извитые формы бактерий могут вызывать
Извитые формы бактерий могут вызывать
Извитые бактерии подразделяют на две основные группы: вибрионы и спирохеты.
У вибрионов и сходных по форме бактерий изогнутость тела не превышает четверти оборота спирали (например, у кампилобактер). Спирохеты имеют изгибы, равные одному или нескольким оборотам спирали (например, возбудитель сифилиса).
Актиномицеты. Микоплазмы. Хламидии. Риккетсии.
Для некоторых бактерий характерны отклонения от трёх основных форм. Среди коринебактерий часто встречают булавовидные формы, а у некоторых микобактерий, актиномицетов и но-кардий — ветвление клеток.
Актиномицеты — палочковидные грамположительные бактерии, способные к ветвлению. В очагах поражения образуют скопления-друзы, напоминающие отходящие от центра лучи с утолщёнными концами. Именно отсюда произошло их сегодняшнее название [от греч. actis, луч + mykes, гриб]. На питательных средах актиномицеты формируют как субстратный, так и воздушный мицелий, на концах которого могут образовываться споры.
По мере старения культуры мицелий распадается на отдельные палочковидные и кокковидные клетки, морфологически близкие так называемым грамположительным палочкам неправильной формы — микобакте-риям, нокардиям, коринебактериям и др.
Микоплазмы — мелкие бактерии без истинной клеточной стенки. Последнюю заменяет трёхслойная клеточная мембрана, обеспечивающая осмотическую резистентность бактерий. Микоплазмы могут иметь самую разнообразную форму — нитевидную, кокковидную, колбовидную и др.
Хламидии — сферические грамотрицательные бактерии, облигатно паразитирующие в клетках теплокровных организмов. Они значительно меньше, чем обычные шаровидные бактерии.
Риккетсии — мелкие грамотрицательные палочковидные бактерии, облигатно паразитирующие в различных клетках. Морфология риккетсии может существенно меняться в зависимости от условий культивирования. Они могут быть палочковидными, нитевидными или иметь неправильную форму.
L-формы бактерий
Под воздействием некоторых внешних факторов бактерии могут терять клеточную стенку, образуя L-формы (названы в честь Института им. Джозефа Листера, где их впервые выделила Э. Клинебёргер в 1935 г.). Форма подобных клеток может быть весьма разнообразной (нитевидной, шаровидной, палочковидной и т.д.), но практически всегда она отличается от исходной. Подобные превращения могут быть спонтанными или индуцированными (например, под воздействием антибиотиков).
Выделяют стабильные и нестабильные L-формы. Первые не способны к реверсии (то есть обратному восстановлению в исходные формы), а вторые реверсируют после удаления причинного фактора.
В последнем случае острые инфекции нередко становятся хроническими, так как бактерии, лишённые основных мишеней, распознаваемых защитными механизмами, легко «уходят» от их действия. Соответственно, образование L-форм (равно как и спорообразование) можно рассматривать как важный механизм приспособления бактерий к неблагоприятным условиям.
L-формы бактерий образуют многие бактерии. Например, образуются L-формы вибрионов холеры, микобактерий туберкулеза, стрептококков группы Б, менингококков, возбудителя сифилиса и т.д..
Тот случай, когда встречают и провожают по одежке
Разнообразие форм клеток прокариот не является (по крайней мере не всегда) случайным феноменом эволюции этих организмов. Исследования показали, что форма бактерий может быть обусловлена физическими законами среды обитания: в вязкой среде эффективнее перемещаются микрообитатели спиральные формы, а следовать направлению лучше могут изогнутые вибрионы и т.д. Согласно расчетам наиболее удобна для микроскопических одноклеточных прокариот форма палочек, которые благодаря своей форме могут противостоять броуновскому движению в жидкостях, имеют эффективное соотношение поверхности к объему клетки и могут закрепляться на субстрате…Авторы статьи проанализировали исследования эволюции и связи с экологией формы клеток бактерий.
