живые организмы извлекающие энергию за счет окисления

Энергетический обмен. Автотрофы. Гетеротрофы

Вопрос 1.
Энергетическим обменом или диссимиляцией, или катаболизмом, называется совокупность реакций ферментативного расщепления органических соединений (белков, жиров, углеводов) и образования соединений, богатых энергией (аденозинтрифосфат и др.). АТФ и подобные ему соединения (они называются макроэргическими) обеспечивают разнообразные процессы жизнедеятельности: биологический синтез, поддержание различий концентрации веществ (градиентов) и перенос веществ через мембраны, проведение электрических импульсов, мышечную работу, выделение различных секретов и т.д.
Выделяют три этапа энергетического обмена.
1. Подготовительный этап. Осуществляется он главным образом вне клеток под действием ферментов, секретируемых в полость пищеварительного тракта. На этом этапе молекулы полисахаридов, белков, жиров и нуклеиновых кислот распадаются на более мелкие молекулы — глюкозу, аминокислоты, жирные кислоты, глицерин, нуклеотиды. При этом выделяется небольшое количество энергии, которая рассеивается в виде теплоты.
2. Бескислородный — этап неполного окисления (брожения), также называется анаэробным дыханием (гликолизом). В результате ряда последовательных ферментативных реакций одна молекула глюкозы, содержащая шесть атомов углерода, превращается в две молекулы пировиноградной кислоты (С3H4О3), включающие по три атома углерода каждая. В реакциях расщепления глюкозы участвуют фосфорная кислота и АДФ. Пировиногадная кислота восстанавливается затем до молочной кислоты (в мышцах), и суммарное уравнение выглядит так:

Таким образом, распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. В АТФ запасается 40% энергии, остальное рассеивается в виде тепла.
Анаэробное расщепление глюкозы (гликолиз) может быть основным источником АТФ в клетке у организмов, не использующих молекулярного кислорода или живущих в его отсутствие, а также в тканях многоклеточных организмов, способных работать в анаэробных условиях (например, в мышцах) во время сильных нагрузок. В этих условиях молекулы пировиноградной кислоты превращаются либо в молочную кислоту, как было описано выше, либо в другие соединения (в этанол и СО2 в клетках дрожжевых грибов, в ацетон, масляную и янтарную кислоты у разных микроорганизмов и т. д.).
3. Кислородное расщепление — аэробное дыхание. Этот этап катаболизма нуждается в присутствии молекулярного кислорода и называется дыханием.
При этом органические соединения (молочная кислота) окисляются до конечных продуктов СО2 и Н2О. Кислородное расщепление сопровождается выделением большого количества энергии и запасанием 90% ее в 36 молекулах АТФ. Суммарное уравнение аэробного дыхания выглядит так:

Таким образом, при окислении двух молекул молочной кислоты образуются 36 молекул АТФ. Всего в ходе второго и третьего этапов энергетического обмена при расщеплении одной молекулы глюкозы образуются 38 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание.

Вопрос 2.
В молекулах АТФ запасается больше половины той энергии, которую можно извлечь из органических молекул при окислении их до Н2О и СО2. Благодаря образованию АТФ энергия преобразуется в более удобную концентрированную форму, из которой она может легко высвобождаться. В клетке в среднем находится около 1 млрд молекул АТФ, распад которых (гидролиз) до АДФ и фосфата обеспечивает энергией множество биологических и химических процессов, протекающих с поглощением энергии. Отщепление концевого фосфата от молекулы АТФ сопровождается выделением 40 кДж энергии вместо 12 кДж, освобождаемых при разрыве обычных химических связей. Благодаря богатым энергией связям в молекуле АТФ клетка может накапливать большое количество энергии в маленьком пространстве и расходовать ее по мере надобности.

Вопрос 3.
Молекула АТФ состоит из азотистого основания аденина, сахара рибозы и трех остатков фосфорной кислоты. Аденин, рибоза и первый фосфат образуют аденозинмонофосфат (АМФ). Если к первому фосфиту присоединяется второй, получается аденозиндифосфат (АДФ). Молекула с тремя остатками фосфорной кислоты (АТФ) наиболее энергоемка.
Синтез АТФ происходит на внутренней поверхности внутренней мембраны митохондрий.

