за счет чего поворачивает вертолет в воздухе
как летает вертолет
Самолёт способен летать благодаря специальной изогнутой форме крыла, которое движется в потоке набегающего воздуха. Подъёмная сила создаётся за счёт того, что путь, проходимый воздухом над крылом, больше пути потока воздуха под крылом, и, соответственно, скорость верхнего потока выше. Согласно закону Бернулли, на крыло начинает действовать сила, направленная в сторону потока с большей скоростью. Вертолёт использует тот же принцип, но роль крыльев у него играют лопасти несущего винта.
Вращение несущего винта создаёт подъёмную силу, но оно же создаёт силу отдачи, стремящуюся закрутить вертолёт в обратном направлении. Чтобы компенсировать вращательный момент, обычно используется дополнительный маленький вертикальный хвостовой винт. Если этот винт встроен в хвостовое оперение, то его называют фенестроном.
Другим вариантом является два больших несущих винта, вращающихся в противоположных направлениях на одной оси. Второй винт называется аэродинамически симметричным соосным несущим винтом. Этот вариант использован, например, в российском Ка-50. Недостатком такой схемы является вероятность схлёстывания двух винтов при резком боковом манёвре.
Максимальная скорость вертолёта ограничена ввиду недопустимости постоянного достижения скорости звука на крайних участках лопастей (общая максимальная скорость на краю лопасти равна диаметру диска вращения ротора, помноженному на обороты в секунду + скорость самого вертолёта) что привело бы к разрушению конструкции.
Когда вертолёт летит вперёд, лопасти, движущиеся вперёд, имеют бо́льшую скорость относительно воздуха, чем движущиеся назад. В результате одна из половин винта создаёт бо́льшую подъёмную силу, чем другая, и вертолёт поворачивает вбок. Чтобы этого не проиcходило, используется механизм компенсации, встроенный в автомат перекоса, чтобы угол наклона лопастей в левой и правой половине винта был бы различен.
Кроме того, винт создаёт вибрацию, угрожающую разрушением конструкции. Поэтому в большинстве случаев применяется активная система гашения возникающих колебаний.
Управление вертолетом.
Здравствуйте!
Взлет МИ-8 в зоне воздушной подушки.
Мы с Вами уже выяснили как, в принципе, управляется вертолет, и как работает автомат перекоса. А сегодня внесем некоторую ясность в вопрос о том, какую роль во всем этом играет пилот. Какие даны ему органы управления для решения вобщем-то непростой задачи, каковой является управление вертолетом
С самолетом все более-менее понятно. У него есть две самостоятельные системы: система управления самолетом (собственно управление рулями и элеронами) и система управления двигателем. И органы в кабине экипажа в количестве трех штук 🙂 : ручка управления самолетом (РУС), ручка управления двигателем (РУД), и педали для управления рулем направления. Как в этом плане обстоят дела у вертолета?…
Начнем с того, что определим более конкретно типы управления вертолетом.
Что такое « шаг-газ ». Дело в том, что угол установки лопастей несущего винта (общий шаг) и обороты двигателя связаны. Ведь если увеличить угол, то возрастет величина аэродинамических сил, действующих на лопасти. Увеличивается и подъемная сила, и сила сопротивления. Винт, как говорят, нагружается. Двигатель, находясь на определенном уровне мощности не может «обслужить» возросшую нагрузку и может начать терять обороты. Тяга винта, соответственно, может уменьшиться.
Чтобы этого не происходило, была придумана система шаг-газ, которая одновременно с увеличением угла установки лопастей подает команду в топливную автоматику на увеличение оборотов (то есть «увеличиваешь шаг – даешь газ» и наоборот), тем самым исключая падение мощности двигателя.
Теперь о том, что у нас в кабине. У пилота есть собственно две ручки управления вертолетом.
Первая – ручка управления циклическим шагом винта (или просто ручка управления вертолетом). Она самолетного типа, расположена перед креслом пилота, и с ее помощью осуществляется продольное и поперечное управление вертолетом. От нее через специальную систему тяг и качалок воздействие передается на тарелку автомата перекоса, которая, в свою очередь, определяет циклический угол установки лопастей.
Системы управления циклическим и общим шагом винта.
Кабина вертолета. Хорошо видны спаренные ручки управления и ручки шаг-газ.
Вторая – ручка управления общим шагом винта или, как ее еще называют « ручка шаг-газ ». Эта ручка обычно расположена слева от кресла пилота и перемещается вертикально вверх-вниз. С ее помощью осуществляется вертикальное управление путем одновременного воздействия на автомат перекоса и систему изменения оборотов двигателя. Обычно обороты двигателя меняются на первой трети перемещения ручки, далее уже меняется только общий шаг винта.
Отдельно от шага винта мощность двигателя может меняться только в небольших пределах для необходимой корректировки. Для этого на ручке шаг-газ существует специальный корректор ( обычно что-то типа поворотного кольца).
На схеме под номерами: 1 — ручка управления циклическим шагом; 2 — ручка шаг-газ; 3 — автомат перекоса; 4 — агрегат системы управления двигателем.
Система управления шагом рулевого винта.
Кабина вертолета. Хорошо видны ручка управления и правая педаль.
При использовании всех описанных органов управления вертолетом, этот аппарат превращается в маневренную машину с довольно широкими возможностями.
Чуть-чуть подробнее о режиме взлета. Существует два способа взлета. Первый – « по вертолетному ». В этом случае вертолет взлетает вертикально с кратковременным зависанием на высоте 1,5-2 метров (контрольное висение), после чего производится разгон с набором высоты. Второй – «по самолетному». При этом вертолет разгоняется на земле, набирает скорость отрыва и взлетает с последующим набором высоты и скорости.
Способ взлета выбирается в зависимости от состояния самого аппарата и от внешних условий. Определяющим в этом плане является запас мощности двигателя, что вполне понятно :-). Этот запас, в свою очередь, зависит от массы вертолета (точнее взлетной массы) и от таких параметров состояния атмосферы, влияющих на параметры работы двигателя и несущего винта, как местное давление воздуха, температура и влажность (влияющие на плотность воздуха).
Взлет по вертолетному.
Кроме того на выбор способа взлета влияет размер и состояние поверхности площадки, на которой находится вертолет, наличие каких-либо препятствий по курсу взлета и обязательно направление и сила ветра у земли.
Чем выше барометрическая высота места взлета (ниже давление), чем выше температура и влажность воздуха, а также чем ниже скорость встречного ветра, тем ниже запас мощности двигателя, и тем ниже должна быть взлетная масса вертолета.
Воздух, отбрасываемый несущим винтом вниз тормозится у земли и образует как бы поддерживающую аппарат подушку. Такое может происходить обычно на совсем малом расстоянии от земной поверхности. Считается, что для вертолета это явление можно принимать во внимание, если расстояние от земли до плоскости вращения винта равно радиусу винта (или меньше). В этом случае прирост подъемной силы составляет 10-15%.
Первый случай выбирается тогда, когда взлетная площадка имеет ограниченные размеры и окружена высокими препятствиями, а также если она имеет сильное запыление или покрыта свежевыпавшим снегом. Режим работы двигателя при таком взлете – максимальный то есть запаса по мощности нет.
Это самый напряженный режим взлета, а при отказе двигателя (одного из двигателей) безопасная посадка не гарантирована. Вертикальный подъем должен осуществляться до высоты обеспечения прохода над препятствиями с превышением не менее 5 метров.
Взлет вне зоны воздушной подушки с площадки, ограниченной препятствиями.
Разгон по наклонной траектории может быть использован на такой же площадке, но с высотой препятствий до 5 метров. Запас мощности при таком взлете должен обеспечивать одновременный разгон с набором высоты. Должна быть гарантирована безопасная посадка в случае отказа двигателя (одного из двигателей).