Форма и размер бактериальных клеток, как и свойства их клеточной стенки (что отразилось на широко известном делении бактерий на грамположительных и грамотрицательных) – одни из самых первых признаков, использованных для классификации этих организмов. Разнообразие форм клеток и в то же время постоянство формы клеток на видовом уровне (за некоторым обсуждаемом ниже исключением) позволили довольно подробно и точно определять таксономическую принадлежность бактерий. Однако причины возникновения разнообразия формы и ее стабильность внутри разного уровня таксонов прокариот долго оставались загадкой. Новые методы исследований – электронная микроскопия, методы молекулярной биологии и биохимии, а также исследования физических закономерностей и математическое моделирование помогли установить ряд факторов, определяющих внешнее строение бактерий. В обсуждаемой статье авторы представили анализ исследований связи формы клеток бактерий с их экологией и эволюцией.
Несмотря на то, что основными являются три типа клеток бактерий (заглавная иллюстрация) – сферическая, палочковидная и спиральная – специалисты выделяют довольно большое разнообразие других форм (рис. 1). Известно, что бактерии по строению клеточной стенки можно разделить на два типа (рис. 1, 2). Строение оболочки (клеточной стенки бактерий) в значительной степени связано с ее формой. Среди определяющих форму бактерий факторов на данным момент выделяют несколько основных:
— наличие/отсутствие внешней мембраны (у грамотрицательных бактерий);
— относительная толщина пептидогликанового слоя;
— особенности строения продольных пептидных сшивок между гликановыми нитями, ориентированными перпендикулярно длинной оси клетки: у грамотрицательных образуются напрямую, а у грамположительных через дополнительный мостик.
Ряд авторов отмечают, что морфологическое разнообразие грамотрицательных бактерий выше, чем таковое грамположительных (см. рис. 1). Среди грамположительных бактерий преобладают палочки, часто встречаются кокки и нитевидные формы, а вот изогнутые и спиральные формы очень редки. Палочки также преобладают и среди грамотрицательных бактерий, но второе и третье места по распространенности делят изогнутые и спиральные формы. А вот кокки и одноклеточные нитчатые формы среди грамотрицательных бактерий редки, хотя некоторые палочки и спиральные бактерии в определенных условиях могут приобретать округлую форму, например, в стационарной фазе культивирования и при неблагоприятных условиях.
На настоящий момент превалирует представление, что белки цитоскелета, такие как MreB (Murein cluster B) и FtsZ (Filamenting temperature-sensitive mutant Z) гомологи актина и тубулина эукариот, не являются собственно архитектурными элементами формы клеток, а представляют собой нечто похожее на разметку для активации процессов синтеза/разборки клеточной стенки, являясь сайтами прикрепления соответствующих ферментов и регуляторных белков. Экспериментально было показано, что присутствие белка MreB отвечает за палочкообразную форму клетки, а белок FtsZ отвечает за формирование перегородки и других структур во время деления клетки (так называемое Z-кольцо). Представляется, что белок MreB это основной фактор формирования палочковидной формы: он организует в определенных местах клеточной стенки (там, где будут «стенки палочки») синтез пептидогликана (клеточной стенки) после разделения клетки на дочерние и, таким образом, обеспечивает удлинение клеток. У кокков (сферическая форма) этого белка нет, а наращивание клеточной стенки происходит в кольцевой зоне при делении клетки за счет белка FtsZ и других белков, участвующих в делении клетки. Для объяснения формы клеток прокариот еще одним важным белком считается кресцетин CreS. Его наличие в определенной области затормаживает образование клеточной стенки, что приводит к искривлению клетки в результате неравномерного роста. Так могут получаться изогнутые формы. Есть и другие белки-кандидаты (например, бактофилины), претендующие на роль в процессе формообразования у прокариот, однако их функции пока изучены недостаточно.
Кокки. Можно выделить два типа прокариот, имеющих сферическую форму. Одни кокки («собственно» кокки) в течение всего жизненного цикла остаются сферическими. Другие («производные» кокки) – палочки, вибрионы, и др.- приобретают сферическую форму только в неблагоприятных условиях. Как уже говорилось, у подавляющего большинства «собственно» кокков не обнаружен белок MreB (ответственный за палочковидную форму) и сферическая форма приобретается в ходе процессов роста дочерних клеток в зоне деления материнской клетки. «Производные» кокки получают свою сферическую форму другим путем: за счет, так называемого, «редуктивного» деления, когда многократные деления клеток не перемежаются синтезом клеточной стенки в районе стенок (т.е. удлинением). Очевидно, напрашивается вывод, что кокки произошли от палочковидных бактерий в результате потери основного белка MreB, обеспечивающего удлинение стенок.