Вопрос 5.
Автотрофы — организмы, живущие за счет неорганического источника углерода — углекислого газа и использующие для осуществления процессов синтеза энергию солнечного света — фототрофы (например, зеленые растения) или химических связей — хемотрофы (например, нитрифицирующие бактерии).

Вопрос 6.
Фотосинтез — это процесс трансформации поглощенной организмом энергии света в химическую энергию органических (и неорганических) соединений. Главную роль в этом процессе играет использование энергии света для восстановления СО2 до уровня углеводов. Фотосинтез — единственный процесс, с помощью которого космическая солнечная энергия улавливается и остается на Земле, трансформируясь в другие формы энергии. Выделяют световую и темновую фазы фотосинтеза.
1. В ходе световых реакций фотосинтеза образуются молекулы АТФ, необходимые для синтеза глюкозы из углекислого газа, и свободный кислород, который является побочным продуктом фотосинтеза.
В световую фазу кванты света взаимодействуют с молекулами хлорофилла, в результате чего эти молекулы (точнее, их электроны) переходят в более богатое энергией «возбужденное» состояние. Избыточная энергия части возбужденных молекул преобразуется в теплоту или испускается в виде света. Другая ее часть передается ионам водорода, Н + всегда находящимся в водном растворе вследствие диссоциации воды. Образовавшиеся атомы водорода непрочно соединяются с молекулами — переносчиками водорода. Ионы гидроксила ОН— отдают свои электроны другим молекулам и превращаются в свободные радикалы ОН. Радикалы ОН взаимодействуют друг с другом, в результате чего образуются вода и молекулярный кислород в соответствии с уравнением:

Следовательно, источником свободного кислорода, выделяющегося в атмосферу, служит вода. Совокупность реакций, приводящих к разложению воды под действием света, носит название фотолиза. Кроме фотолиза воды энергия возбужденных светом электронов хлорофилла используется для синтеза АТФ из АДФ и фосфата без участия кислорода. Это очень эффективный процесс: в хлоропластах образуется в 30 раз больше молекул АТФ, чем в митохондриях тех же растений в результате окислительных процессов с участием кислорода.
Таким образом, совокупность описанных выше реакций может происходить только на свету и называется I световой или светозависимой фазой фотосинтеза.
2. В темновую фазу фотосинтеза происходит образование глюкозы из углекислого газа с затратой энергии. Накопленная в результате светозависимых реакций энергия и атомы водорода, образованные при фотолизе воды, используются для синтеза углеводов из СО2:

При связывании неорганического углерода (СО2) и синтезе органических углеродсодержащих соединений не требуется прямого участия света. Эти реакции называются темновыми, а их совокупность — темновой фазой фотосинтеза.
Суммарная формула фотосинтеза:

6СО2 + H2O живые организмы извлекающие энергию за счет окисления C6H12O6 + 6О2

В зеленых растениях донором водорода, участвующего в фотосинтетических реакциях, служит вода. Именно поэтому образуется свободный кислород, поступающий в атмосферу. Вода — основной источник кислорода на планете Земля!

Вопрос 7.
Многие виды бактерий, способные синтезировать необходимые им органические соединения из неорганических за счет энергии химических реакций окисления, происходящих в клетке, относятся к хемотрофам. Захватываемые бактерией вещества окисляются, а образующаяся энергия используется на синтез сложных органических молекул из СО2 и Н2О. Этот процесс носит название хемосинтеза.
Важнейшую группу хемосинтезирующих организмов представляют собой нитрифицирующие бактерии. Исследуя их, С.Н. Виноградский в 1887 г. открыл процесс хемосинтеза. Для биосинтеза они используют энергию химических реакций неорганических соединений. Такие бактерии способны окислять ионы аммония, нитрита, сульфида, сульфита двухвалентного железа, элементарную серу, молекулярный водород и СО. Так, разные группы нитри- фицирующих бактерий последовательно окисляют аммиак до нитрита, а затем из нитрита образуют нитрат.
Деятельность всех этих бактерий — нитрифицирующих, окисляющих железо и серу и переводящих тем самым нерастворимые минералы в легко растворимые сульфаты тяжелых металлов, и многих других играет важную роль в круговороте веществ в природе.
Нитрифицирующие бактерии, обитая в почве, окисляют аммиак, образующийся при гниении органических остатков, до азотистой кислоты:

Затем бактерии других видов этой группы окисляют азотистую кислоту до азотной:

Взаимодействуя с минеральными веществами почвы, азотистая и азотная кислоты образуют соли, которые являются важнейшими компонентами минерального питания высших растений.
Под действием других видов бактерий в почве происходит образование фосфатов, также используемых высшими растениями.

Источник

Живые организмы извлекающие энергию за счет окисления

Найдите три ошибки в приведённом тексте. Укажите номера предложений, в которых сделаны ошибки, исправьте их.

(1)На Земле встречаются организмы, способные извлекать энергию путём окисления неорганических веществ и использовать её для органического синтеза без участия света. (2)Процесс синтеза органических веществ из неорганических за счёт энергии окисления неорганических веществ называют хемосинтезом. (3)Нитрифицирующие бактерии, серобактерии, цианобактерии, железобактерии, водородные бактерии и другие синтезируют органические вещества из неорганических и получают энергию только путём хемосинтеза. (4)Все перечисленные бактерии являются анаэробными. (5)Источником водорода в окислительно-восстановительных реакциях является не только вода, но и другие неорганические вещества, например сероводород и водород. (6)В бактериальных клетках процессы хемосинтеза происходят на мембранах эндоплазматической сети. (7)Процессы хемосинтеза могут происходить в весьма крупных масштабах и имеют существенное значение в круговороте веществ в биосфере.

1) 3 – цианобактерии способны к фотосинтезу (синтезируют органические вещества из неорганических на свету с выделением кислорода).

2) 4 – все перечисленные бактерии являются аэробными (окисляют неорганические вещества в присутствии кислорода).

3) 6 – в бактериальных клетках процессы хемосинтеза происходят на внутренних выростах плазматической мембраны – мезосомах, ЭПС и других мембранных органоидов в клетках бактерий нет

Источник

Энергетика живой клетки

Преобразование энергии в животной клетке

живые организмы извлекающие энергию за счет окисления

Неспособные к фотосинтезу клетки (например, человека) получают энергию из пищи, которой служит или биомасса растений, созданная в результате фотосинтеза, или биомасса других живых существ, питающихся растениями, или останки любых живых организмов.

Питательные вещества (белки, жиры и углеводы) преобразуются животной клеткой в ограниченный набор низкомолекулярных соединений – органических кислот, построенных из атомов углерода, которые с помощью специальных молекулярных механизмов окисляются до углекислоты и воды. При этом освобождается энергия, она аккумулируется в форме электрохимической разности потенциалов на мембранах и используется для синтеза АТФ или напрямую для совершения определенных видов работы.

История изучения проблем преобразования энергии в животной клетке, как и история фотосинтеза, насчитывает более двух веков.

У аэробных организмов окисление углеродных атомов органических кислот до углекислого газа и воды протекает с помощью кислорода и называется внутриклеточным дыханием, которое происходит в специализированных частицах – митохондриях. Трансформация энергии окисления осуществляется ферментами, расположенными в строгом порядке во внутренних мембранах митохондрий. Эти ферменты составляют так называемую дыхательную цепь и работают как генераторы, создавая разность электрохимических потенциалов на мембране, за счет которой синтезируется АТФ, подобно тому, как это происходит при фотосинтезе.

Основная задача и дыхания и фотосинтеза — поддерживать соотношение АТФ/АДФ на определенном уровне, далеком от термодинамического равновесия, что и позволяет АТФ служить донором энергии, смещая равновесие тех реакций, в которых он участвует.

Основными энергетическими станциями живых клеток служат митохондрии — внутриклеточные частицы размером 0,1–10μ, покрытые двумя мембранами. В митохондриях свободная энергия окисления продуктов питания превращается в свободную энергию АТФ. Когда АТФ соединяется с водой, при нормальных концентрациях реагирующих веществ, выделяется свободная энергия порядка 10 ккал/моль.

живые организмы извлекающие энергию за счет окисления

Источник

Обеспечение клеток энергией вследствие окисления органических веществ

Ищем педагогов в команду «Инфоурок»

живые организмы извлекающие энергию за счет окисления

Описание презентации по отдельным слайдам:

Описание слайда:

МЕТАБОЛИЗМ
Обеспечение клеток энергией
вследствие окисления органических веществ
Подготовила Голубева С.В.
г. Лесосибирск
2 часть

Описание слайда:

Клетки растений и фотосинтезирующих бактерий используют энергию солнца для образования АТФ.

Описание слайда:
Описание слайда:

ПОДГОТОВИТЕЛЬНЫЙ ЭТАП
БЕЛКИ
УГЛЕВОДЫ
ЖИРЫ
пищеварительный
канал
АМИНОКИСЛОТЫ
ГЛЮКОЗА
C6 H12 O 6
ГЛИЦЕРИН
ЖИРНЫЕ КИСЛОТЫ
ЦИТОПЛАЗМА
КЛЕТКИ
ПИРОВИНОГРАДНАЯ
КИСЛОТА
2C3H6O3
ГЛИКОЛИЗ (БЕСКИСЛОРОДНЫЙ ЭТАП)
2АТФ + 2НАД۰Н2
2Н2О + ТЕПЛО
КЛЕТОЧНОЕ ДЫХАНИЕ (КИСЛОРОДНЫЙ ЭТАП)
42Н2О + 6СО2 + ТЕПЛО
МИТОХОНДРИИ
36АТФ + 2НАД۰Н2
ИТОГО:
38АТФ + 4НАД۰Н2
Заполни
таблицу

Описание слайда:

Это путь получения энергии наиболее древний, поскольку на ранних
этапах развития жизни на Земле кислород в атмосфере отсутствовал.
ГЛИКОЛИЗ – процесс ферментативного анаэробного расщепления глюкозы и других органических соединений.
Этот процесс так же называется брожением. Термин «брожение» обычно применяют по отношению к процессам, протекающим в клетках микроорганизмов или растений.
Гликолиз идет в цитоплазме клеток и не связан с какими-либо мембранными системами.

С6Н12О6+ 2АДФ + 2Н3РО4 + 2НАД+  2С3Н4О3 + 2НАД۰ Н2 + 2АТФ + 2Н2О + ТЕПЛО

Большая часть энергии (60%) в реакции гликолиза рассеивается в виде тепла, и только 40% идет на синтез АТФ.

Описание слайда:

У прокариот клеточное дыхание происходит на впячиваниях
плазматической мембраны, а у эукариот – на мембранах специальных
клеточных органоидов – митохондрий.
Наружная
мембрана
Внутренняя
мембрана
кристы
Клеточное дыхание
матрикс
Митохондрии иногда называют «клеточными электростанциями». В клетке их количество сильно зависит от активности клетки.
Каждая митохондрия окружена двумя мембранами. Внутренняя мембрана сложена в складки, называемые кристами.

Важнейшей функцией митохондрий является синтез АТФ, происходящий за счёт
окисления органических веществ.

Описание слайда:

СХЕМА БИОЛОГИЧЕСКОГО ОКИСЛЕНИЯ ПИРОВИНОГРАДНОЙ КИСЛОТЫ В МИТОХОНДРИЯХ.
ПВК(2С3Н4О3)
2СО2
АКТИВИЗИРОВАННАЯЯ
УКСУСНАЯ КИСЛОТА
Ацетил-КоА
(2СН3СО-)
Цикл
Кребса
4СО2

16Н
Q
Е
10НАД+
10НАД۰2Н
ГЛИКОЛИЗ
2НАД ۰ 2Н
ДЫХАТЕЛЬНАЯ
ЦЕПЬ ФЕРМЕНТОВ
Е

Описание слайда:

Третий этап – биологическое окисление, или дыхание
Этот этап протекает только в присутствии кислорода и иначе называется
кислородным.
Пировиноградная кислота (ПВК) из цитоплазмы поступает в
митохондрии, где теряет молекулу углекислого газа и превращается в
активированную уксусную кислоту (ацетил-коэнзим А, ацетил-КоА),
и НАД•Н2.
В матриксе митохондрий уксусная кислота вступает в сложный цикл
биохимических превращений, который получил название Цикл Кребса.
В результате ряда последовательных реакций происходит отщепление
углекислого газа и окисление – снятие водорода с образующихся
веществ. Углекислый газ, выделяется из митохондрий, а далее из клетки
и организма в процессе дыхания. Весь водород, который снимается
с промежуточных веществ, соединяется с переносчиком НАД+, и
образуется НАД•2Н.
Общее уравнение декарбоксилирования и окисления ПВК:

2С3Н4О3 + 6Н2О + 10НАД+  6СО2 + 10НАД•2Н
Проследим теперь путь молекул НАД•2Н.
Заполни
таблицу

Описание слайда:

АТФ
1/2О2
О2-
Н2О
2Н+
Внутренняя
мембрана
митохондрий
Е
Е
Е

2е-
2е-
2е-
НАД۰2Н
Молекулы НАД•2Н поступают на кристы митохондрий, где расположена дыхательная цепь ферментов. На этой цепи происходит отщепление водорода от переносчика с одновременным снятием электронов. Каждая молекула восстановленного НАД•2Н отдает два водорода и два электрона. Они поступают на дыхательную цепь ферментов, которая состоит из белков – цитохромов. Перемещаясь по этой системе каскадно, электрон теряет энергию. За счет этой энергии в присутствии фермента АТФ-азы синтезируются молекулы АТФ. Одновременно с этими процессами происходит перекачивание ионов водорода через мембрану на наружную её сторону. В процессе окисления 12 молекул НАД•2Н, которые образовались при гликолизе (2молекулы) и в результате реакций в цикле Кребса (10 молекул), синтезируются 36 молекул АТФ.
Конечным акцептором электронов является молекула кислорода, поступающая в митохондрии при дыхании. Атомы кислорода на наружной стороне мембраны принимают электроны и заряжаются отрицательно. Положительные ионы водорода соединяются с отрицательно заряженным кислородом, и образуются молекулы воды.
2 С3Н4О3 + 4Н + 6О2  6СО2 + 6Н2О
36АДФ  36АТФ

Описание слайда:

Пировиноградная
кислота (ПВК)
СН3СОСООН
Спиртовое
брожение
Молочно-кислое
брожение
БРОЖЕНИЕ – один из способов использования живыми организмами
углеводов. В зависимости от конечного продукта реакции различают
несколько видов брожения.
Пропионово-кислое
брожение
Муравьино-кислое
брожение
Масляно-кислое
брожение
Недостатком процессов брожения является извлечением незначительной
доли той энергии, которая заключена в связях органических молекул.
Для многих одноклеточных и многоклеточных
(особенно ведущих паразитический образ жизни)этого вполне достаточно.

Описание слайда:

Среди прокариот этот тип брожения распространен не очень широко, наиболее часто он встречается в группе дрожжей.
Важно подчеркнуть, что дрожжи – эукариотические организмы и аэробы, но в анаэробных условиях брожение идет наиболее эффективно. Если добавить кислород, то брожение ослабнет.
Этот эффект был обнаружен Л. Пастером при исследовании способов изготовления вина и пива. Он же изобрел способ остановки превращения спирта в уксус уксуснокислыми бактериями – пастеризацию
(нагревание вина или пива до 65-70оС). При этом бактерии гибнут, и уксус не образуется.
Спиртовое брожение происходит у хвойных растений зимой, когда устьица хвои закупориваются смолой, и газообмен с внешней средой прекращается.

Описание слайда:

Молочнокислое брожение
С6Н12О6  2С3Н6О3 (молочная кислота)
Молочнокислые бактерии (лактобактерии) относятся к группе стрептококков. Это анаэробные организмы, которые могут жить и в присутствии кислорода тоже. Лактобактерии живут в молоке и продуктах его переработки, на растениях и растительных остатках, в кишечнике и на слизистых оболочках человека и животных; практически не встречаются в почве и воде. Более 90% продуктов брожения этих бактерий составляет молочная кислота.
Молочнокислые бактерии используются человеком в его хозяйственной деятельности. Запасание корма для скота (изготовление силоса), квашение капусты, изготовление различных кисломолочных продуктов: сметаны, йогурта, кефира, простокваши, творога, кумыса и тд.
Молочнокислые бактерии предотвращают развитие гнилостных процессов в кишечнике, и поэтому употребление молочнокислых продуктов очень полезно для здоровья.
У человека накопление молочной кислоты путем брожения в мышечных клетках происходит при интенсивной физической нагрузке.
Кроме того, хрусталик и роговица глаза человека слабо снабжается кровью, поэтому и окислительный метаболизм
выражен незначительно, а энергия в основном образуется при сбраживании глюкозы до молочной кислоты.

Описание слайда:

Пропионовокислое брожение
Пропионовая кислота, как конечный продукт данного брожения, образуется из молочной.
Большинство этих бактерий – жесткие анаэробы, которые не выдерживают присутствия кислорода.
У человека пропионовокислые бактерии вызывают воспаление волосяных фолликулов, что приводит к образованию угрей.

Муравьинокислое брожение
У представителей группы энтеробактерий конечным продуктом брожения муравьиная кислота СН2О2,, которая часто распадается на водород и углекислый газ. Поэтому эти бактерии часто называют газообразующими.
Они исключительно нетребовательны к источникам питания. Наиболее типичным представителем этих бактерий служит кишечная палочка – обычный обитатель кишечника и животных.
К этой группе микроорганизмов также принадлежат бактерии, вызывающие очень опасные заболевания человека: возбудитель тифа, холерный вибрион, чумная палочка.

Описание слайда:

Этапы энергетического обмена

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Физиология и основы гигиены человека

Основы анатомии и физиологии человека. Профессиональные заболевания

1. ВВЕДЕНИЕ

Анатомия и физиология человека – это важнейшие биологические науки, изучающие строение и функции человеческого организма. Как устроен человек, как функционируют его органы, должен знать не только каждый медик и биолог, но и специалист – инженер-эколог, который непосредственно занимается вопросами охраны здоровья человека и окружающей природной среды.

Организм человека представляет собой единую систему с общими законами развития, закономерностями строения и жизнедеятельности. Его функционирование подчиняется биологическим закономерностям, присущим всем живым организмам. В то же время человек социален и отличается от животных развитым мышлением, интеллектом, наличием второй сигнальной системы, общественными взаимоотношениями. Особенности формы, строения тела человека невозможно понять без анализа функций, равно как нельзя представить особенности функции любого органа без понимания его строения. Человеческий организм состоит из большого числа органов, огромного количества клеток, но это не сумма отдельных частей, а единый слаженный живой организм. Поэтому нельзя рассматривать органы без взаимосвязи друг с другом, без объединяющей роли нервной и сосудистой систем.

Анатомия и физиология, входящие в число естественнонаучных дисциплин, составляют фундамент для последующего изучения экологии, токсикологии, микробиологии. Без этих наук о структуре и процессах, происходя­щих в органах и их элементах, нельзя понять любые преобразования как в здоровом организме в условиях нормы, так и при заболеваниях в условиях вредного воздействия экологических факторов на организм. Ведь особенности строения тела человека, характерные для каждого индивидуума, передающиеся от родителей, определяются наследственными факторами, а также влиянием на данного человека внешней среды (экологические факторы, питание, физические нагрузки). Человек живет не только в условиях биологической среды, но и в обществе, в условиях определенных человеческих взаимоотношений. Поэтому он испытывает воздействие коллектива, социальных факторов. В связи с этим анатомия и физиология изучают человека не только как биологический объект, но учитывают при этом влияние на него социальной среды, условий труда и быта.

Особую роль при этом приобретает знание профессиональных заболеваний, обусловленных воздействием на организм человека различных факторов химической, физической и биологической природы.

Древние греки утверждали: «В здоровом теле – здоровый дух». Зная, как работает организм, какие факторы наиболее значимы в регуляции жизнедеятельности, можно предвидеть, каким образом возможно предотвратить нарушение функций отдельных систем и органов под влиянием различных вредных веществ, с которыми контактирует человек в результате своей производственной деятельности.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *