Как найти площадь круга зная радиус
Как найти площадь круга зная радиус
Как найти площадь круга
Окружность — одна из самых совершенных фигур в геометрии. Построить ее очень просто — нужен только циркуль. Но при своем совершенстве окружность создает одну из самых сложных проблем — определение площади круга. Почему это является проблемой? Дело в том, что площадь измеряется в квадратных единицах (метрах, дециметрах, миллиметрах…). Но превратить круг в прямоугольник или квадрат практически невозможно. Задача эта беспокоила умы математиков и философов на протяжении тысячелетий и даже получала собственное название — квадратура круга.
Чтобы разобраться в проблеме нужно разделить понятия окружности и круга. Окружность — это замкнутая линия, все точки которой находятся на одинаковом расстоянии от центра. А круг — это часть плоскости, ограниченная этой окружностью. Для окружности мы ищем длину, а для круга — площадь. Какую бы часть круга, ограниченную окружностью, мы не выбрали, одна из сторон обязательно будет криволинейной. Это усложняет расчет площади, если не использовать интегрального исчисления.
Приблизительно, с высокой долей точности можно найти площадь окружности через диаметр по формуле:
Это самая простая формула, позволяющая найти площадь круга, когда известный радиус. Но может возникнуть вопрос, почему найденная площадь будет неточной? Сложность связана с числом π — это отношение длины окружности к диаметру, не имеющая конечного значения. Такие числа называют иррациональными. Еще в 1761 году Иоганн Ламберт доказал, что эта постоянная трансцендентная, то есть, если возвести ее в квадрат, все равно получится иррациональное число.
Сложное доказательство этого утверждения создали Феликс Клейн и профессор Линдеманн. Практическое значение этого открытия состоит в том, что любая формула для определения площади круга, где используется число π дает приблизительный результат, то есть, квадратура круга невозможна в принципе. На данный момент известно число «Пи» с точностью до 31, 4 триллиона знаков после запятой. Для вычислений используют значение 3, 14, а для более точных — 3, 1415926.
Способы вычисления площади круга
Для решения повседневных и большинство технических задач вполне достаточно формулы S= π∙ D 2 /4. Но в геометрии есть свои подходы к решению. Не всегда дано радиус (диаметр), а измерить эту величину можно только косвенным путем при помощи построений описанных и вписанных многоугольников, дополнительных построений и т.д. Рассмотрим наиболее популярные методы, как узнать площадь круга, более подробно. Сразу же оговоримся, способ интегрального исчисления затрагивать не будем, хотя он и наиболее точный. Воспользуемся только геометрическими способами решения.
Вычисление площади по радиусу
S = π∙r 2 — формула для вычисления площади круга, если известный радиус. Как видно, это просто запись предыдущего выражения с учетом того, что r = D/2, отсюда r 2 = (D/2) 2 = D 2 /4, что и использовано в основной формуле.
Как найти площадь круга через длину окружности
Для начала вспомним, как вычисляется длина окружности. Здесь, как и в других формулах для круга и окружности используется постоянная π. Нужно запомнить, что в математике и физике этот символ является непременным участником всех вычислений, связанных с кругом, окружностью, циклическими процессами, движением по дуге. В частности, длину окружности находим по формулам L=2 πR, или L= πD. Используя их, находим:
R=L/2 π; (1)
D=L/ π. (2)
Используя запись 1 в формуле S = π∙r2 получаем:
S = π(L/2 π) 2 = L/4 π.
Аналогичный результат получим, используя формулу 2.
Как вычислить площадь круга, описанного вокруг правильного многоугольника
В каждый круг легко вписать любой правильный многоугольник. Рассмотрим случаи с самыми простыми фигурами. Если в круг вписан квадрат, то формула будет выглядеть так:
S=2π⋅a 2 /2, где а – сторона квадрата.
Если в круг вписан равносторонний (правильный) треугольник, то формула будет выглядеть так:
S=π⋅a 2 /3.
Если в равностороннем треугольнике неизвестна длина стороны, но известна высота, то используем формулу:
Если треугольники неправильные, например, равнобедренные или разносторонние, то формулы получаются сложнее. Например, для вычисления площади по данным равнобедренного треугольника используется формула:
S=π⋅( a 4 /4⋅a 2 −b 2 )
В случае прямоугольного треугольника, мы используем формулу:
S=π/4⋅(a 2 +b 2 ).
Если круг описан вокруг равнобедренной трапеции, то рассчитать площадь можно по более сложной формуле:
S=π⋅( a⋅d⋅c/4⋅√p⋅(p−a)⋅(p−d)⋅(p−c)).
Как видим, задачу вычисления площади круга можно решить при помощи готовых формул, рассчитанных практически для любого случая, используя вписанные или описанные простые геометрические фигуры. Приведем еще несколько из готовых формул, на этот раз, для фигур, внутри которых находится круг неизвестного радиуса:
S=π⋅a 2 /12 – для равностороннего треугольника;
S=π⋅b 2 /4 ⋅(tgα/2) 2 — для равнобедренной трапеции;
S=π⋅(а/2) 2 =π⋅а 2 /4 — для квадрата.
Учитывая небольшой объем статьи, все формулы приводим без доказательств, как руководство для практического использования при решении геометрических или технических задач.
Часто возникает проблема определения площади полукруга. Это можно сделать очень просто, вычислив площадь полного круга и разделив ее на 2. Если использовать формулу, то выглядеть это будет так:
S = π∙r 2 /2, или
S= π∙ D 2 /4/2 = S= π∙ D 2 /8.
Для решения практических задач сложно пользоваться формулами, да и времени для этого найти не всегда получается. Лучше всего воспользоваться онлайн-калькуляторами на специализированных сайтах. Здесь важно правильно замерить нужные параметры в требуемых единицах. Нот для учеников и студентов такие сервисы не подходят — легкое получение готового результата отучает мыслить самостоятельно и никак не углубляет знаний.
Как найти площадь трапеции
Как найти площадь прямоугольника 3 класс
Как найти процент от числа
Шар и сфера, объем шара, площадь сферы, формулы
Как найти курсы по физике для подготовки к ЕГЭ
Нахождение площади сектора круга
В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить площадь сектора круга, а также разберем примеры решения задач для демонстрации их практического применения.
Определение сектора круга
Сектор круга – это часть круга, образованная двумя его радиусами и дугой между ними. На рисунке ниже сектор закрашен зеленым цветом.
Формулы нахождения площади сектора круга
Через длину дуги и радиус круга
Площадь (S) сектора круга равняется одной второй произведения длины дуги сектора (L) и радиуса круга (r).
Через угол сектора (в градусах) и радиус круга
Площадь (S) сектора круга равняется площади круга, умноженной на угол сектора в градусах ( α°) и деленной на 360°.
Через угол сектора (в радианах) и радиус круга
Площадь (S) сектора круга равняется половине произведения угла сектора в радианах (aрад) и квадрата радиуса круга.
Примеры задач
Задание 1
Дан круг радиусом 6 см. Найдите площадь сектора, если известно, что длина его дуги составляет 15 см.
Решение
Воспользуемся первой формулой, подставив в нее заданные значения:
Решение
Выведем формулу для нахождения центрального угла из второй формулы, рассмотренной выше:
Площадь круга в задаче B5
20 октября 2011
Окружности требуют более аккуратного подхода и встречаются в заданиях B5 гораздо реже. Вместе с тем, общая схема решения даже проще, чем в случае с многоугольниками (см. урок «Площади многоугольников на координатной сетке»).
Чтобы найти указанные величины, достаточно указать на окружности точку, лежащую на пересечении линий сетки. А затем воспользоваться теоремой Пифагора. Рассмотрим конкретные примеры вычисления радиуса:
Задача. Найти радиусы трех окружностей, изображенных на рисунке:
Выполним дополнительные построения в каждой окружности:
В каждом случае точка B выбрана на окружности таким образом, чтобы лежать на пересечении линий сетки. Точка C в окружностях 1 и 3 дополняют фигуру до прямоугольного треугольника. Осталось найти радиусы:
Рассмотрим треугольник ABC в первой окружности. По теореме Пифагора:
Для второй окружности все очевидно:
Третий случай аналогичен первому. Из треугольника ABC по теореме Пифагора:
Теперь мы знаем, как искать радиус окружности (или хотя бы его квадрат). А следовательно, можем найти площадь. Встречаются задачи, где требуется найти площадь сектора, а не всего круга. В таких случаях легко выяснить, какую часть круга составляет этот сектор, и таким образом найти площадь.
Очевидно, сектор составляет одну четверть круга. Следовательно,
Остается найти S круга — площадь круга. Для этого выполним дополнительное построение:
Треугольник ABC — прямоугольный. По теореме Пифагора имеем:
Теперь находим площади круга и сектора:
Наконец, искомая величина равна
Площадь сектора при неизвестном радиусе
Это совершенно новый тип задач, ничего подобного в 2010—2011 годах не было. По условию, нам дан круг определенной площади (именно площади, а не радиуса!). Затем внутри этого круга выделяется сектор, площадь которого и требуется найти.
Хорошая новость состоит в том, что подобные задачи — самые легкие из всех задач на площади, которые бывают в ЕГЭ по математике. К тому же, круг и сектор всегда помещается на координатную сетку. Поэтому, чтобы научиться решать такие задачи, просто взгляните на картинку:
Пусть исходный круг имеет площадь Тогда его можно разделить на два сектора каждый (см. 2 шаг). Аналогично, каждый из этих секторов-«половинок» можно снова разделить пополам — получим четыре сектора каждый (см. 3 шаг). Наконец, можно разделить каждый из этих секторов еще на два — получим 8 секторов-«ошметков». Площадь каждого из этих «ошметков»
Обратите внимание: более мелкого разбиения ни в одной задаче ЕГЭ по математике нет! Таким образом, алгоритм решения следующий:
Вот и все! Задача решается практически устно. Если все равно что-то непонятно, купите пиццу и порежьте ее на 8 кусков. Каждый такой кусок будет тем самым сектором-«ошметком», которые можно объединить в более крупные куски.
А теперь разберем примеры из пробного ЕГЭ:
Задача. На клетчатой бумаге нарисован круг, площадь которого равна 40. Найдите площадь заштрихованной фигуры.
Итак, площадь круга равна 40. Разделим его на 8 секторов — каждый Получим:
Очевидно, закрашенный сектор состоит ровно из двух секторов-«ошметков». Следовательно, его площадь равна 2 · 5 = 10. Вот и все решение!
Задача. На клетчатой бумаге нарисован круг, площадь которого равна 64. Найдите площадь заштрихованной фигуры.
Снова разделим весь круг на 8 равных секторов. Очевидно, что площадь одного их них как раз и требуется найти. Следовательно, его площадь
Задача. На клетчатой бумаге нарисован круг, площадь которого равна 48. Найдите площадь заштрихованной фигуры.
Опять разделим круг на 8 равных секторов. Площадь каждого из них В искомом секторе помещается ровно три сектора-«ошметка» (см. рисунок). Следовательно, площадь искомого сектора равна 3 · 6 = 18.