие ГРП от ШРП состоит в том, что первый (газорегуляторный пункт) является отапливаемым капитальным зданием, но менее компактным. Также современные газорегуляторные пункты оборудованы системой телеметрии, в отличие от ШРП.

Разделы сайта, связанные с этой новостью:

Источник

Гидравлический разрыв пласта (ГРП)

Основная технологическая составляющая метода Фрекинга – один из способов интенсификации работы нефтяных и газовых скважин

ИА Neftegaz.RU. Гидравлический разрыв пласта (ГРП, основная технологическая составляющая метода Фрекинга, Hydraulic fracturing или fracking) – один из способов интенсификации работы нефтяных и газовых скважин и увеличения приемистости нагнетательных скважин.

Технология ГРП

Технология ГРП заключается в создании высокопроводимой трещины в целевом пласте под действием подаваемой в него под давлением жидкости для обеспечения притока добываемого флюида (природный газ, вода, конденсат, нефть или их смесь) к забою скважины.

В однородных по толщине пластах обычно создается 1 трещина значительной длины.

На многопластовых или большой толщины залежах, представленных низкопроницаемыми геологическими формациями, осуществляется, как правило, поинтервальный ГРП.

Рабочая жидкость, применяемая для ГРП, нагнетается в пласт через колонну труб.

Если давление разрыва превышает допустимое рабочее давление для эксплуатационной колонны и устьевой запорной арматуры, то технологи рекомендуют вместо запорной арматуры установить специальную головку, а на нижнем конце НКТ установить пакер, выше которого межтрубное пространство заполнить жидкостью с большей плотностью.

В качестве рабочей жидкости ГРП обычно применяют растворы с использованием высокомолекулярных полимеров (для снижения потерь давления) на водной основе, в том числе:

В качестве расклинивающего материала используются проппанты, кварцевый песок и другие материалы фракции 0,5-1,5 мм.

Эффективность ГРП повышается при одновременной гидропескоструйной или прострелочной перфорации скважины, однако при поинтервальных ГРП при этом необходимо изолировать обработанный участок пласта с помощью пакера и т. д.

Экологическая опасность технологии ГРП

Технология гидравлического разрыва пласта в российских условиях

Не будем обещать, что в ближайшие 15 минут вы точно будете специалистом по гидроразрыву пластов, зато точно узнаете как 33 человека и 22 машины на песчаном пустыре среди болот закачают на 3 км под землю 3 бассейна Сибиряк воды и 9 железнодорожных (Ж/Д) вагонов песка или проппанта всего лишь за 5 часов.

Здесь самое главное слово «Зачем», ведь там под землей и так этого добра достаточно.

Этот песок в белых мешках и есть проппант, сейчас его поднимают кранами на 10-метровую высоту, чтобы потом так вколотить его на 3 км под землю, чтобы он там и остался навсегда.

В общем, это такие похороны проппанта, которые дают скважине новую жизнь.

Сейчас легкой нефти практически нет, все месторождения, которые сейчас разрабатываются, либо на стадии завершающейся, либо это новые месторождения, где нефть очень трудно извлечь и без новых технологий там делать нечего.

В наших геологических условиях, когда больше 70% нефти находится в трудно извлекаемых пластах, ГРП – это единственный способ с которым мы можем экономически рентабельно развиваться, разрабатывать и бурить новые скважины.

И когда для ГРП используют 300 и более т проппанта, то это уже не просто разрыв, а супер ГРП или супер Фрекинг.

Здесь все будет как обычно, но немного не так.

Именно в эту скважину будет закачано 450 т проппанта, те есть это не самый простой супер фрэкинг, и почти 1500 м 3 воды, а все это еще сюда и привезти нужно, а здесь весной это такая беда, что без трактора никуда, да и с ним недалеко.

А привезти нужно 22,5 тягача с проппантом и 75 бочек с водой, потом эту воду надо будет перекачать в емкости и подогреть.

У неоднократных чемпионов Дакара на 1 рейс, а это всего лишь 40 км, уходит по 3-3,5 часа, и то если повезет, если сам ГРП будет длиться всего лишь 5 часов, то процедура подготовки – не менее 3 суток по таким дорогам, причем именно суток, не определяясь на дни и ночи.

То есть, увидев это впервые, проникаешься и эмоциями через край, когда же это только сухие цифры на планерке – ни тени эмоции ни в лице, ни в интонации.

Когда на кустовую площадку заедет весь флот ГРП, то проппант и воду всё еще будут возить, но это будет супер фрахт, не 1, а 2 флота, 22 таких грузовика и 33 человека бригады ГРП.

И это не подстраховка, за время 5 часовой операции под землей, здесь на земле работы хватит на всех, и вспотеть успеют все.

Причем чем больше механизмов, тем больше вероятность получить проблемы – здесь 22 агрегата, связанные только шлангами и проводами, которые должны отработать как одно целое, плюс человеческий фактор и огромная цена ошибки.

Если что-то я недоподам, то может остановиться вся работа, то есть гель, жидкая химия, понизитель трения стабилизатора.

Стоят компьютеры, надо соблюдать пропорции определённые, сколько литров на м 3 подавать.

Флот ГРП – это мобильный комплекс 10-20 крупноразмерных установок на грузовых шасси для проведения ГРП.

Состав комплекса ГРП (флот):

Жидкости опасные-нужны очки, каска, противогаз.

Все начнется с мини ГРП, это такая разминка перед боем.

Чтобы почувствовать, как поведет себя пласт.

Без этой пробы на деле, вся информация геологоразведки – это просто прогноз.

В пласт закачают гель под давлением, гель это вода+гуар (растительный полимер).

Гуар добавляют почти во все йогурты и желе, именно такое желе должно разорвать пласт.

Ну а давление – это не основной источник гидроразрыва, но и источник информации.

Именно по нему выстраиваются все эти замысловатые графики и делаются расчеты, и именно этот показал, что предварительный расчет был верным на 95%.

Радмир Гайнетдинов (начальник геологической службы): «Наша геологическая служба получает данные от заказчика, по ней мы делаем модель и расчёт по добыче.

Мини ГРП позволяет нам при помощи записи давления подойти ближе к реалии самой трещины.

По первоначальным данным наша трещина должна была составлять почти 200 метров в длину, 129 в высоту, после внесения всех калибровок длина увеличивается на 23 м, высота остаётся прежней.

И когда свои расчеты с учетом данных мини ГРП закончит специалист, на летучке по безопасности их озвучит мастер.

Это единственная часть операции, где всех участников можно увидеть вместе – это 33 человека, которых во время самого процесса найти на кустовой площадке на площадке можно будет только по рации.

По работе, подушка 550 м 3 будет с расходом 5,5, первая песочная стадия 5,5, остальные все стадии 5,2.

Начальная концентрация проппанта 100, конечная 1300.

Нам нужно для работы 1341 м 3 воды.

Когда все разойдутся, начнется самое интересное и после этой команды из штаба «Все,за дело» на площадке станет жутко от рева и уровень децибелов здесь не понизится на ближайшие 5 часов.

Гидротационной установке надо перекачать из емкости 1341 м 3 воды, но это без малого и есть 3 бассейна Сибиряк и уже у себя, в таком бассейне превратить ее в гель, смешать с индийским гуаром.

Ну а химтрал – это где жидкости опасные, и следует помнить и про ТБ, и про пропорции, добавить в этот раствор стабилизатор глин.

Если вода без этого стабилизатора попадет на глину в пласте, то глина разбухнет и забьет всю суглинку.

А с нее как с гуся вода, и во время операции она должна оставаться сухой, несмотря на то, что так много воды утечет.

Но еще понизитель трения, это что-то вроде смазки и это уже для проппанта, чтобы он, этот песок не стёр до дыр стенки колонны скважины.

Дальше насосы все это закачают со свистом, точнее с ревом самолета на взлете и между ними, в самом эпицентре напряжения нужно отстоять старшему оператору.

Ну а то давление, которое создают насосы и средний расход гелия – это 5,3 м 3 /мин, будут удерживать пласт разорванным, пока полученная трещина не нафаршируется проппантом, а его уже блендер будет постепенно добавлять в гель, сначала 100 кг/м 3 проппанта, до 1300 кг/м 3 в конце, и это будет чистый проппант, в котором и гель то будет трудно найти.

Судя по этим кривым, гидроразрыв пласта произошел на 1 й минуте, здесь давление резко подскочило до 550 атмосфер, потом резко же упало, потом стабилизировалось, то есть в этот короткий промежуток времени и произошел разрыв пласта, и разорвало его ни что иное, как этот гель.

В гидроразрыве будут использоваться 3 разных вида проппанта, самый мелкий – его закачают 112,5 тонн, чуть покрупнее – 225 т, и такого же, только с резиновой оболочкой – тоже 112,5, это 450 тонн или 9 железнодорожных вагонов.

Брейкер, этот белый порошок, возвращает гель в его обычное состояние, разлагает его на обычную воду, полимер и проппант.

Вода и полимер откачаются из скважины, а этот проппант так и останется расклеивать трещину.

Ну а гидроразрыв так и называется из-за того, что это ни что иное, как разрушение камня водой.

В соответствии с графиком повышается и напряжение у всех присутствующих на станции контроля и оно не спадет до самой остановки насосов.

Потому что никто не может засунуть глаза в скважину на 3 км глубине, и это давление-единственный источник информации.

Такое ощущение, что если оно резко поднимется или резко упадет, то все схватятся за сердце и полезут за валокордином, это будет аварийная ситуация или по здешнему стоп, она может произойти на каждой секунде, а этих секунд надо пережить 18000».

Радион Галлиев (главный специалист отдела супервайзинга): «Это наверное на каждом ГРП есть, потому что когда идет падение дебита, с 400 до 500 поднимается за какой-то короткий промежуток времени – вот это самая напряженная ситуация.

Конечно, это на каждом ГРМ, вне зависимости от того 400 тонн качаем или 120.

Оно всегда одинаковое.

Если бы у нас не было ГРП, то коэффициент продуктивности у нас составлял бы, где-то 0,3, а при таком большом ГРП как 400 т, именно если эту скважину взять, продуктивность у нас выросла до 1,9, то есть можно сказать, что приток вырос порядка 8 раз».

Алексей Затирахин (старший мастер по повышению): «Весь процесс построен именно на взаимодействии людей, то есть бригада – это семья.

То, как человек сработает на своем месте, из этого складывается успешная работа.

Вообще ГРП напоминает кулачный бой, это мягкий против твердого и вообще непонятно, как этот мягкий гель может сломать твердый камень, но в Юганскнефтегазе провели более 10 тыс. ГРП, и всегда этот гель выходил победителем.

Ну а теперь то, что мы имеем в итоге – там под землей нефть находится в твёрдой структуре, ее очень сложно проходить к устью скважины через этот спресованный песчаник, словно через фильтр, и для того, чтобы это стимулировать, и делают ГРП, те мы в нем делаем трещину и набиваем ее проппантом».

Алексей Никитин (начальник управления повышения): «ГРП можно сравнить с приемом антибиотика в медицине, это новый инструмент, который в умелых руках дает потрясающий эффект, однако в неумелых руках применение этого метода не даст эффекта, а наоборот может навредить.

Для многих это не просто метод интенсификации и увеличения притока нефти и нефтеотдачи, но и средство разработки месторождений.

В 1 ю очередь-это очень мощный инструмент.

Что касается многих мнений по поводу пользы и вреда ГРП, то споры до сих пор не утихают.

Именно на старых месторождениях, таких как Усть-Балыкское и Мамонтова, мы, используя ГРП, смогли увеличить текущую добычу, предотвратить падение, которое уже было нами запланировано, и во многом реанимировать старый фонд.

В проектах работ на разработку месторождений есть один очень важный фактор – коэффициент извлечения нефти, который редко бывает больше 35, как правило, от 30 до 40% или в долях единицы – 0,3 и 0,4.

По применению ГРП и вовлечению в разработку ранее не гринированных участков пластов позволяет нам на том же фонде скважин на несколько единиц (%) поднять этот коэффициент извлечения нефти (КИН).

Если бы мы не применяли этот метод, то нам бы приходилось забуривать много вторых стволов, бурить новые скважины, чтобы поднять эту пропущенную нефть.

Если говорить о самом процессе ГРП, то для многих он, как черный ящик, но это не так, мы уже знаем какие параметры на входе и что мы получим на выходе, для нас это не черный ящик.

Мы достаточно четко себе представляем, как развивается трещина, каким образом туда заходит проппант и какие процессы там происходят.

Если мы понимаем эти процессы, то мы можем их улучшить, соответственно увеличивается эффективность метода ГРП.

Здесь важен не только процесс ГРП, но и взаимодействие всех служб, подготовка скважины ГРП, сам ГРП, освоение скважины, спуск насоса, последующий вывод насоса на режим, вывод скважины на режим, все это одно большое мероприятие, провал на каком-то этапе даст негативное восприятие всего процесса.

Также применяется многостадийный гидроразрыв пласта (МГРП), который является одним из самых передовых технологий в нефтяной отрасли, наиболее эффективная для горизонтальных скважин».

Источник

Нефтянка для инженеров, программистов, математиков и широких масс трудящихся, часть 2

Грп что это

Сегодня мы расскажем о том, как буровые станки бороздят просторы Сибири, из чего состоит скважина; зачем, для того, чтобы добыть что-нибудь нужное, надо сначала закачать в пласт что-нибудь ненужное; и из чего, собственно, сделана нефтяная залежь. Это вторая часть из серии статей для будущих математиков-программистов, которым предстоит решать задачи, связанные с моделированием нефтедобычи и разработкой инженерного ПО в области сопровождения нефтедобычи.

Первую часть серии можно прочесть здесь

Конструкция скважины

Скважина – это отверстие в земле, в земной коре (в почве, потом в глине, потом во всяких разных породах – все видели слоистость земли на стенке любого строительного котлована), пробуренное до глубины залегания месторождения с целью выкачивания из месторождения чего-нибудь нужного (нефти или газа) или закачивания в месторождение чего-нибудь ненужного (воды или углекислого газа). Места, где нефть можно просто черпать с поверхности земли или поднимать воротом из неглубоких колодцев, почти закончились: теперь до нефти нужно сначала добуриться.

Грп что это

Скважину бурят буровой установкой, которая насаживает на трубу специальное буровое долото с вращающимися резцами. В зависимости от способа, может вращаться сама труба вместе с резцами, или труба может не вращаться, но в буровой инструмент подаётся по той же трубе (бурильной колонне) электричество или буровой раствор под давлением. В последнем случае буровой раствор и приводит в движение долото, и он же обратным потоком жидкости выносит на поверхность всё, что там резец набурит. Не знаю, как вы, а я был в своё время восхищён такой инженерной идеей. Там ещё и телеметрия передаётся обратно звуковыми волнами тоже по потоку жидкости.

Грп что это

В процессе бурения можно увеличивать или уменьшать вертикальную нагрузку на долото (то есть, давить вниз) для изменения скорости проходки, а также потихоньку отклонять буровую колонну для того, чтобы направлять скважину в ту или иную сторону. По понятным причинам для бурения нескольких скважин удобнее всего начинать бурение в одном и том же месте, называемом кустом скважин: удобно подвозить к одному месту руду, дерево, ртуть, серу, кристаллы, золото материалы, бригады, оборудование, подводить электричество, а после запуска всех скважин в работу – собирать нефть. Делать это с десятка скважин на одном кусту очевидно удобнее, чем с десятка скважин, рассредоточенных на необъятных просторах торфяных болот Сибири. Поэтому начинают бурить все скважины куста с одной площадки, и постепенно разводят их по траекториям в разные стороны, чтобы на поверхности все траектории скважин куста сходились в одном месте, но внизу равномерно распределялись по какому-то заданному участку месторождения. Это означает, что чаще всего у набора скважин с одного куста есть несколько типовых участков траектории: начальный участок продолжается участком, где скважины разводятся по разным азимутам. Если кто забыл, азимут – это направление, на которое стрелка компаса указывает, точнее – отклонение от этой стрелки. Потом идёт участок набора глубины, потом участок хитрого входа в нефтесодержащий пласт, ну и собственно, участок скважины внутри нефтесодержащего пласта, где в скважину через её стенки поступает нефть.

Чаще всего месторождение “в длину” и “в ширину”, то есть по латерали, гораздо больше, чем “в высоту”, то есть по вертикали. По латерали месторождение может простираться на километры, десятки и сотни километров, а по вертикали – на метры, десятки и сотни метров. Также очевидно, что чем более длинная часть скважины находится внутри месторождения, тем больше нефти будет к такой скважине притекать. Поэтому сейчас большая часть буримых скважин – горизонтальные. Это не значит, что вся скважина горизонтальная – нет, наверху всё такой же “паук” с лапками вниз и в разные стороны. Условно вертикальная скважина “протыкает” месторождение вертикально, а условно горизонтальная скважина имеет довольно длинный (сотни метров) вскрывающий месторождение горизонтальный участок.

Грп что это

Грп что это

После бурения скважину отдают в освоение. Дело в том, что при бурении скважина и прилегающая к ней часть пласта оказывается забита всяким мусором и шламом: мелкими и крупными частицами породы, утяжелителями бурового раствора и так далее. Задача освоения – очистить скважину, очистить место соединения скважины с пластом, очистить прилегающую часть пласта (призабойную зону) так, чтобы то, что мы хотим добывать или закачивать, не испытывало затруднений на своём пути. После освоения скважина готова к добыче: спускай длинную насосно-компрессорную трубу (НКТ), на которой находится насос, открывай задвижку на самой скважине, включай насос и готовь ёмкости или трубопровод.

Гидравлический разрыв пласта (ГРП)

Правда, даже если вы сделаете всё в точности как описано выше, ёмкость вам понадобится маленькая, а трубопровод тоненький. Всё потому, что большинство месторождений, находящихся в разработке сейчас, являются настолько плохими (низкопроницаемыми), что бурение обычных вертикальных или даже горизонтальных скважин становится экономически неэффективным. Причём хорошо, если просто экономически неэффективным – в конце концов, всегда можно напечатать долларов и раздать бедным сланцевым компаниям – а вот если энергетически неэффективным (когда в добываемой нефти энергии меньше, чем требуется потратить на бурение и добычу), то совсем пиши пропало. На помощь пришла технология гидравлического разрыва пласта.

Суть гидроразрыва пласта (ГРП) заключается в следующем. В скважину под большим давлением (до 650 атм. или даже 1000 атм.) закачивают специальную жидкость, похожую на желе (собственно, это и есть желе). Это давление разрывает пласт, раздвигая слои породы. Но на той глубине, где обычно производится ГРП, порода сильнее сдавлена сверху, чем с боков, поэтому давлению проще раздвинуть её в стороны, чем вверх. Трещина получается почти плоская и вертикальная, при этом ширина её составляет считанные миллиметры, высота – десятки метров, а длина может доходить до нескольких сотен метров. Затем вместе с жидкостью начинает подаваться пропант – похожая на песок смесь крепких керамических гранул диаметром от долей миллиметров до миллиметров. Цель ГРП – закачать побольше пропанта в пласт так, чтобы образовалась очень хорошо проницаемая область, соединённая со скважиной. Жидкость, конечно, утечёт в пласт, а пропант останется там, куда успел дойти и не даст трещине полностью сомкнуться, обеспечивая высокопроводящий канал. Если до ГРП нефть в скважину притекала только со стенки самой скважины, то после ГРП нефть притекает со всей (ну может и не со всей, а может только с половины, точно никто не скажет) поверхности трещины. То есть площадь с которой притекает нефть, после ГРП увеличивается где-то в 1000 раз. А значит растёт (пусть и не в 1000 раз) и дебит скважины, что в конечном итоге позволяет разрабатывать месторождения, которые ранее считались нерентабельными.