Взлет с разгоном в зоне воздушной подушки – самый распространенный способ взлета. Он обычно производится с аэродромов (вертодромов), имеющих открытые подходы. При этом двигатель работает обычно на номинальном режиме, то есть имеется запас мощности для необходимого, в случае чего :-), маневрирования. Вертолет после контрольного висения разгоняется вдоль земли с углом тангажа на пикирование в 10-15 º (иной раз и больше, и это очень эффектно :-)) и далее переходит в набор высоты. Этот взлет, кстати, – самое распространенное из того, что мы видим в кино.
Взлет по самолетному.
Вот так вкратце о возможностях взлета. О других рабочих (а также аварийных и специальных) режимах полета поговорим в следующих статьях и по пожеланиям трудящихся :-).
В конце статьи помещаю ролик, который уже есть в моей статье о турбовальном двигателе. Для сегодняшней статьи он подходит как нельзя лучше :-). Взлет с разгоном в зоне воздушной подушки. Правда не совсем типичный, а с применением еще одного элемента под названием шик, граничащий с воздушным хулиганством. Однако ведь до чего ж эффектно выглядит! :-). Летчик… Снимаю шляпу…
В довершении еще ролик « О том как летает вертолет». Последний, к сожалению, на английском языке. Но кое-какие полезные моменты с точки зрения управления в нем можно понять и так и они неплохо показаны. К сожалению более приемлемого материала в этот раз не нашел 🙁 …
Каталог статей
Вертолет – это винтокрылая машина, в которой подъемную силу и силу тяги создает винт. Несущий винт служит для поддержания и перемещения вертолета в воздухе. При вращении в горизонтальной плоскости несущий винт создает тягу(Т) направленную вверх, выполняет роль подъёмной силы(Y). Когда тяга несущего винта будет больше веса вертолета(G), вертолет без разбега оторвется от земли и начнет вертикальный набор высоты. При равенстве веса вертолета и тяги несущего винта вертолет будет неподвижно висеть в воздухе. Для вертикального снижения достаточно тягу несущего винта сделать несколько меньше веса вертолета. Поступательное движение вертолета(P) обеспечивается наклоном плоскости вращения несущего винта при помощи системы управления винтом. Наклон плоскости вращения винта вызывает соответствующий наклон полной аэродинамической силы, при этом ее вертикальная составляющая будет удерживать вертолет в воздухе, а горизонтальная — вызывать поступательное перемещение вертолета в соответствующем направлении.
Рис 1. Схема распределения сил
Конструкция вертолета
Фюзеляж является основной частью конструкции вертолета, служащей для соединения в одно целое всех его частей, а также для размещения экипажа, пассажиров, грузов, оборудования. Он имеет хвостовую и концевую балки для размещения хвостового винта вне зоны вращения несущего винта,и крыла (на некоторых вертолетах крыло устанавливается с целью увеличения максимальной скорости полета за счет частичной разгрузки несущего винта (МИ-24)).Силовая установка(двигатели) является источником механической энергии для приведения во вращение несущего и рулевого винтов. Она включает в себя двигатели и системы, обеспечивающие их работу (топливную, масляную, систему охлаждения, систему запуска двигателей и др.). Несущий винт(НВ) служит для поддержания и перемещения вертолета в воздухе, и состоит из лопастей и втулки несущего винта. Рулевой винт служит для уравновешивания реактивного момента, возникающего при вращении несущего винта, и для путевого управления вертолетом. Сила тяги рулевого винта создает момент относительно центра тяжести вертолета, уравновешивающий реактивный момент несущего винта. Для разворота вертолёта достаточно изменить величину тяги рулевого винта. Рулевой винт так же состоит из лопастей и втулки. Управление несущим винтом производится при помощи специального устройства, называемого автоматом перекоса. Управление рулевым винтом производится от педалей. Взлетно-посадочные устройства служат опорой вертолета при стоянке и обеспечивают перемещение вертолета по земле, взлет и посадку. Для смягчения толчков и ударов они снабжены амортизаторами. Взлетно-посадочные устройства могут выполняться в виде колесного шасси, поплавков и лыж
Рис.2 Основные части вертолета:
1 — фюзеляж; 2 — авиадвигатели; 3 — несущий винт (несущая система); 4 — трансмиссия; 5 — хвостовой винт; 6 — концевая балка; 7 — стабилизатор; 8 — хвостовая балка; 9 — шасси
Принцип создания подъемной силы винтом и система управления винтом
При вертикальном полете п олная аэродинамическая сила несущего винта выразится как произведение массы воздуха, протекающего через поверхность, сметаемую несущим винтом за одну секунду, на скорость уходящей струи:
По сути сила тяги винта равна силе реакции при ускорении воздушного потока
Для того чтобы вертолет двигался поступательно, нужен перекос плоскости вращения винта, причем изменение плоскости вращения достигается не наклоном втулки несущего винта (хотя визуальный эффект может быть именно такой), а изменением положения лопасти в разных частях квандрантов описываемой окружности.
Рис.3 Изменение скоростей набегающего потока при вращении винта для вертолета МИ-1 (средние скорости полета).
Чтобы этого не происходило, конструктора применили одну хитрость. Дело в том, что лопасти несущего винта закреплены во втулке (это такой массивный узел, насаженный на выходной вал), но не жестко. Они с ней соединены с помощью специальных шарниров (или устройств, им подобных). Шарниры бывают трех видов: горизонтальные, вертикальные и осевые.
Рис. 4 Силы, действующие на лопасть, подвешенную ко втулке винта на шарнирах.
От 0º до 90º скорость обтекания лопасти растет, значит растет и подъемная сила. Но! Теперь лопасть подвешена на горизонтальном шарнире. В результате избыточной подъемной силы она, поворачиваясь в горизонтальном шарнире, начинает подниматься вверх ( специалисты говорят «делает взмах »). Одновременно из-за увеличения лобового сопротивления (ведь скорость обтекания возросла) лопасть отклоняется назад, отставая от вращения оси винта. Для этого как раз и служит вертикальный шар-нир.
Однако при взмахе получается, что воздух относительно лопасти приобретает еще и некоторое движение вниз и, таким образом, угол атаки относительно набегающего потока уменьшается. То есть рост избыточной подъемной силы замедляется. На это замедление оказывает свое дополнительно влияние отсутствие управляющего воздействия. Это значит, что тяга автомата перекоса, присоединенная к лопасти, сохраняет свое положение неизменным, и лопасть, взмахивая, вынуждена поворачиваться в своем осевом шарнире, удерживаемая тягой и, тем самым, уменьшая свой установочный угол или угол атаки по отношению к набегающему потоку. (Картина происходящего на рисунке. Здесь У – это подъемная сила, Х – сила сопротивления, Vy – вертикальное движение воздуха, α – угол атаки.)
Рис.5 Картина изменения скорости и угла атаки набегающего потока при вращении лопасти несущего винта.
Однако несмотря на свою незначительность вертикальное отклонение лопастей присутствует, и несущий винт при вращении описывает конус, правда очень пологий. Основание этого конуса и есть плоскость вращения винта (см рис1.)
Для придания вертолету поступательного движения нужно эту плоскость наклонить, дабы появилась горизонтальная составляющая полной аэродинамической силы, то есть горизонтальная тяга винта. Иначе говоря, нужно наклонить весь воображаемый конус вращения винта. Если вертолету нужно двигаться вперед, значит конус должен быть наклонен вперед.
Рис. 6 Автомат перекоса модели вертолета
Для более лучшего понимания помещаю еще несколько иллюстраций втулки винта с автоматом перекоса.
Рис. 7 Втулка винта с автоматом перекоса (схема).
Рис. 8 Поворот лопасти в вертикальном шарнире втулки несущего винта.
Рис. 9 Втулка несущего винта вертолета МИ-8
Вертолеты
Основные идеи и краткая история
Вертолет, или, иначе, геликоптер, создает подъемную силу за счет вращения винта, в отличие от самолета, у которого подъемная сила создается поступательным движением аппарата.
Воздух обтекает лопасти вращающегося винта вертолета. Поскольку для создания подъемной силы не имеет существенного значения, создается ли движение путем перемещения всего аппарата или перемещением одного крыла относительно воздуха, то и основной принцип появления данной силы неизменен.
Иными словами, лопасть винта вертолета представляет собой аналог крыла самолета, у которого верхняя часть более «выпуклая», чем нижняя — для эффекта Бернулли.
Кроме того, как и крыло самолета, лопасть винта вертолета образует определенный угол атаки с горизонталью. Это делается для того, чтобы сила сопротивления воздуха при движении лопасти давала составляющую, направленную вверх.
Винт, в соответствии с 3-м законом Ньютона, воздействует на воздух с той же силой, с какой воздух действует на винт. Это приводит к движению воздуха. Движение воздуха направлено сверху вниз. Получается, что вертолет как бы висит на воздушных струях.
Вращение винта, в соответствии с законом сохранения момента импульса, создает так называемый «реактивный момент», закручивающий летательный аппарат в противоположную сторону. Для компенсации применяют либо соосную схему с двумя винтами, вращающимися в разные стороны, либо, чаще, используют малый хвостовой «подруливающий» винт, задача которого — создать момент в направлении, противоположном действию реактивного момента. Следует отметить, что реактивный момент свойственен не только вертолетам. В равной степени он возникает и на вращающемся винте у самолета (компенсируется вращением винтов в разные стороны, положением элеронов или рулей высоты).
Когда винт вертолета работает в горизонтальной плоскости, параллельно земле, вертолет может только висеть, поднимаясь выше и ниже (что, кстати, невозможно для самолетов). Чтобы вертолет начал двигаться вперед, ему необходимо изменить угол наклона винта так, чтобы винт толкал аппарат не только вверх, но и вперед.
Идея создания подобного аппарата, взлетающего при помощи винта, была высказана еще Леонардо да Винчи в 1475 году. Неоднократно совершались попытки построить подобный аппарат, в том числе и в России. Так, в 1754 г. М. В. Ломоносовым были проведены экспериментальные работы по определению подъемной силы летательного аппарата с соосными винтами. Однако практическое использование вертолета без мощного двигателя, даже при удачной попытке поднять аппарат в воздух, было невозможно. Вертолет в лучшем случае мог поднять вверх только себя самого.
Первый в истории вертикальный полет состоялся 24 августа (по другим источникам, 29 сентября) 1907 года и продолжался одну минуту. Вертолет, построенный братьями Луи и Жаком Бреге (Louis & Jacques Bréguet) под руководством профессора Шарля Рише (Charles Richet), поднялся в воздух на 50 см.
В России первый вертолетоподобный аппарат, с соосными винтами, создал и довел до стендовых испытаний в 1909–1910 гг. И. И. Сикорский, однако этой машине не хватало подъемной силы.
Вертолет классической схемы (с большим и малым винтами) появился после изобретения Б. Н. Юрьевым в 1911 году автомата перекоса.
Автомат перекоса — устройство, изменяющее угол наклона каждой лопасти несущего винта по мере движения по окружности. Подобное решение позволило в разных секторах, ометаемых винтом, иметь разные подъемные силы. За счет этого плоскость, в которой вращается несущий винт вертолета, переходит из горизонтального положения в наклонное, наклоняя при этом всю машину, то есть плоскость вращения винта образует некоторый угол с горизонтом. За счет этого поворота у «подъемной силы» появляется составляющая, направленная вперед. Автомат перекоса находится на втулке винта и управляется с помощью рукоятки в кабине пилота. С помощью этого устройства вертолет способен совершать поступательное движение.
К сожалению, попытки поднять в воздух первый вертолет Б. Н. Юрьева с несущим винтом диаметром 8 м и подруливающим винтом, вынесенным на хвостовую балку, оказались неудачными из-за недостаточной прочности вала главного винта.
Устройство и работа несущего винта вертолета
Для того чтобы самолет или планер летал, нужна подъемная сила, а эта сила создается крылом. Поэтому главным в самолете является крыло, ибо в конечном счете Весь самолет может быть сведен в летающее крыло, без фюзеляжа, без оперения.
У вертолета роль крыла играет несущий винт. Даже если в летательном аппарате ничего больше нет, кроме несущего винта, мы можем принципиально назвать его «вертолетом».
Наверное, многие в детстве делали себе такой «вертолет», состоящий только ив одного винта, вырезанного из куска жести. Стартовым устройством для него служила обыкновенная катушка от ниток, вращающаяся на стержне.
Однако роль несущего винта вертолета гораздо более многогранна, чем роль крыла самолета.
Созданием подъемной силы еще не ограничивается назначение несущего винта.
Когда вы посмотрите на вертолет в горизонтальном полете, вы неизбежно обратите внимание на то, что фюзеляж носом наклонен к горизонту. При этом наклоненным вперед оказывается и несущий винт.
Полная аэродинамическая сила R, развиваемая несущим винтом и направленная перпендикулярно к плоскости вращения концов лопастей, в этом случае может быть разложена на две составляющие: направленную вертикально подъемную силу, которая поддерживает вертолет на заданной высоте, и силу, направленную по касательной к траектории полета, Р, которая на вертолете является силой тяги. За счет этой силы вертолет летит вперед. Таким образом, несущий винт в поступательном полете одновременно является и тянущим винтом.
Однако и этим не ограничивается роль несущего винта. У вертолета в отличие от самолета нет рулевых поверхностей, таких, как элероны, триммеры, рули направления и высоты. Да они и не имели бы смысла, так как во время полета не обдувались бы потоком воздуха и в силу этого не могли бы служить целям управления.
Ведь мы знаем, что для изменения положения тела, к нему нужно приложить внешнюю силу. В полете вертолет окружен воздухом, поэтому внешняя сила может быть только результатом взаимодействия каких-либо частей вертолета с воздушной средой. Для того чтобы возникла сила сопротивления воздуха, тело должно перемещаться с большей скоростью. Когда вертолет висит в воздухе, то этому условию не отвечает ни одна его часть, кроме винта. Поэтому роль органа управления вертолетом также возложена на несущий винт. Действуя ручкой управления, летчик с помощью особых устройств, о которых будет рассказано в следующих главах, добивается такого положения, которое равносильно изменению плоскости вращения несущего винта. При этом изменяет свое направление и полная аэродинамическая сила воздушного винта и обе ее составляющие. И если подъемная сила всегда направлена вертикально вверх, то вторая составляющая — по касательной к траектории полета.
В зависимости от угла наклона полной аэродинамической силы меняется не только направление, но и величины ее составляющих. Следовательно, управляя несущим винтом, летчик может изменять не только направление полета, но и скорость полета.
Для подъема или спуска вертолета летчик также воздействует на лопасти несущего винта, уменьшая или увеличивая одновременно и на одинаковую величину угол установки всех лопастей.
Если на вертолете отказывает двигатель, то, уменьшая углы атаки лопастей, летчик ставит несущий винт в положение самовращения (авторотации). Поддерживаемый подъемной силой, создаваемой винтом на этом режиме работы, вертолет совершает безопасный планирующий спуск.
Из сказанного выше ясно, что для понимания устройства и полета вертолета надо разобраться прежде всего в работе несущего винта; для того чтобы вертолет успешно мог летать, конструктор должен обеспечить надежность прежде всего несущего винта.
Летчики, инженеры, техники и механики, летающие на вертолетах и обслуживающие их, прежде всего должны следить за безукоризненным состоянием несущего винта.
Итак, несущий винт — вот что главное в вертолете
Пропеллерный режим возникает при вертикальном подъеме или висении вертолета.
Режим косой обдувки возникает при поступательном полете вертолета.
Режим самовращения возникает при отключении двигателя вертолета от несущего винта в полете, при этом винт вращается под действием потока воздуха.
Режим вихревого кольца возникает при снижении вертолета. При таком режиме поток воздуха, проходя сквозь ометаемую винтом поверхность сверху вниз, вновь подходит к винту сверху.
Однако в некоторых частных случаях, например, в пропеллерном режиме, его работа схожа с работой самолетного винта. Когда самолет находится на земле или летит горизонтально, его винт обдувается со стороны плоскости вращения (по оси). Когда вертолет находится на земле, висит в воздухе или поднимается вертикально вверх, его несущий винт также обдувается со стороны плоскости вращения (по оси). Различие при этом состоит только В ТОМ, что у самолета струи воздуха проходят через плоскость вращения винта в горизонтальном направлении, спереди назад, тогда как у вертолета — в вертикальном направлении, сверху вниз. При этом несущий винт захватывает воздух из зоны А сверху и отбрасывает его, закручивая, вниз, в зону. На место частиц воздуха, забранных из зоны А, поступают частицы воздуха из окружающей среды и частично из зоны Б, но уже вне плоскости вращения винта.
До того, как несущий винт был приведен во вращение, воздух над винтом н под ним находился в состоянии покоя С началом вращения винта приборы, внесенные с область действия винта, но находящуюся вдали от него, покажут наблюдателю, что в сечении 0—0 воздух по-прежнему находится в состоянии относительного покоя. Его давление равно атмосферному, а скорость. Расстояние от сечения 0—0, где еще не наблюдается влияния винта, до плоскости вращения винта есть величина переменная, которая зависит от вязкости среды и точности применяемых нами приборов. Чем точнее прибор, тем он дальше от винта зарегистрирует наличие скорости воздуха, частички которого будут устремлены к винту.
Если бы воздух был лишен сил вязкости, то действие винта сказалось бы бесконечно далеко.
Фактически ввиду того, что воздух представляет собой вязкую среду, влияние винта перестает ощущаться уже на расстоянии десятков метров.
Перенося наши приборы из сечения 0—0 все ближе к сечению, мы заметим постепенный прирост скорости воздуха, подсасываемого винтом. Та скорость, которую воздух имеет, подходя к сечению, называется индуктивной скоростью подсасывания. На основании закона сохранения энергии кинетическая энергия (энергия скорости движения) не может увеличиться без того, чтобы не уменьшался другой какой-либо вид энергии. И действительно, наряду с ростом скорости воздуха до ш, мы замечаем, что давление воздуха р0 при этом падает. Это значит, что увеличение скорости воздуха произошло за счет уменьшения давления. За винтом сечение потока сжимается и происходит еще большее увеличение скорости воздуха. Казалось бы, должно было последовать дальнейшее падение давления. Однако сразу за винтом давление растет до р-2. Не противоречит ли это закону сохранения энергии? Да, противоречит, если мы не примем во внимание того обстоятельства, что воздух извне (от винта) получил добавочную энергию (механическую). Механическая энергия винта, преобразуюсь в кинетическую и потенциальную энергию потока, увеличивает и скорость и давление воздуха одновременно.
В сечении сразу за винтом прибор нам показывает, что воздух по сравнению с сечением имеет скорость и», называемую скоростью отбрасывания. Причем скорость отбрасывания оказывается вдвое больше скорости подсасывания.
Далеко за винтом, в сечении (теоретически на бесконечном удалении), скорость и давление воздуха восстанавливаются до первоначальных значений. Энергия потока при этом из-за наличия сил вязкости рассеивается в пространстве.
Таково действие винта на воздух, которое является следствием приложения к винту энергии вращения. Этому действию соответствует ответное действие воздуха на винт, которое проявляется в виде силы тяги, являющейся проекцией полной аэродинамической силы R на ось, проходящую через втулку винта перпендикулярно плоскости его вращения. Если динамометр, соединенный с винтом, при остановленном винте показывал нулевое значение тяги, то по мере роста оборотов тяга будет все больше и больше возрастать. На режиме висения и вертикального подъема на всех других режимах полета
Величину тяги, создаваемой винтом, можно не только замерить, но и подсчитать.