Чем же выгодно быть сферическим? У сферической формы наименьшее соотношение площади поверхности к объему, это объясняет их малые размеры, потому кокки являются доминирующей группой в микропорах различных типов почв. Это же свойство выгодно при переживании неблагоприятных условий в случае с «производными» кокками. Поскольку шарообразная форма наименее удобна для управляемого движения, кокки, как правило, лишены «органов движения», например, жгутиков. Показано, что сферическая форма позволяет бактериям быстрее распространяться пассивно с током воды, чем бактериям других форм. Эта закономерность объясняет «любовь» кокков образовывать скопления (диплококки – две клетки, стрептококки – нити клеток, стафилококки – гроздья клеток), которые затормаживают пассивное передвижение, а при необходимости агрегация распадается под действием специальных ферментов, разделяющих склеенные между собой клетки (рис. 3).
Палочки. По-видимому, самая удобная (универсальная) для бактерий форма клеток. Большинство исследователей считает палочки исходной в эволюционном плане формой. Подсчитано, что клетки с соотношением длины к диаметру (l/d) около 3.7 испытывают наименьшее сопротивление среды при активном передвижении в жидких средах, более того выгоднее быть длиннее, чем короче, данного соотношения: чтобы испытывать такое же сопротивление среды, как кокки, палочки должны стать в 130 раз длиннее своего диаметра. При соотношении l/d от 3 до 6 наблюдается наибольшая эффективность поглощения питательных веществ из окружающей среды и их внутриклеточного транспорта. Именно таким формам удобно закрепляться на субстрате. Замечено, что очень успешно палочки «собираются» в (печально известные) биопленки.
Многочисленные нитевидные формы это производные палочек, длина стенок которых во много раз превышает диаметр клетки. Нитевидная форма одна из стратегий избегания хищничества со стороны простейших. Длинные, разветвленные формы получают возможность функционально дифференцировать клетку, что способствует более эффективному питанию в случае дефицита определенных элементов питания.
Извитые (спиральные) формы. Бактерии могут становится извитыми разными способами в разных эволюционных линиях прокариот. Например, Helicobacter pylori, вызывающий язву желудка, особыми ферментами (группы Csd) контролируемо разрезает сшивки между нитями в пептидогликановом слое, благодаря чему правильно организованный цилиндр клеточной стенки скручивается в спираль (рис. 4). Интересно, что грамположительные бактерии не имеют ферментов этой группы, к тому же их сшивки между нитями содержат дополнительные (пентаглициновые) мостики, а не сшиты напрямую, как у грамотрицательных бактерий. Эти обстоятельства в некоторой степени объясняют редкость спиральных форм среди грамположительных бактерий.
По-видимому, другой способ скручиваться изобрели Spirochaetae. Сначала было подозрение, что имеющиеся у спирохет жгутики, расположенные в внутреннем пространстве между мембранами (см. рис. 2, межмембранное пространство), ответственны за скручивание клеток. Действительно, было показано, что извитые формы спирохет в виде плоской волны «используют гены» внутренних жгутиков для образования стяжек в нужных местах для придания волнообразной формы клетке. Однако полученные правильно скрученные спиральные мутантные формы без внутренних жгутиков показали, что спиральные спирохеты используют еще какой-то механизм для скручивания. Представляется, что спиральные формы более эффективны при движении в вязкой среде, чем другие формы бактерий.
Изогнутые формы– вибрионы – можно рассматривать как короткие спиральные формы. Но у вибрионов есть покрайней мере еще один способ изогнуться: при помощи «тормозящего» белка кресцетина CreS (см. выше). Ряд исследований показал, что изогнутая форма вибриона способствует активному движению в жидкости и активному поиску лучшего места (хемотаксису).
Помимо общей формы клетки бактерии также могут иметь дополнительные внешние морфологические элементы – жгутики, мембраны, выросты, ножки – отражающие способности прокариот специфически приспосабливаться к определенным условиям жизни, моделируя для себя субнишевые (в экологическом смысле) пространства (рис. 5). Понятно, что целый ряд факторов, таких как свойства среды, способ питания, хищничество со стороны простейших, взаимодействие с субстратом и др. определяют эволюцию формы клеток бактерий. Интересно, что один и тот же тип клеток, как и дополнительных внешних морфологических приспособлений, может обеспечиваться разными структурными элементами оболочки и молекулярными механизмами в ходе эволюции разных таксонов.
Извитые бактерии – вибрионы, кампилобактеры, спириллы
» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>
Извитые бактерии
В эту группу включены грамотрицательные подвижные бактерии, имеющие извитую форму в виде запятой или спирали в 1-2 завитка. Таксономическое их положение различно. Так вибрионы входят в семейство Vibrionaceae, кампилобактеры и спириллы – в соответствующие роды без включения в какие-либо семейства.
Вибрионы.
Семейство Vibrionaceae состоит из 4 родов. Представители только одного – Vibrio – вызывают заболевания у человека. Vibrio cholerae – возбудитель холеры (cholera), протекающей по типу острого гастроэнтерита с выраженной интоксикацией и резким обезвоживанием. Условно-патогенные Vibrio metschnikovii, Vibrio parahaemolyticus и др. способны вызывать гастроэнтериты.
Холерный вибрион (Vibrio cholerae).
Возбудитель холеры Vibrio Cholerae впервые был выделен из испражнений больных и трупов погибших от холеры и изучен Р. Кохом в 1882 г. в Египте. Ф. Готшлих в 1906 г. на карантинной станции Эль-Тор (в Египте) выделил из кишечника паломников вибрион, отличающийся от вибриона Коха гемолитическими свойствами. Как впоследствии оказалось Vibrio eltor также вызывает холеру.
Морфология, физиология. Холерные вибрионы имеют форму изогнутой палочки, напоминающей запятую, размерами 0.5-3.0 x 0.5 мкм. Склонны к полиморфизму. Спор и капсул не образуют. Один полярно расположенный жгутик обеспечивает холерному вибриону в жидкой среде активную подвижность, а в организме человека – доставку микроорганизма к эпителиальным клеткам тонкой кишки.
Холерные вибрионы хорошо растут на простых питательных средах при щелочной реакции среды (pH 8.5-9.0). В щелочной пептонной среде они быстро размножаются и через 3-4 часа инкубации при 37°C на поверхности образуется легкое помутнение, а затем нежная пленка. На поверхности плотных сред через 14-16 часов появляются гладкие прозрачные с голубоватым оттенком и ровным краем колонии.
Холерные вибрионы ферментируют углеводы (глюкозу, мальтозу и др.) с образованием кислоты, разжижают желатину и гидролизуют казеин, восстанавливают нитраты в нитриты, образуют индол.
Антигены. Холерные вибрионы имеют антигены: H-видоспецифический и O-типоспецифический. По O-антигену они разделяются на несколько десятков (до 80) серогрупп. V. cholerae и V. eltor – возбудители холеры – относятся к серогруппе O1. Вибрионы серогрупп O2, O3, O4 и др. могут вызывать энтериты и гастроэнтериты. Антиген O1 состоит из компонентов A, B и C, разные сочетания которых присущи сероварам: Огава (AB), Инаба (AC) и Гикошима (ABC), O-антиген у всех представителей вида V. cholerae одинаков.
От больных с диареей и здоровых лиц выделяются вибрионы, лишенные O1-антигена, но имеющие общий с холерными вибрионами H-антиген. Такие вибрионы называются неагглютинирующимися (НАГ). Они вызывают гастроэнтериты, которые могут сопровождаться интоксикацией разной степени выраженности.
Экология и распространение. Биотопом холерных вибрионов является кишечник человека. Здесь они живут, размножаются и выделяются с испражнениями в окружающую среду, где могут оставаться жизнеспособными при температуре 1-4°C не менее 4-6 нед.
Холера периодически распространяется по земному шару. До 1960 года было 6 эпидемий, которые вызывал классический биовар V. cholerae, 7-я эпидемия охватила 39 стран мира, в том числе европейские. Заболевания были вызваны вибрионом Эль-Тор. Наибольшее число больных, более 170 тыс., было зарегистрировано в 1971 г. Вспышки холеры периодически регистрируются в нашей стране.
Эпидемический очаг холеры до сих пор существует в бассейнах рек Ганга и Брахмапутры в Индии, где ежегодно регистрируются несколько тысяч больных. Циркуляция возбудителя среди населения поддерживается наличием стертых форм болезни и носительством, а также сохранением вибрионов в окружающей среде (главным образом в воде).
Заражение человека холерными вибрионами происходит алиментарным путем с инфицированной водой или пищевыми продуктами. Вибрионы чувствительны к повышенной температуре: при 56°C гибнут через 30 мин, при кипячении – мгновенно. Высокочувствительны к кислотам, спирту, к 3% раствору карболовой кислоты. Не выдерживают высушивания и солнечного света. Более устойчивы к действию факторов окружающей среды вибрионы Эль-Тор (например, в фекалиях, замороженных во льду, сохраняют жизнеспособность несколько месяцев).
Патогенность возбудителя и патогенез холеры. Попав в желудок, вибрионы могут погибнуть, так как кислотность желудочного сока для них является непреодолимым барьером. Установлено, что у здорового человека при нормальной кислотности желудочного сока заболевание не развивается при введении такого огромного количества вибрионов, как 10 11 клеток. Но после нейтрализации кислоты желудочного сока половина здоровых людей заболевают от введения им 10 6 клеток холерного вибриона.
Преодолев желудочный барьер, вибрионы размножаются в тонкой кишке, где щелочная среда благоприятствует их жизнедеятельности. При этом в просвет тонкой кишки выделяются БАВ. Наибольшее значение имеет продуцируемый холерными вибрионами энтеротоксин – холероген.
Важный этап патогенеза холеры – колонизация слизистой оболочки кишечника. Ее обеспечивают:
а) движение вибрионов в направлении слизистой оболочки вследствие создания градиентов хемоаттрактантов,
б) пенетрация через гель слизистой оболочки,
в) адгезия к поверхности краевых щетинок эпителиальных клеток тонкой кишки.
Прикрепление вибрионов к эпителиальным клеткам обеспечивает им возможность размножаться, не быть выведенными из организма человека. Выделяющийся холероген вызывает активацию аденилатциклазной системы и как следствие этого – накопление цАМФ, что приводит к интенсивному выделению из клеток воды, ионов натрия и хлора и одновременно – нарушению процесса поступления ионов калия внутрь клеток. Клинически этот процесс проявляется обильной диареей. В основе симптомов болезни лежит нарушение водно-солевого обмена.
Иммунитет. В течение заболевания формируется антимикробные антитела и антитоксины, нейтрализующие холероген. Существенна роль и местного иммунитета – образующиеся секреторные IgA препятствуют адгезии холерных вибрионов на микроворсинках эпителиоцитов тонкой кишки. Таким образом, после перенесенного заболевания остается напряженный видоспецифический иммунитет.
Лабораторная диагностика холеры проводится бактериоскопическим и бактериологическим методами. Из испражнений, рвотных масс больного готовят мазки. Иммунолюминесцентный метод позволяет быстро получить первый ориентировочный ответ. К экспресс-методам относится и определение антигена возбудителя в исследуемом материале с помощью ДНК-зондов.
Бактериологическое исследование проводится поэтапно. Выделенную чистую культуру идентифицируют по биологическим и антигенным свойствам, определяют фаговар и чувствительность к антимикробным препаратам.
Серологические методы являются дополнительными, используются для выявления переболевших, установления напряженности иммунитета у вакцинированных. Определяют агглютинины, вибриоцидные антитела и антитоксины.
Профилактика и лечение. Специфическая профилактика может быть осуществлена вакцинацией. Создано несколько типов вакцин:
1) корпускулярная убитая;
3) живая для применения per os.
Сравнительная эффективность этих вакцин не определена. В нашей стране массовая вакцинация против холеры не проводится. Для экстренной профилактики используют тетрациклин. Этот же препарат применяют и для лечения.
Кампилобактеры.
Род Campylobacter (campylo – изогнутая, bacter – бактерия) включает 5 видов бактерий, из которых патогенными для человека являются Campylobacter jejuni, Campylobacter fetus и Campylobacter coli.
Морфология, физиология. Камбилобактеры – грамотрицательные тонкие спиралевидные (1-2 завитка) палочки, размерами 0.5-5.0 x 0.2-0.8 мкм. Характерные винтообразные движения создают единичные жгутики, расположенные на одном или обоих концах клетки. Спор и капсул не образуют.
Кампилобактеры – микроаэрофилы (размножаются в среде с содержанием кислорода 3-6%), обладают окислительным типом метаболизма. Углеводы не ферментируют. Энергию получают при расщеплении аминокислот. Желатину и мочевину не гидролизуют, обладают оксидазной и каталазной активностью.
Для выделения этих микроорганизмов из фекалий больных людей используют плотные питательные среды, к которым добавляют полимиксин B, линкомицин и другие антибиотики для подавления сопутствующей микрофлоры.
Патогенность возбудителя и патогенез заболеваний человека. Патогенность кампилобактеров связана с факторами вирулентности и токсичностью возбудителей. Они обладают адгезивной способностью – прикрепляются к эпителиоцитам кишечника, а C. pylori – к клеткам желудка (их выделяют при язвенной болезни желудка и двенадцатиперстной кишки, считают причастными к развитию этого заболевания).
C. jejuni после адгезии колонизируют слизистую оболочку тонкой кишки, размножаются и образуют термолабильный (ТЛ) и термостабильный (ТС) энтеротоксины. ТЛ-энтеротоксин по механизму действия сходен с аналогичными энтеротоксинами холерного вибриона и кишечной палочки – он также стимулирует образование цАМФ, обуславливая диарею. При разрушении кампилобактеров высвобождается эндотоксин.
В патогенезе энтеритов, вызванных кампилобактерами, могут преобладать диарея или дизентериеподобные состояния, связанные с продукцией цитотоксина и, возможно, с инвазией возбудителя в эпителиальные клетки кишечника.
C. fetus у людей пожилого возраста с иммунодефицитными состояниями вызывает некишечные формы кампилобактериоза: сепсис, менингит, поражения печени, легких, мочевыводящих путей, суставов.
Экология и распространение. Кампилобактеры обнаруживают в репродуктивных органах, ЖКТ, в ротовой полости человека и ряда животных.
Энтериты, вызываемые кампилобактериями, возникают у людей всех возрастов, но чаще – у детей. Заболеваемость характеризуется сезонностью, наиболее высока она летом. Зарегистрированы пищевые, молочные и водные вспышки кампилобактериозов, которые протекают по типу пищевых токсикоинфекций с диарейным синдромом. Источником возбудителей являются больные животные и люди. От них кампилобактеры попадают в пищевые продукты (чаще накапливаются в мясе цыплят, говядине, свинине, в молоке) и воду. К человеку возбудитель попадает через рот, основный путь передачи – алиментарный. Возможен и контактно-бытовой, от больных людей и носителей.
В окружающей среде (в фекалиях больных, в речной воде) при температуре 4°C эти микроорганизмы сохраняются более недели, в помете цыплят 4 дня. Устойчивы к действию кислоты желудочного сока и желчи, что обеспечивает кампилобактерам преодоление желудочного барьера и сохранение в желчном пузыре. Чувствительны к обычным концентрациям дезинфектантов.
Патогенные и условно-патогенные кампилобактеры различаются по способности вызывать различные заболевания у людей и животных. Так, C. fetus выделяют из крови людей с лихорадкой, C. jejuni – при абортах у овец, а у человека C. jejuni и C. coli вызывают энтериты.
Лабораторная диагностика кампилобактериозов проводится бактериологическим методом. Выделенные культуры идентифицируют по биохимическим и антигенным свойствам.
Профилактика и лечение. Специфическая профилактика не разработана. Для этиотропного лечения используют макролиды, тетрациклин, гентамицин.
Спириллы.
Спириллы – грамотрицательные, изогнутые в виде одного или нескольких завитков бактерии, имеющие на концах клеток пучки из 3-9 жгутиков, размером 2-60 x 0.2-1.7 мкм.
Типовой вид рода Spirillum – Spirillum volutans содержит липопротеиновые включения и крупные зерна волютина.
Род Aquaspirillum включает вид S. minus, который вызывает у человека заболевание, называемое “Содоку”. Заражение происходит при укусах крыс, которые являются основным источником возбудителя. Возможно заражение и через пищевые продукты, инфицированные спириллами. В месте проникновения возбудителя возникает гиперемия, отек. В регионарных лимфатических узлах микроорганизмы размножаются, выходят в кровь и попадают в различные органы. Повышение температуры сопровождается появлением полиморфной сыпи.
Диагноз устанавливается по эпидемиологическим данным, клинической картине болезни. Выделение возбудителя из крови, суставной жидкости подтверждает диагноз. С 8-10-го дня проводят серодиагностику реакциями агглютинации, РСК, ИФА.
Для лечения содоку используют антибиотики широкого спектра.