Грп что это

Современные технологии дошли до того, что позволяют сделать на скважине не одну трещину ГРП, а целый набор, называемый стадиями (чемпионские скважины сейчас имеют длину горизонтального участка до 2000 м. и до 30-40 трещин ГРП).

Физико-химические свойства нефтесодержащей породы

Грп что это

Важно понимать, что и пористость, и все остальные описываемые далее параметры, не являются на самом деле одним числом, которое справедливо для всего месторождения. Это показатели, которые зависят от самой породы и пропитывающих её флюидов, и, конечно же, меняются от точки к точке, потому что само месторождение практически всегда неоднородно (пусть и масштаб этой неоднородности может быть очень разным). Там, где в пределах месторождения залегают глины, пористость будет мала, где залегают песчаники – там пористость будет велика, и так далее. Кстати, мы всё равно не сможем описать каждый кубический сантиметр породы, поэтому от реальности при моделировании нам придётся отступить, и считать, что на каком-то масштабе (например, в ячейках размером 10 метров на 10 метров на 1 метр) свойства породы и всего остального не меняются.

Второй важный показатель – проницаемость породы. Она показывает способность породы пропускать сквозь себя флюид. Флюид, кстати, – это то, что может течь, жидкость или газ. Когда пустот в породе мало, порода не пропускает сквозь себя флюид. Мысленно представим, что пустот в породе становится всё больше и больше: начиная с определённого момента отдельные пустоты начинают соединяться друг с другом и происходит перколяция – возникают каналы, по которым флюид может начинать двигаться. В быту мы часто сталкиваемся с пористыми материалами с высокой и низкой проницаемостью: губку для посуды легко “продуть” насквозь, хлеб уже больше сопротивляется попыткам продуть сквозь него воздух, а продуть насквозь пробку не легче, чем надуть резиновую грелку. Измеряется она в единицах дарси, но чаще в ходу миллидарси мД и нанодарси нД.

Во всех этих случаях можно заметить следующие закономерности. Через одни материалы (с высокой проницаемостью) всё фильтруется легче, чем через другие – и жидкости, и газы. Кроме этого, газы вообще фильтруются легче, чем жидкости. Да и среди жидкостей всё не так однозначно – любой может заметить в домашних условиях, что жидкий гелий (у любой рачительной хозяйки в холодильнике всегда есть) фильтруется гораздо легче, чем вода… а вода фильтруется гораздо легче, чем, например, кисель. Это происходит потому, что на скорость фильтрации влияет не только проницаемость (через что фильтруется), но и вязкость (что фильтруется).

Грп что это

Нефтяники всё время говорят про фильтрацию, используя именно это слово, но нужно привыкнуть к его особенному значению. Кофе фильтруется через бумажную салфетку, оставляя на ней частицы зёрен, но нефть, газ и флюиды фильтруются через породу немного в другом смысле. Слово “фильтруется” в нефтянке надо понимать просто как “течёт сквозь”.

Во всех приведённых примерах чтобы что-то начинало продуваться, мы начинали дуть, то есть прикладывать разность давлений. Если взять сантехническую трубу, набить её пористой средой и приложить к одному концу трубы повышенное давление газа или жидкости (с другой стороны будет обычное, атмосферное), то закон Дарси утверждает, что скорость фильтрации (дебит, то есть расход продуваемого флюида в секунду) будет пропорциональна проницаемости и перепаду давления и обратно пропорциональна вязкости и длине трубы. Если в два раза увеличить длину трубы, для сохранения такой же скорости потока нужно в два раза увеличить перепад давления, а если в два раза увеличить вязкость продуваемого газа или жидкости, то для сохранения скорости продува нужно в два раза увеличить проницаемость продуваемой среды.

Как связана пористость и проницаемость?

Во-первых, для реальных материалов, в том числе для горных нефтенасыщенных пород, они действительно друг с другом чаще всего коррелируют. Во-вторых, правильнее говорить, что пористость является причиной для проницаемости. Очевидно, что если пористость равна нулю, то и проницаемость тоже равна нулю. Но вот все остальные зависимости – скорее статистические. Да, действительно, чаще всего, чем больше пористость, тем больше и проницаемость, и вообще, чаще всего пористость и проницаемость связаны экспоненциальной статистической зависимостью (обратите внимание, что на картинке одна ось – логарифмическая). Однако техногенные вещества могут эту зависимость нарушать: так аэрогель имеет высокую пористость (90-99%), но очень низкую проницаемость (я думаю, меньше 1 нД).

Грп что это

На что влияет проницаемость? На скорость добычи, конечно. Насос, спущенный в скважину очень быстро “выбирает” нефть вокруг себя и снижает давление в призабойной (прилегающей к нижней части скважины) зоне, а дальше в игру вступает проницаемость. Если она достаточно высока, то перепад давления, созданный насосом, вызывает фильтрацию пластовой жидкости из дальней зоны, а если проницаемость мала, то сколько ни снижай насосом давление в призабойной зоне (а у давления нет верхнего предела, но очень даже есть нижний – создать давление ниже нуля атмосфер ещё никому не удавалось!), существенный приток не вызовешь. Гипотетически, если выкопать скважину глубиной два километра в породе с нулевой проницаемостью (говорю же – гипотетически), то скважину можно полностью осушить, и на дне её будет то же самое атмосферное давление (ну ладно, чуть больше), но ничего никуда течь не будет.

В итоге, в так (неправильно) называемых “сланцевых” месторождениях нетрадиционной нефти с их крайне низкой проницаемостью бурить обычные скважины бесполезно: нефть есть, её много, но из-за низкой проницаемости скорость фильтрации такая низкая, что скважины дают мизер, не окупающий даже их эксплуатацию. Что делать? Увеличивать площадь скважины, но не увеличивая её диаметр (обрушится!), а создавая в пласте соединённую со скважиной открытую трещину ГРП, пусть и тонкую, но с большой площадью стенок. И даже это позволяет добывать нефть только с того объёма, который хоть как-то трещинами был затронут, а с соседнего кубокилометра так ничего и не притечёт.

Итак, пористость определяет теоретический доступный к добыче объём месторождения, а проницаемость определяет скорость фильтрации нефти к скважине. Третий важный параметр, описывающий свойства нефтесодержащей породы – это насыщенность, в частности, нефтенасыщенность. Пористость описывает объем “пустоты” в породе, которую может занимать любой подвижный агент – хоть жидкость, хоть газ. Но таких кандидатов в месторождении несколько: это может быть действительно газ, в условиях месторождения это чаще всего природные газообразные углеводороды (метан, этан, пропан и так далее), или какой-нибудь техногенный углекислый газ, если его уже успели закачать. И это может быть, собственно, нефть и вода. Откуда там возьмётся вода? Правильный вопрос на самом деле – откуда там взялась нефть, потому что вода там была с самого начала: напоминаю, когда-то всё это было дном океана. Это нефть в ловушку месторождения пришла и вытеснила воду, но вытеснила не всю воду, что там изначально была. В итоге когда мы начинаем разрабатывать месторождение, часть порового объёма в любой точке может быть занята нефтью, часть газом, а часть водой.

Грп что это

Доля порового объёма, занимаемая нефтью – это и есть нефтенасыщенность. Особенность этого показателя в том, что он может меняться в процессе разработки месторождения. Когда через нагнетательные скважины начинают закачивать воду, нефтенасыщенность в разных точках месторождения начинает меняться.

Кроме нефтенасыщенности есть ещё и газонасыщенность – доля свободного газа в поровом объёме (какое-то количество газа, кроме этого, ещё и растворено в нефти – оно учитывается в другом месте). В каких-то месторождениях есть свободный газ (он скапливается в верхней части месторождения в виде так называемой газовой шапки), в каких-то нет. Какая-то часть порового объёма, кроме этого, обязательно занята водой – доля этого объёма называется водонасыщенностью. В любом случае, сумма нефте-, газо- и водонасыщенности всегда равна единице, потому что – а чем ещё может быть занят поровый объём между крупинками породы?

Следующим важным физическим параметром, влияющим на добычу нефти, является так называемое пластовое давление – давление флюида между частичками породы в каждой точке месторождения. Сами частички ещё испытывают на себе геостатическое давление “скелета” всей породы, что ещё лежит сверху, но это уже совсем другая история.
Нефтяники любят высокое давление и не любят низкое давление, потому что давление – это накопленная энергия, которой можно воспользоваться. Иногда нефть находится в месторождении под таким высоким давлением, что её, по сути, и качать не надо – достаточно добуриться скважиной до месторождения, и пластовое давление начнёт самостоятельно выталкивать нефть на поверхность: скважина даст фонтан нефти – только и успевай подставлять вёдра и тазики, нефть хлещет сама, без каких-либо затрат электричества на добычу!

Грп что это

Давление тесно связано с таким показателем, как сжимаемость. Мысленно представим себе колбу, наполненную, например, газом. Пусть давление там равно атмосферному. Затолкаем туда ещё 1% объёма газа и посмотрим, как изменилось давление. Если у вас нет под руками манометра, придётся поверить на слово – изменится не очень сильно (вы удивитесь — но на на тот же 1%). Возьмите пустую бутылку 0.7 (можно взять полную и предварительно её опустошить, но тогда дальнейшие опыты могут столкнуться с проблемами) и убедитесь, что немного воздуха туда выдохнуть всегда можно: газ очень хорошо сжимаем, его сжимаемость велика. А вот если газ заменить на жидкость, попытка впихнуть ещё немного жидкости в полную колбу в случае успеха, скорее всего, закончится печально: давление вырастет моментально и очень сильно, потому что жидкость плохо сжимается, её сжимаемость мала.
Можно сказать, что сжимаемость позволяет накапливать упругую энергию сжатия в веществе, и именно сжимаемость гораздо больше, чем давление, определяет, сколько энергии в сжатой среде накоплено. Если сжимаемость велика, энергии можно накопить много. Если сжимаемость мала, энергии много не накопишь. Представьте баллон с манометром, показывающим 220 атмосфер давления внутри. Если эту энергию пустить в дело, например, засунуть в ракету, то высоко ли она полетит? Оказывается, всё определяется не тем, сколько атмосфер давления, а тем, что там внутри сжато. Если там воздух, ракета взлетит, а если только вода – не взлетит. Посмотрите, как летают пневмогидравлические ракеты и подумайте, зачем они “пневмо” и зачем гидравлические. Тот же самый принцип используется в гидроаккумуляторах в домашней системе водоснабжения – вода не позволяет накопить много энергии сжатия, чтобы не включать каждый раз насос, когда вы открываете кран, а газ – легко.

Сжимаемость нефти больше сжимаемости воды, но гораздо меньше сжимаемости газа, поэтому при добыче нефти, если не замещать доставаемый объём из месторождения чем-то ещё, пластовое давление очень быстро падает. Ещё, когда говорят о сжимаемости, нужно держать в уме, что при наличии породы и различных насыщающих агентов (воды, нефти, газа), сжимаемость (разная) есть у них всех, и кроме этого, можно говорить об общей сжимаемости всей этой системы.

Газовая шапка на месторождении часто играет ту же самую роль аккумулятора, что воздух в пневмогидравлической ракете, поэтому случайно стравить газовую шапку месторождения – значит потерять ту значительную часть энергии, которая могла бы выдавливать в скважины нефть, а еще к тому же пустить нефть туда, где раньше был газ. А всем известно, если пролить куда-то сметану из банки, а потом попытаться собрать ее обратно, чтобы мама не ругалась… часть сметаны обратно собрать не получится, и с нефтью то же самое.

В следующей части мы расскажем, как месторождения образовывались, что с ними происходит в процессе добычи, а также изучим физико-химические свойства нефти, воды и газа.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *